Association between Chronotype and Physical Behaviours in Adolescent Girls
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Measures
2.3. Statistical Analyses
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roenneberg, T.; Kuehnle, T.; Pramstaller, P.P.; Ricken, J.; Havel, M.; Guth, A.; Merrow, M. A marker for the end of adolescence. Curr. Biol. 2004, 14, R1038–R1039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carskadon, M.A.; Wolfson, A.R.; Acebo, C.; Tzischinsky, O.; Seifer, R. Adolescent sleep patterns, circadian timing, and sleepiness at a transition to early school days. Sleep 1998, 21, 871–881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arora, T.; Taheri, S. Associations among late chronotype, body mass index and dietary behaviors in young adolescents. Int. J. Obes. 2015, 39, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Merikanto, I.; Lahti, T.; Puusniekka, R.; Partonen, T. Late bedtimes weaken school performance and predispose adolescents to health hazards. Sleep Med. 2013, 14, 1105–1111. [Google Scholar] [CrossRef]
- Karan, M.; Bai, S.; Almeida, D.M.; Irwin, M.R.; McCreath, H.; Fuligni, A.J. Sleep-Wake Timings in Adolescence: Chronotype Development and Associations with Adjustment. J. Youth Adolesc. 2021, 50, 628–640. [Google Scholar] [CrossRef]
- Urbán, R.; Magyaródi, T.; Rigó, A. Morningness-eveningness, chronotypes and health-impairing behaviors in adolescents. Chronobiol. Int. 2011, 28, 238–247. [Google Scholar] [CrossRef]
- Kauderer, S.; Randler, C. Differences in time use among chronotypes in adolescents. Biol. Rhythm. Res. 2013, 44, 601–608. [Google Scholar] [CrossRef]
- Schaal, S.; Peter, M.; Randler, C. Morningness-eveningness and physical activity in adolescents. Int. J. Sport Exerc. Psychol. 2010, 8, 147–159. [Google Scholar] [CrossRef]
- Merikanto, I.; Kuula, L.; Lahti, J.; Räikkönen, K.; Pesonen, A.K. Eveningness associates with lower physical activity from pre-to late adolescence. Sleep Med. 2020, 74, 189–198. [Google Scholar] [CrossRef]
- Malone, S.K.; Zemel, B.; Compher, C.; Souders, M.; Chittams, J.; Thompson, A.L.; Lipman, T.H. Characteristics associated with sleep duration, chronotype, and social jet lag in adolescents. J. Sch. Nurs. 2016, 32, 120–131. [Google Scholar] [CrossRef] [Green Version]
- Saunders, T.J.; Gray, C.E.; Poitras, V.J.; Chaput, J.P.; Janssen, I.; Katzmarzyk, P.T.; Olds, T.; Connor Gorber, S.; Kho, M.E.; Sampson, M.; et al. Combinations of physical activity, sedentary behaviour and sleep: Relationships with health indicators in school-aged children and youth. Appl. Physiol. Nutr. Metab. 2016, 41, S283–S293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dewald, J.F.; Meijer, A.M.; Oort, F.J.; Kerkhof, G.A.; Bögels, S.M. The influence of sleep quality, sleep duration and sleepiness on school performance in children and adolescents: A meta-analytic review. Sleep Med. Rev. 2010, 14, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Edwardson, C.L.; Harrington, D.M.; Yates, T.; Bodicoat, D.H.; Khunti, K.; Gorely, T.; Sherar, L.B.; Edwards, R.T.; Wright, C.; Harrington, K.; et al. A cluster randomised controlled trial to investigate the effectiveness and cost effectiveness of the ‘Girls Active’ intervention: A study protocol. BMC Public Health 2015, 15, 526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Migueles, J.H.; Rowlands, A.V.; Huber, F.; Sabia, S.; van Hees, V.T. GGIR: A Research Community–Driven Open Source R Package for Generating Physical Activity and Sleep Outcomes from Multi-Day Raw Accelerometer Data. J. Meas. Phys. Behav. 2019, 2, 188–196. [Google Scholar] [CrossRef] [Green Version]
