Defecation Habits in Preschoolers Are Associated with Physical Activity: A Cross-Sectional and Isotemporal Substitution Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Procedures
2.2. Accelerometer
2.3. Defecation Habits
2.4. Covariates
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fujitani, A.; Sogo, T.; Inui, A.; Kawakubo, K. Prevalence of functional constipation and relationship with dietary habits in 3- to 8-year-old children in Japan. Gastroenterol. Res. Pract. 2018, 2018, 3108021. [Google Scholar] [CrossRef] [PubMed]
- Inan, M.; Aydiner, C.Y.; Tokuc, B.; Aksu, B.; Ayvaz, S.; Ayhan, S.; Ceylan, T.; Basaran, U.N. Factors associated with childhood constipation. J. Paediatr. Child Health 2007, 43, 700–706. [Google Scholar] [CrossRef] [PubMed]
- JSPGHAN, Japanese Society for Pediatric Neuro-Gastroenterology. Clinical Practice Guidelines for Pediatric Chronic Functional Constipation. Shindan To Chiryo Sha. 2013. Available online: https://www.jspghan.org/constipation/ishi_guideline.html (accessed on 22 May 2023). (In Japanese).
- Seidenfaden, S.; Ormarsson, O.T.; Lund, S.H.; Bjornsson, E.S. Physical activity may decrease the likelihood of children developing constipation. Acta Paediatr. 2018, 107, 151–155. [Google Scholar] [CrossRef]
- Reilly, J.J.; Coyle, J.; Kelly, L.; Burke, G.; Grant, S.; Paton, J.Y. An objective method for measurement of sedentary behavior in 3- to 4-Year Olds. Obes. Res. 2003, 11, 1155–1158. [Google Scholar] [CrossRef]
- Pfeiffer, K.A.; Mciver, K.L.; Dowda, M.; Almeida, M.J.; Pate, R.R. Validation and calibration of the Actical accelerometer in preschool children. Med. Sci. Sport. Exerc. 2006, 38, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Harrell, J.S.; McMurray, R.G.; Gansky, S.A.; Bangdiwala, S.I.; Bradley, C.B. A public health vs a risk-based intervention to improve cardiovascular health in elementary school children: The Cardiovascular Health in Children Study. Am. J. Public Health 1999, 89, 1529–1535. [Google Scholar] [CrossRef]
- Epstein, L.H.; Paluch, R.A.; Gordy, C.C.; Dorn, J. Decreasing sedentary behaviors in treating pediatric obesity. Arch. Pediatr. Adolesc. Med. 2000, 154, 220–226. [Google Scholar] [CrossRef]
- Driessen, L.M.; Kiefte-de Jong, J.C.; Wijtzes, A.; Vries, S.I.; Jaddoe, V.W.; Hofman, A.; Raat, H.; Moll, H.A. Preschool physical activity and functional constipation: The Generation R study. J. Pediatr. Gastroenterol. Nutr. 2013, 57, 768–774. [Google Scholar] [CrossRef]
- Huang, R.; Ho, S.-Y.; Lo, W.-S.; Lam, T.-H. Physical activity and constipation in Hong Kong adolescents. PLoS ONE 2014, 9, e90193. [Google Scholar] [CrossRef]
- Dukas, L.; Willett, W.C.; Giovannucci, E.L. Association between physical activity, fiber intake, and other lifestyle variables and constipation in a study of women. Am. J. Gastroenterol. 2003, 98, 1790–1796. [Google Scholar] [CrossRef]
- Treuth, M.S.; Schmitz, K.; Catellier, D.J.; McMurray, R.G.; Murray, D.M.; Almeida, M.J.; Going, S.; Norman, J.E.; Pate, R. Defining accelerometer thresholds for activity intensities in adolescent girls. Med. Sci. Sport. Exerc. 2004, 36, 1259–1266. [Google Scholar]
