Is There an Association between BMI, Height, and Gender and Long-Bone Fractures during Childhood and Adolescence? A Large Cross-Sectional Population Study of 911,206 Subjects
Abstract
:1. Introduction
2. Methods
2.1. Medical Database
2.2. Study Sample
2.3. Cohort Assignment
2.4. Statistical Analyses
3. Results
3.1. The prevalence of TLFs
3.2. Associations between BMI and TLFs
3.3. Association between Body Height and TLFs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Leung, K.W.P.; Mahadev, A. The cost of sustaining playground related extremity fractures in Singapore. Injury 2011, 42, 352–355. [Google Scholar] [CrossRef] [PubMed]
- Lynch, K.R.; Anokye, N.K.; Vlachopoulos, D.; Barbieri, F.A.; Turi-Lynch, B.C.; Codogno, J.S.; Agostinete, R.R. Impact of sports participation on incidence of bone traumatic fractures and health-care costs among adolescents: ABCD–Growth Study. Physician Sportsmed. 2020, 48, 298–303. [Google Scholar] [CrossRef] [PubMed]
- Jeddi, M.; Dabbaghmanesh, M.H.; Kharmandar, A.; Omrani, G.R.; Bakhshayeshkaram, M. Prevalence of Fracture in Healthy Iranian Children Aged 9–18 Years and Associated Risk Factors; A Population Based Study. Bull. Emerg. Trauma 2017, 5, 29. [Google Scholar] [PubMed]
- Cheng, J.C.; Shen, W. Limb fracture pattern in different pediatric age groups: A study of 3,350 children. J. Orthop. Trauma 1993, 7, 15–22. [Google Scholar] [CrossRef]
- Clark, P.; Montiel-Ojeda, D.; Rascón-Pacheco, R.A.; Guagnelli, M.A.; Lopez-Gonzalez, D.; Bremer, A.; Borja-Aburto, V.H. Fracture incidence in children and adolescents 0–19 years old in Mexico: A 12-year cross-sectional analysis. Arch. Osteoporos. 2022, 17, 127. [Google Scholar] [CrossRef]
- Goulding, A. Risk factors for fractures in normally active children and adolescents. Optim. Bone Mass Strength 2007, 51, 102–120. [Google Scholar]
- Landin, L.A. Fracture Patterns in Children: Analysis of 8,682 Fractures with Special Reference to Incidence, Etiology and Secular Changes in a Swedish Urban Population 1950–1979. Acta Orthop. Scand. 1983, 54, 3–109. [Google Scholar] [CrossRef]
- Davis, A.M.; Bennett, K.J.; Befort, C.; Nollen, N. Obesity and related health behaviors among urban and rural children in the United States: Data from the National Health and Nutrition Examination Survey 2003–2004 and 2005–2006. J. Pediatr. Psychol. 2011, 36, 669–676. [Google Scholar] [CrossRef]
- Ogden, C.L.; Carroll, M.D.; Curtin, L.R.; McDowell, M.A.; Tabak, C.J.; Flegal, K.M. Prevalence of overweight and obesity in the United States, 1999–2004. JAMA 2006, 295, 1549–1555. [Google Scholar] [CrossRef]
- Franciozi, C.E.D.S.; Tamaoki, M.J.S.; Araújo, E.F.A.d.; Dobashi, E.T.; Utumi, C.E.; Pinto, J.A.; Ishida, A. Epidemiology, treatment and economical aspects of multiple trauma in children and adolescents in a public hospital. Acta Ortopédica Bras. 2008, 16, 261–265. [Google Scholar] [CrossRef]
- Hedström, E.M.; Svensson, O.; Bergström, U.; Michno, P. Epidemiology of fractures in children and adolescents: Increased incidence over the past decade: A population-based study from northern Sweden. Acta Orthop. 2010, 81, 148–153. [Google Scholar] [CrossRef]
- Hepping, A.M.; Barvelink, B.; Ploegmakers, J.J.; van der Palen, J.; Geertzen, J.H.; Bulstra, S.K.; Harbers, J.S.; Stevens, M. Functional recovery after reduced pediatric fractures of the forearm with respect to perceived limitations, common post-traumatic symptoms, range of motion, and dexterity: A prospective study. Disabil. Rehabil. 2022, 1–7. [Google Scholar] [CrossRef]
- Fryar, C.D.; Carroll, M.D.; Ogden, C.L. Prevalence of Overweight, Obesity, and Severe Obesity among Children and Adolescents Aged 2–19 Years: United States, 1963–1965 through 2015–2016. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwimorCtmp__AhWWaN4KHUSHAWwQFnoECBkQAQ&url=https%3A%2F%2Fwww.cdc.gov%2Fnchs%2Fdata%2Fhestat%2Fobesity_child_15_16%2Fobesity_child_15_16.pdf&usg=AOvVaw15cEJXkgXBGvjcmsBFLOV5 (accessed on 1 September 2018).