- Van Hees, V.T.; Fang, Z.; Langford, J.; Assah, F.; Mohammad, A.; Da Silva, I.C.; Trenell, M.I.; White, T.; Wareham, N.J.; Brage, S. Autocalibration of accelerometer data for free-living physical activity assessment using local gravity and temperature: An evaluation on four continents. J. Appl. Physiol. 2014, 117, 738–744. [Google Scholar] [CrossRef] [Green Version]
- Van Hees, V.T.; Gorzelniak, L.; Dean León, E.C.; Eder, M.; Pias, M.; Taherian, S.; Ekelund, U.; Renström, F.; Franks, P.W.; Horsch, A.; et al. Separating movement and gravity components in an acceleration signal and implications for the assessment of human daily physical activity. PLoS ONE 2013, 8, e61691. [Google Scholar] [CrossRef] [Green Version]
- Hildebrand, M.; Hansen, B.H.; van Hees, V.T.; Ekelund, U. Evaluation of raw acceleration sedentary thresholds in children and adults. Scand. J. Med. Sci. Sports 2017, 27, 1814–1823. [Google Scholar] [CrossRef]
- Hildebrand, M.; Hansen, B.H.; van Hees, V.T.; Ekelund, U. Age group comparability of raw accelerometer output from wrist-and hip-worn monitors. Med. Sci. Sports Exerc. 2014, 46, 1816–1824. [Google Scholar] [CrossRef]
- van Hees, V.T.; Sabia, S.; Jones, S.E.; Wood, A.R.; Anderson, K.N.; Kivimäki, M.; Frayling, T.M.; Pack, A.I.; Bucan, M.; Trenell, M.I.; et al. Estimating sleep parameters using an accelerometer without sleep diary. Sci. Rep. 2018, 8, 12975. [Google Scholar] [CrossRef]
- Horne, J.A.; Östberg, O. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int. J. Chronobiol. 1976, 4, 97–110. [Google Scholar]
- Cole, T.J.; Freeman, J.V.; Preece, M.A. Body mass index reference curves for the UK, 1990. Arch. Dis. Child. 1995, 73, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Harrington, D.M.; Davies, M.J.; Bodicoat, D.H.; Charles, J.M.; Chudasama, Y.V.; Gorely, T.; Khunti, K.; Plekhanova, T.; Rowlands, A.V.; Sherar, L.B.; et al. Effectiveness of the ‘Girls Active’ school-based physical activity programme: A cluster randomised controlled trial. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tremblay, M.S.; Carson, V.; Chaput, J.P.; Connor Gorber, S.; Dinh, T.; Duggan, M.; Faulkner, G.; Gray, C.E.; Gruber, R.; Janson, K.; et al. Canadian 24-hour movement guidelines for children and youth: An integration of physical activity, sedentary behaviour, and sleep. Appl. Physiol. Nutr. Metab. 2016, 41, S311–S327. [Google Scholar] [CrossRef]
- Paruthi, S.; Brooks, L.J.; D’Ambrosio, C.; Hall, W.A.; Kotagal, S.; Lloyd, R.M.; Malow, B.A.; Maski, K.; Nichols, C.; Quan, S.F.; et al. Recommended amount of sleep for pediatric populations: A consensus statement of the American Academy of Sleep Medicine. J. Clin. Sleep Med. 2016, 12, 785–786. [Google Scholar] [CrossRef] [PubMed]