- Chen, K.Y.; Bassett, D.R., Jr. The technology of accelerometry-based activity monitors: Current and future. Med. Sci. Sport. Exerc. 2005, 37, 490–500. [Google Scholar] [CrossRef] [PubMed]
- Freedson, P.; Pober, D.; Janz, K.F. Calibration of accelerometer output for children. Med. Sci. Sport. Exerc. 2005, 37, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Matthew, C.E. Calibration of accelerometer output for adults. Med. Sci. Sport. Exerc. 2005, 37, 512–522. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J.; Dumuid, D.; Bengoechea, E.G.; Shrestha, N.; Bauman, A.; Olds, T.; Pedisic, Z. Health outcomes associated with reallocations of time between sleep, sedentary behaviour, and physical activity: A systematic scoping review of isotemporal substitution studies. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 69–136. [Google Scholar] [CrossRef]
- Sasai, H.; Nakata, Y. Isotemporal Substitution Model: A Novel Statistical Approach for Physical Activity Epidemiology. Res. Exerc. Epidemiol. 2015, 17, 104–112. (In Japanese) [Google Scholar]
- Stamatakis, E.; Rogers, K.; Ding, D.; Berrigan, D.; Chau, J.; Hamer, M.; Bauman, A. All-cause mortality effects of replacing sedentary time with physical activity and sleeping using an isotemporal substitution model: A prospective study of 201,129 mid-aged and older adults. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 121. [Google Scholar] [CrossRef]
- Loprinzi, P.D.; Loenneke, J.P. Mortality risk and perceived quality of life as a function of waking time in discretionary movement-based behaviors: Isotemporal substitution effects. Qual. Life Res. 2017, 26, 343–348. [Google Scholar] [CrossRef]
- Aggio, D.; Smith, L.; Hamer, M. Effects of reallocating time in different activity intensities on health and fitness: A cross sectional study. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 83. [Google Scholar] [CrossRef]
- Del Pozo-Cruz, B.; Gant, N.; Del Pozo-Cruz, J.; Maddison, R. Relationships between sleep duration, physical activity and body mass index in young New Zealanders: An isotemporal substitution analysis. PLoS ONE 2017, 12, e0184472. [Google Scholar] [CrossRef]
- Lim, J.; Kim, J.-S.; Park, S.; Lee, O.; So, W.-Y. Relationship of physical activity and sedentary time with metabolic health in children and adolescents measured by accelerometer: A narrative review. Healthcare 2021, 9, 709. [Google Scholar] [CrossRef] [PubMed]
- Kitano, N.; Kai, Y.; Jindo, T.; Tsunoda, K.; Arao, T. Compositional data analysis of 24-hour movement behaviors and mental health in workers. Prev. Med. Rep. 2020, 10, 101213. [Google Scholar] [CrossRef] [PubMed]
- Hikihara, Y.; Tanaka, C.; Oshima, Y.; Ohkawara, K.; Ishikawa-Takata, K.; Tanaka, S. Prediction models discriminating between nonlocomotive and locomotive activities in children using a triaxial accelerometer with a gravity-removal physical activity classification algorithm. PLoS ONE 2014, 9, e94940. [Google Scholar] [CrossRef] [PubMed]
- Yasunaga, A.; Shibata, A.; Ishii, K.; Koohsari, M.J.; Oka, K. Cross-sectional associations of sedentary behaviour and physical activity on depression in Japanese older adults: An isotemporal substitution approach. BMJ Open 2018, 8, e022282. [Google Scholar] [CrossRef] [PubMed]