- Leiba, M.; Leiba, A.; Keinan-Boker, L.; Avigdor, A.; Derazne, E.; Levine, H.; Kark, J.D. Adolescent weight and height are predictors of specific non-Hodgkin lymphoma subtypes among a cohort of 2,352,988 individuals aged 16 to 19 years. Cancer 2016, 122, 1068–1077. [Google Scholar] [CrossRef]
- Twig, G.; Yaniv, G.; Levine, H.; Leiba, A.; Goldberger, N.; Derazne, E.; Ben-Ami Shor, D.; Tzur, D.; Afek, A.; Shamiss, A.; et al. Body-Mass Index in 2.3 Million Adolescents and Cardiovascular Death in Adulthood. N. Engl. J. Med. 2016, 374, 2430–2440. [Google Scholar] [CrossRef] [PubMed]
- Manias, K.; McCabe, D.; Bishop, N. Fractures and recurrent fractures in children; varying effects of environmental factors as well as bone size and mass. Bone 2006, 39, 652–657. [Google Scholar] [CrossRef]
- Goulding, A.; Jones, I.; Taylor, R.; Piggot, J.; Taylor, D. Dynamic and static tests of balance and postural sway in boys: Effects of previous wrist bone fractures and high adiposity. Gait Posture 2003, 17, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Proietto, J. Obesity and Bone. F1000Research 2020, 9. [Google Scholar] [CrossRef] [PubMed]
- Goulding, A.; Jones, I.E.; Taylor, R.W.; Williams, S.M.; Manning, P.J. Bone mineral density and body composition in boys with distal forearm fractures: A dual-energy x-ray absorptiometry study. J. Pediatr. 2001, 139, 509–515. [Google Scholar] [CrossRef] [PubMed]
- van der Sluis, I.M.; van den Heuvel-Eibrink, M.M.; Hählen, K.; Krenning, E.P.; de Muinck Keizer-Schrama, S.M. Altered bone mineral density and body composition, and increased fracture risk in childhood acute lymphoblastic leukemia. J. Pediatr. 2002, 141, 204–210. [Google Scholar] [CrossRef]
- Goulding, A.; Taylor, R.W.; Jones, I.E.; McAuley, K.A.; Manning, P.J.; Williams, S.M. Overweight and obese children have low bone mass and area for their weight. Int. J. Obes. Relat. Metab. Disord. J. Int. Assoc. Study Obes. 2000, 24, 627–632. [Google Scholar] [CrossRef]
- van Leeuwen, J.; Koes, B.W.; Paulis, W.D.; van Middelkoop, M. Differences in bone mineral density between normal-weight children and children with overweight and obesity: A systematic review and meta-analysis. Obes. Rev. 2017, 18, 526–546. [Google Scholar] [CrossRef] [PubMed]
- Khadilkar, A.; Chiplonkar, S.; Agrawal, D.P.; Sanwalka, N.; Khadilkar, V. Bone health status in Indian overweight/obese children. Indian J. Pediatr. 2016, 83, 1473–1475. [Google Scholar] [CrossRef] [PubMed]
- Okoroafor, U.C.; Cannada, L.K.; McGinty, J.L. Obesity and failure of nonsurgical management of pediatric both-bone forearm fractures. J. Hand Surg. 2017, 42, 711–716. [Google Scholar] [CrossRef] [PubMed]
- DeFrancesco, C.J.; Rogers, B.H.; Shah, A.S. Obesity increases risk of loss of reduction after casting for diaphyseal fractures of the radius and ulna in children: An observational cohort study. J. Orthop. Trauma 2018, 32, e46–e51. [Google Scholar] [CrossRef] [PubMed]
- Lane, J.C.; Butler, K.L.; Poveda-Marina, J.L.; Martinez-Laguna, D.; Reyes, C.; de Bont, J.; Javaid, M.K.; Logue, J.; Compston, J.E.; Cooper, C.J.; et al. Preschool Obesity Is Associated With an Increased Risk of Childhood Fracture: A Longitudinal Cohort Study of 466,997 Children and Up to 11 Years of Follow-up in Catalonia, Spain. J. Bone Miner. Res. 2020, 35, 1022–1030. [Google Scholar] [CrossRef]