- Rowlands, A.V.; Edwardson, C.L.; Davies, M.J.; Khunti, K.; Harrington, D.M.; Yates, T. Beyond Cut Points: Accelerometer Metrics that Capture the Physical Activity Profile. Med. Sci. Sports Exerc. 2018, 50, 1323–1332. [Google Scholar] [CrossRef] [PubMed]
- Harvey, A.G.; Hein, K.; Dolsen, M.R.; Dong, L.; Rabe-Hesketh, S.; Gumport, N.B.; Kanady, J.; Wyatt, J.K.; Hinshaw, S.P.; Silk, J.S.; et al. Modifying the impact of eveningness chronotype (“night-owls”) in youth: A randomized controlled trial. Am. Acad. Child Adolesc. Psychiatry 2018, 57, 742–754. [Google Scholar] [CrossRef]
- Gradisar, M.; Dohnt, H.; Gardner, G.; Paine, S.; Starkey, K.; Menne, A.; Slater, A.; Wright, H.; Hudson, J.L.; Weaver, E.; et al. A randomized controlled trial of cognitive-behavior therapy plus bright light therapy for adolescent delayed sleep phase disorder. Sleep 2011, 34, 1671–1680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tye, L.S.; Scott, T.; Haszard, J.J.; Peddie, M.C. Physical activity, sedentary behaviour and sleep, and their association with BMI in a sample of adolescent females in New Zealand. Int. J. Env. Res. Public Health 2020, 17, 6346. [Google Scholar] [CrossRef]
- Sanders, S.G.; Jimenez, E.Y.; Cole, N.H.; Kuhlemeier, A.; McCauley, G.L.; Van Horn, M.L.; Kong, A.S. Estimated physical activity in adolescents by wrist-worn GENEActiv accelerometers. J. Phys. Act. Health 2019, 16, 792–798. [Google Scholar] [CrossRef]
- Fairclough, S.J.; Clifford, L.; Brown, D.; Tyler, R. Characteristics of 24-hour movement behaviours and their associations with mental health in children and adolescents. Research Square preprint 2023. [Google Scholar] [CrossRef]
- Vitale, J.A.; Roveda, E.; Montaruli, A.; Galasso, L.; Weydahl, A.; Caumo, A.; Carandente, F. Chronotype influences activity circadian rhythm and sleep: Differences in sleep quality between weekdays and weekend. Chronobiol. Int. 2015, 32, 405e15. [Google Scholar] [CrossRef] [PubMed]
- Gradisar, M.; Gardner, G.; Dohnt, H. Recent worldwide sleep patterns and problems during adolescence: A review and meta-analysis of age, region, and sleep. Sleep Med. 2011, 12, 110–118. [Google Scholar] [CrossRef]
- Li, S.X.; Chan, N.Y.; Yu, M.W.; Lam, S.P.; Zhang, J.; Chan, J.W.; Li, A.M.; Wing, Y.K. Eveningness chronotype, insomnia symptoms, and emotional and behavioural problems in adolescents. Sleep Med. 2018, 47, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Lang, C.; Kalak, N.; Brand, S.; Holsboer-Trachsler, E.; Pühse, U.; Gerber, M. The relationship between physical activity and sleep from mid adolescence to early adulthood. A systematic review of methodological approaches and meta-analysis. Sleep Med. Rev. 2016, 28, 32–45. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Ballesteros, R. Self-report questionnaires. In Comprehensive Handbook of Psychological Assessment; SAGE Publications Ltd.: New York, NY, USA, 2003; Volume 3, pp. 194–221. [Google Scholar] [CrossRef]
Characteristic | Whole Sample (N = 965) | Morning Chronotype (N = 291) | Evening Chronotype (N = 674) |
---|---|---|---|
Mean (SD) or n (%) | |||
Age, years | 13.9 (0.8) | 13.8 (0.8) | 14.0 (0.8) |