- Van den Berg, M.M.; Benninga, M.A.; Di Lorenzo, C. Epidemiology of childhood constipation: A systematic review. Off. J. Am. Coll. Gastroenterol. 2006, 101, 2401–2409. [Google Scholar] [CrossRef]
- Mugie, S.M.; Benninga, M.A.; Di Lorenzo, C. Epidemiology of constipation in children and adults: A systematic review. Best Pract. Res. Clin. Gastroenterol. 2011, 25, 3–18. [Google Scholar] [CrossRef]
- Loening-Baucke, V. Chronic constipation in children. Gastroenterology 1993, 105, 1557–1564. [Google Scholar] [CrossRef]
- Yamada, M.; Sekine, M.; Tatsuse, T. Lifestyle and bowel movements in school children: Results from the Toyama Birth Cohort Study. Pediatr. Int. 2017, 59, 604–613. [Google Scholar] [CrossRef]
- Bourke, M.; Vanderloo, L.M.; Irwin, J.D.; Burke, S.M.; Johnson, A.M.; Driediger, M.; Timmons, B.W.; Tucker, P. Association between childcare movement behaviour compositions with health and development among preschoolers: Finding the optimal combinations of physical activities and sedentary time. J. Sport. Sci. 2022, 40, 2085–2094. [Google Scholar] [CrossRef]
- Lemos, L.; Clark, C.; Brand, C.; Pessoa, M.L.; Gaya, A.; Mota, J.; Duncan, M.; Martins, C. 24-hour movement behaviors and fitness in preschoolers: A compositional and isotemporal reallocation analysis. Scand. J. Med. Sci. Sport. 2021, 31, 1371–1379. [Google Scholar] [CrossRef]
- Chien, L.-Y.; Liou, Y.M.; Chang, P. Low defaecation frequency in Taiwanese adolescents: Association with dietary intake, physical activity and sedentary behaviour. J. Paediatr. Child Health 2011, 47, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Collings, P.J.; Westgate, K.; Vaisto, J.; Wijndaele, K.; Atkin, A.J.; Haapala, E.A.; Lintu, N.; Laitinen, T.; Ekelund, U.; Brage, S.; et al. Cross-sectional associations of objectively-measured physical activity and sedentary time with body composition and cardiorespiratory fitness in mid-childhood: The PANIC study. Sport. Med. 2017, 47, 769–780. [Google Scholar] [CrossRef] [PubMed]
- Leppänen, M.H.; Nyström, C.D.; Henriksson, P.; Pomeroy, J.; Ruiz, J.R.; Ortega, F.B.; Cadenas-Sánchez, C.; Löf, M. Physical activity intensity, sedentary behavior, body composition and physical fitness in 4-year-old children: Results from the ministop trial. Int. J. Obes. 2016, 40, 1126–1133. [Google Scholar] [CrossRef] [PubMed]
- Kurita, S.; Yano, S.; Ishii, K.; Shibata, A.; Sasai, H.; Nakata, Y.; Fukushima, N.; Inoue, S.; Tanaka, S.; Sugiyama, T.; et al. Comparability of activity monitors used in Asian and Western-country studies for assessing free-living sedentary behaviour. PLoS ONE 2017, 12, e0186523. [Google Scholar] [CrossRef] [PubMed]
- Kohyama, J. Lifestyle habits associated with poor defecation habit among pupils in Japan. Pediatr. Gastroenterol. Hepatol. Nutr. 2020, 23, 567–576. [Google Scholar] [CrossRef]
- Kaerts, N.; Van Hal, G.; Vermandel, A.; Wyndaele, J.-J. Readiness signs used to define the proper moment to start toilet training: A review of the literature. Neurourol. Urodyn. 2012, 31, 437–440. [Google Scholar] [CrossRef]
- Largo, R.H.; Stutzle, W. Longitudinal study of bowel and bladder control by day and at night in the first six years of life. I: Epidemiology and Interrelations between Bowel and Bladder Control. Dev. Med. Child Neurol. 1977, 19, 598–606. [Google Scholar] [CrossRef]