- Goulding, A.; Jones, I.; Taylor, R.; Manning, P.; Williams, S. More broken bones: A 4-year double cohort study of young girls with and without distal forearm fractures. J. Bone Miner. Res. 2000, 15, 2011–2018. [Google Scholar] [CrossRef]
- Davidson, P.; Goulding, A.; Chalmers, D. Biomechanical analysis of arm fracture in obese boys. J. Paediatr. Child Health 2003, 39, 657–664. [Google Scholar] [CrossRef]
- Armstrong, M.E.; Kirichek, O.; Cairns, B.J.; Green, J.; Reeves, G.K. Relationship of Height to Site-Specific Fracture Risk in Postmenopausal Women. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2016, 31, 725–731. [Google Scholar] [CrossRef]
- Faulkner, K.G.; Cummings, S.R.; Black, D.; Palermo, L.; Glüer, C.C.; Genant, H.K. Simple measurement of femoral geometry predicts hip fracture: The study of osteoporotic fractures. J. Bone Miner. Res. 1993, 8, 1211–1217. [Google Scholar] [CrossRef]
- Meydan, C.; Afek, A.; Derazne, E.; Tzur, D.; Twig, G.; Gordon, B.; Shamiss, A. Population-based trends in overweight and obesity: A comparative study of 2,148,342 Israeli male and female adolescents born 1950-1993. Pediatr. Obes. 2013, 8, 98–111. [Google Scholar] [CrossRef]
- Ogden, C.L.; Flegal, K.M.; Carroll, M.D.; Johnson, C.L. Prevalence and trends in overweight among US children and adolescents, 1999-2000. JAMA 2002, 288, 1728–1732. [Google Scholar] [CrossRef] [PubMed]
- Gelber, A.C.; Hochberg, M.C.; Mead, L.A.; Wang, N.-Y.; Wigley, F.M.; Klag, M.J. Body mass index in young men and the risk of subsequent knee and hip osteoarthritis. Am. J. Med. 1999, 107, 542–548. [Google Scholar] [CrossRef] [PubMed]
Males | |||
---|---|---|---|
No TLFs (%) | Uneventful TLFs (%) | Complicated TLFs (%) | |
BMI | |||
Underweight | 8.1 | 7.5 | 8.5 |
Healthy weight | 87.8 | 75.1 | 73.3 |
Overweight | 9.8 | 10.2 | 9.5 |
Obese | 6.7 | 7.2 | 8.7 |
Height quintiles (Q) | |||
Q1 (130–168 cm) | 20.9 | 18.7 | 20.5 |
Q2 (169–172 cm) | 20.9 | 20.3 | 20.5 |
Q3 (173–176 cm) | 23.2 | 23.4 | 26.4 |
Q4 (177–180 cm) | 18.9 | 19.7 | 15 |
Q5 (181–210 cm) | 16.2 | 18 | 17.6 |
Females | |||
No TLFs (%) | Uneventful TLFs (%) | Complicated TLFs (%) | |
BMI | |||
Underweight | 5 | 3.9 | 4.8 |
Healthy weight | 80.5 | 78.6 | 77 |
Overweight | 10.4 | 12 | 10.5 |
Obese | 4.1 | 5.5 | 7.7 |
Height quintiles (Q) | |||
Q1 (130–168 cm) | 23.6 | 19.7 | 24 |
Q2 (169–172 cm) | 18.1 | 17.5 | 10.5 |
Q3 (173–176 cm) | 24.3 | 24.3 | 19.3 |
Q4 (177–180 cm) | 15.5 | 16.8 | 22.2 |
Q5 (181–210 cm) | 18.5 | 21.7 | 24 |
(a) Both genders combined. | ||||||
---|---|---|---|---|---|---|
Binary Logistic Regression | Multinomial Logistic Regression | |||||
All TLFs | Uneventful TLFs | |||||
OR | 95% CI | p-Value | OR | 95% CI | p-Value | |
BMI b | ||||||
Underweight | 0.906 | 0.880–0.932 | <0.001 | 0.905 | 0.880–0.931 | <0.001 |
Healthy weight | 1 | 1 | ||||
Overweight | 1.080 | 1.056–1.105 | <0.001 | 1.080 | 1.056–1.105 | <0.001 |
Obese | 1.111 | 1.080–1.143 | <0.001 | 1.109 | 1.078–1.141 | <0.001 |
Height quintiles b (Q) | ||||||
Q1 (130–168 cm) | 1 | 1 | ||||
Q2 (169–172 cm) | 1.102 | 1.078–1.127 | <0.001 | 1.103 | 1.079–1.128 | <0.001 |
Q3 (173–176 cm) | 1.142 | 1.118–1.167 | <0.001 | 1.143 | 1.118–1.168 | <0.001 |
Q4 (177–180 cm) | 1.198 | 1.171–1.226 | <0.001 | 1.199 | 1.172–1.227 | <0.001 |
Q5 (181–210 cm) | 1.289 | 1.260–1.318 | <0.001 | 1.289 | 1.261–1.319 | <0.001 |
Gender | 2.079 | 2.048–2.112 | <0.001 | 2.080 | 2.048–2.112 | <0.001 |
(b) Males | ||||||