Ethnicity categories White European Non-white European | 703 (73%) 260 (27%) | 204 (71%) 85 (29%) | 499 (74%) 175 (26%) |
BMI, z-score | 0.37 (1.3) | 0.32 (1.3) | 0.39 (1.3) |
BMI category Underweight Normal weight Overweight Obese | 25 (2%) 637 (66%) 194 (20%) 94 (10%) | 15 (5%) 197 (69%) 48 (17%) 25 (9%) | 28 (4%) 456 (68%) 123 (18%) 59 (9%) |
IMD rank score | 16,814 (9267) | 16,155 (9313) | 17,095 (9240) |
IMD decile score a | 5.6 (2.8) | 5.4 (2.9) | 5.7 (2.8) |
Accelerometer variables MVPA, min/day Light PA, min/day Sedentary, min/day Overall daily PA, mg Total sleep time, h/day Time in bed duration, h/day Sleep efficiency, %/night Average wear days, valid days | 42.0 (19.7) 271.8 (47.5) 672.7 (67.4) 34.7 (8.3) 7.6 (0.6) 8.6 (0.7) 81.4 (5.6) 6.9 (0.4) | 42.9 (18.7) 276.3 (45.6) 666.1 (66.0) 35.6 (8.2) 7.6 (0.6) 9.4 (0.7) 80.4 (5.8) 6.9 (0.4) | 41.3 (19.9) 269.8 (48.1) 678.3 (66.2) 34.3 (8.3) 7.6 (0.7) 9.3 (0.7) 81.3 (5.5) 6.9 (0.5) |
N (%) Meeting MVPA Guidelines (At Least 60 min/day) | N (%) Meeting Sleep Guidelines (8–10 h/night) | |
---|---|---|
Whole week | 156 (16.2%) | 212 (22%) |
Weekdays | 182 (18.9%) | 190 (19.7%) |
Weekends | 168 (17.4%) | 390 (40.4%) |
Exposure: | Chronotype (Weekdays) | Chronotype (Weekends) | ||
---|---|---|---|---|
Outcome: | b (95% CI) | p | b (95% CI) | p |
Total sleep time (h) | 0.06 (−0.44, 0.17) | 0.254 | −0.13 (−0.26, 0.30) | 0.056 |
Time in bed (h) | 0.05 (−0.07, 0.17) | 0.436 | −0.02 (−0.17, 0.13) | 0.774 |
Sleep efficiency (%) | 0.01 (−0.07, 0.01) | 0.651 | −0.01 (−0.02, 0.01) | 0.060 |
Sedentary time (min) | −0.17 (−0.33, −0.01) | 0.041 | 0.03 (−0.19, 0.25) | 0.771 |
MVPA (min) | 1.77 (−0.98, 4.53) | 0.206 | −1.06 (−4.57, 2.45) | 0.553 |
Overall activity (mg) | 1.28 (0.16, 2.41) | 0.025 | 0.44 (−1.13, 2.01) | 0.583 |
Light activity (min) | 4.00 (−2.69, 10.61) | 0.243 | 6.40 (−3.51, 16.31) | 0.205 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plekhanova, T.; Crawley, E.; Davies, M.J.; Gorely, T.; Harrington, D.M.; Ioannidou, E.; Khunti, K.; Rowlands, A.V.; Sherar, L.B.; Yates, T.; et al. Association between Chronotype and Physical Behaviours in Adolescent Girls. Children 2023, 10, 819. https://doi.org/10.3390/children10050819
Plekhanova T, Crawley E, Davies MJ, Gorely T, Harrington DM, Ioannidou E, Khunti K, Rowlands AV, Sherar LB, Yates T, et al. Association between Chronotype and Physical Behaviours in Adolescent Girls. Children. 2023; 10(5):819. https://doi.org/10.3390/children10050819
Chicago/Turabian StylePlekhanova, Tatiana, Emily Crawley, Melanie J. Davies, Trish Gorely, Deirdre M. Harrington, Ekaterini Ioannidou, Kamlesh Khunti, Alex V. Rowlands, Lauren B. Sherar, Tom Yates, and et al. 2023. "Association between Chronotype and Physical Behaviours in Adolescent Girls" Children 10, no. 5: 819. https://doi.org/10.3390/children10050819
APA StylePlekhanova, T., Crawley, E., Davies, M. J., Gorely, T., Harrington, D. M., Ioannidou, E., Khunti, K., Rowlands, A. V., Sherar, L. B., Yates, T., & Edwardson, C. L. (2023). Association between Chronotype and Physical Behaviours in Adolescent Girls. Children, 10(5), 819. https://doi.org/10.3390/children10050819