- Amano, S.; Tsukamoto, Y.; Kagami, S.; Kuze, N.; Suzuk, K. Defecation in normal infants and children: Clinical assessment of anal continence. Jpn. Soc. Pediatr. Surg. 1989, 25, 236–239. [Google Scholar]
- Malowitz, S.; Green, M.; Karpinski, A.; Rosenberg, A.; Hyman, P.E. Age of onset of functional constipation. J. Pediatr. Gastroenterol. Nutr. 2016, 62, 600–602. [Google Scholar] [CrossRef]
Frequency | Every Day | Once Every 2–3 Days | Once Every 4–5 Days | About Once a Week | Irregular | |
---|---|---|---|---|---|---|
Timing | ||||||
Morning | DF1 | DF2 | ||||
Noon | DF2 | DF3 | ||||
Night | ||||||
Not decided |
Age, months | 65.7 ± 8.5 | |||||
Gender, n (%) | ||||||
Male | 89 (53.6%) | |||||
Female | 77 (46.4%) | |||||
Body mass index, kg/m2 | 15.7 ± 1.3 | |||||
Defecation habit, n (%) | ||||||
Defecate every morning (DF1) | 38 (26.2%) | |||||
Defecate every day or morning time (DF2) | 66 (45.5%) | |||||
Defecate once every two days or less (DF3) | 41 (28.2%) | |||||
Accelerometer data | ||||||
Step, steps | 9377 ± 1850 | |||||
Wear time, min/day | 832 ± 74.0 | |||||
SB time, min/day | 330 ± 71.6 | |||||
LPA time, min/day | 325 ± 44.3 | |||||
MVPA time, min/day | 179 ± 34.1 | |||||
Mean ± SD or number (%) | ||||||
n = 166 |
Defecation Habit | |||
---|---|---|---|
DF1 | DF2 | DF3 | |
Accelerometer data (Mean ± SD) | |||
Step, steps | 9887 ± 1934 | 9449 ± 1886 | 8785 ± 1759 * |
Wear time, min/day | 823 ± 69.3 | 841 ± 79.9 | 834 ± 71.4 |
SB time, min/day | 312 ± 69.1 | 328 ± 74.2 | 340 ± 75.6 |
LPA time, min/day | 328 ± 43.6 | 331 ± 43.8 | 326 ± 44.3 |
MVPA time, min/day | 187 ± 32.1 | 182 ± 35.5 | 169 ± 32.4 * |
Exp.(B) | 95% CI | p | |||
---|---|---|---|---|---|
Inactive | ⇒ | Active | |||
SB | ⇒ | LPA | 1.00 | (0.83, 1.20) | 0.98 |
SB | ⇒ | MVPA | 0.89 | (0.81, 0.97) | <0.01 |
LPA | ⇒ | MVPA | 0.89 | (0.80, 1.00) | 0.04 |
Active | ⇒ | Inactive | |||
LPA | ⇒ | SB | 1.00 | (0.94, 1.06) | 0.98 |
MVPA | ⇒ | SB | 1.13 | (1.03, 1.23) | <0.01 |
MVPA | ⇒ | LPA | 1.13 | (1.00, 1.26) | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komeno, Y.; Kuchiki, T.; Onodera, Y.; Machida, S. Defecation Habits in Preschoolers Are Associated with Physical Activity: A Cross-Sectional and Isotemporal Substitution Analysis. Children 2023, 10, 951. https://doi.org/10.3390/children10060951
Komeno Y, Kuchiki T, Onodera Y, Machida S. Defecation Habits in Preschoolers Are Associated with Physical Activity: A Cross-Sectional and Isotemporal Substitution Analysis. Children. 2023; 10(6):951. https://doi.org/10.3390/children10060951
Chicago/Turabian StyleKomeno, Yoshinori, Tsutomu Kuchiki, Yumiko Onodera, and Shuichi Machida. 2023. "Defecation Habits in Preschoolers Are Associated with Physical Activity: A Cross-Sectional and Isotemporal Substitution Analysis" Children 10, no. 6: 951. https://doi.org/10.3390/children10060951
APA StyleKomeno, Y., Kuchiki, T., Onodera, Y., & Machida, S. (2023). Defecation Habits in Preschoolers Are Associated with Physical Activity: A Cross-Sectional and Isotemporal Substitution Analysis. Children, 10(6), 951. https://doi.org/10.3390/children10060951