Binary Logistic Regression | Multinomial Logistic Regression | |||||
All TLFs | Uneventful TLFs | |||||
OR | 95% CI | p-Value | OR | 95% CI | p-Value | |
BMI b | ||||||
Underweight | 0.935 | 0.906–0.906 | <0.001 | 0.934 | 0.905–0.965 | <0.001 |
Healthy weight | 1 | 1 | ||||
Overweight | 1.029 | 1.001–1.058 | 0.045 | 1.029 | 1.001–1.058 | 0.044 |
Obese | 1.044 | 1.011–1.079 | 0.010 | 1.043 | 1.009–1.078 | 0.012 |
Height quintiles b (Q) | ||||||
Q1 (130–168 cm) | 1 | 1 | ||||
Q2 (169–172 cm) | 1.078 | 1.050–1.107 | <0.001 | 1.078 | 1.050–1.107 | <0.001 |
Q3 (173–176 cm) | 1.117 | 1.088–1.146 | <0.001 | 1.117 | 1.088–1.146 | <0.001 |
Q4 (177–180 cm) | 1.158 | 1.127–1.189 | <0.001 | 1.159 | 1.129–1.191 | <0.001 |
Q5 (181–210 cm) | 1.238 | 1.204–1.272 | <0.001 | 1.238 | 1.205–1.273 | <0.001 |
(c) Females | ||||||
Binary Logistic Regression | Multinomial Logistic Regression | |||||
All TLFs | Uneventful TLFs | |||||
OR | 95% CI | p-Value | OR | 95% CI | p-Value | |
BMI b | ||||||
Underweight | 0.780 | 0.730–0.833 | <0.001 | 0.779 | 0.729–0.832 | <0.001 |
Healthy weight | 1 | 1 | ||||
Overweight | 1.201 | 1.10.54–1.250 | <0.001 | 1.201 | 1.154–1.250 | <0.001 |
Obese | 1.367 | 1.290–1.447 | <0.001 | 1.364 | 1.288–1.445 | <0.001 |
Height quintiles b (Q) | ||||||
Q1 (130–168 cm) | 1 | |||||
Q2 (169–172 cm) | 1.159 | 1.111–1.209 | <0.001 | 1.162 | 1.114–1.212 | <0.001 |
Q3 (173–176 cm) | 1.202 | 1.156–1.250 | <0.001 | 1.205 | 1.159–1.252 | <0.001 |
Q4 (177–180 cm) | 1.305 | 1.251–1.362 | <0.001 | 1.305 | 1.250–1.362 | <0.001 |
Q5 (181–210 cm) | 1.410 | 1.355–1.468 | <0.001 | 1.411 | 1.356–1.469 | <0.001 |
Uneventful TLFs | All TLFs | |||||
---|---|---|---|---|---|---|
b | p | Adjusted R2 | b | p | Adjusted R2 | |
Male | ||||||
BMI | 0.036 | 0.048 | 0.861 | 0.035 | 0.05 | 0.854 |
Height | 0.056 | 0.001 | 0.976 | 0.056 | 0.001 | 0.976 |
Female | ||||||
BMI | 0.196 | 0.002 | 0.994 | 0.196 | 0.002 | 0.993 |
Height | 0.097 | 0.002 | 0.965 | 0.097 | 0.002 | 0.965 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lotan, R.; Thein, R.; Gordon, B.; Tenenbaum, S.; Derazne, E.; Tzur, D.; Afek, A.; Hershkovich, O. Is There an Association between BMI, Height, and Gender and Long-Bone Fractures during Childhood and Adolescence? A Large Cross-Sectional Population Study of 911,206 Subjects. Children 2023, 10, 984. https://doi.org/10.3390/children10060984
Lotan R, Thein R, Gordon B, Tenenbaum S, Derazne E, Tzur D, Afek A, Hershkovich O. Is There an Association between BMI, Height, and Gender and Long-Bone Fractures during Childhood and Adolescence? A Large Cross-Sectional Population Study of 911,206 Subjects. Children. 2023; 10(6):984. https://doi.org/10.3390/children10060984
Chicago/Turabian StyleLotan, Raphael, Ran Thein, Barak Gordon, Shay Tenenbaum, Estela Derazne, Dorit Tzur, Arnon Afek, and Oded Hershkovich. 2023. "Is There an Association between BMI, Height, and Gender and Long-Bone Fractures during Childhood and Adolescence? A Large Cross-Sectional Population Study of 911,206 Subjects" Children 10, no. 6: 984. https://doi.org/10.3390/children10060984
APA StyleLotan, R., Thein, R., Gordon, B., Tenenbaum, S., Derazne, E., Tzur, D., Afek, A., & Hershkovich, O. (2023). Is There an Association between BMI, Height, and Gender and Long-Bone Fractures during Childhood and Adolescence? A Large Cross-Sectional Population Study of 911,206 Subjects. Children, 10(6), 984. https://doi.org/10.3390/children10060984