Executive Function and Processing Speed in Children Living with Sickle Cell Anemia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Materials
2.3.1. Delis–Kaplan Executive Function System
2.3.2. The Behavior Rating Inventory of Executive Function
2.3.3. MRI Acquisition
2.4. Statistical Analyses
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rees, D.C.; Williams, T.N.; Gladwin, M.T. Sickle-Cell Disease. Lancet 2010, 376, 2018–2031. [Google Scholar] [CrossRef] [PubMed]
- Stuart, M.J.; Nagel, R.L. Sickle-Cell Disease. Lancet 2004, 364, 1343–1360. [Google Scholar] [CrossRef] [PubMed]
- Da Guarda, C.C.; Yahouédéhou, S.C.M.A.; Santiago, R.P.; Neres, J.S.d.S.; Fernandes, C.F.d.L.; Aleluia, M.M.; Figueiredo, C.V.B.; Fiuza, L.M.; Carvalho, S.P.; de Oliveira, R.M. Sickle Cell Disease: A Distinction of Two Most Frequent Genotypes (HbSS and HbSC). PLoS ONE 2020, 15, e0228399. [Google Scholar] [CrossRef] [PubMed]
- Quinn, C.T. Minireview: Clinical Severity in Sickle Cell Disease: The Challenges of Definition and Prognostication. Exp. Biol. Med. 2016, 241, 679–688. [Google Scholar] [CrossRef]
- Hassell, K.L. Population Estimates of Sickle Cell Disease in the U.S. Am. J. Prev. Med. 2010, 38, S512–S521. [Google Scholar] [CrossRef]
- Hickman, M.; Modell, B.; Greengross, P.; Chapman, C.; Layton, M.; Falconer, S.; Davies, S.C. Mapping the Prevalence of Sickle Cell and Beta Thalassaemia in England: Estimating and Validating Ethnic-specific Rates. Br. J. Haematol. 1999, 104, 860–867. [Google Scholar] [CrossRef]
- Piel, F.B.; Hay, S.I.; Gupta, S.; Weatherall, D.J.; Williams, T.N. Global Burden of Sickle Cell Anaemia in Children under Five, 2010–2050: Modelling Based on Demographics, Excess Mortality, and Interventions. PLoS Med. 2013, 10, e1001484. [Google Scholar] [CrossRef]
- Pedrosa, A.M.; Lemes, R.P.G. Gene Expression of HIF-1α and VEGF in Response to Hypoxia in Sickle Cell Anaemia: Influence of Hydroxycarbamide. Br. J. Haematol. 2020, 190, e39–e42. [Google Scholar] [CrossRef]
- Piccin, A.; Murphy, C.; Eakins, E.; Kunde, J.; Corvetta, D.; Di Pierro, A.; Negri, G.; Guido, M.; Sainati, L.; Mc Mahon, C. Circulating Microparticles, Protein C, Free Protein S and Endothelial Vascular Markers in Children with Sickle Cell Anaemia. J. Extracell. Vesicles 2015, 4, 28414. [Google Scholar] [CrossRef]
- Piccin, A.; Murphy, C.; Eakins, E.; Rondinelli, M.B.; Daves, M.; Vecchiato, C.; Wolf, D.; Mc Mahon, C.; Smith, O.P. Insight into the Complex Pathophysiology of Sickle Cell Anaemia and Possible Treatment. Eur. J. Haematol. 2019, 102, 319–330. [Google Scholar] [CrossRef]
- An, R.; Man, Y.; Cheng, K.; Zhang, T.; Chen, C.; Wang, F.; Abdulla, F.; Kucukal, E.; Wulftange, W.J.; Goreke, U. Sickle Red Blood Cell-derived Extracellular Vesicles Activate Endothelial Cells and Enhance Sickle Red Cell Adhesion Mediated by von Willebrand Factor. Br. J. Haematol. 2023, 201, 552–563. [Google Scholar] [CrossRef] [PubMed]
- Redding-Lallinger, R.; Knoll, C. Sickle Cell Disease—Pathophysiology and Treatment. Curr. Probl. Pediatr. Adolesc. Health Care 2006, 36, 346–376. [Google Scholar] [CrossRef] [PubMed]
- Ohene-Frempong, K.; Weiner, S.J.; Sleeper, L.A.; Miller, S.T.; Embury, S.; Moohr, J.W.; Wethers, D.L.; Pegelow, C.H.; Gill, F.M. Cerebrovascular Accidents in Sickle Cell Disease: Rates and Risk Factors. Blood 1998, 91, 288–294. [Google Scholar] [PubMed]
- Cancio, M.I.; Helton, K.J.; Schreiber, J.E.; Smeltzer, M.P.; Kang, G.; Wang, W.C. Silent Cerebral Infarcts in Very Young Children with Sickle Cell Anaemia Are Associated with a Higher Risk of Stroke. Br. J. Haematol. 2015, 171, 120–129. [Google Scholar] [CrossRef]
- Stotesbury, H.; Kawadler, J.M.; Clayden, J.D.; Saunders, D.E.; Hood, A.; Koelbel, M.; Sahota, S.; Rees, D.C.; Wilkey, O.; Layton, M.; et al. Quantification of Silent Cerebral Infarction on High-Resolution FLAIR and Cognition in Sickle Cell Anemia. Front. Neurol. 2022, 13, 867329. [Google Scholar] [CrossRef]
- Prussien, K.V.; Jordan, L.C.; DeBaun, M.R.; Compas, B.E. Cognitive Function in Sickle Cell Disease Across Domains, Cerebral Infarct Status, and the Lifespan: A Meta-Analysis. J. Pediatr. Psychol. 2019, 44, 948–958. [Google Scholar] [CrossRef]
- Kral, M.C.; Brown, R.T.; Curé, J.K.; Besenski, N.; Jackson, S.M.; Abboud, M.R. Radiographic Predictors of Neurocognitive Functioning in Pediatric Sickle Cell Disease. J. Child Neurol. 2006, 21, 37–44. [Google Scholar] [CrossRef]
- Powars, D.R.; Conti, P.S.; Wong, W.-Y.; Groncy, P.; Hyman, C.; Smith, E.; Ewing, N.; Keenan, R.N.; Zee, C.-S.; Harold, Y. Cerebral Vasculopathy in Sickle Cell Anemia: Diagnostic Contribution of Positron Emission Tomography. Blood 1999, 93, 71–79. [Google Scholar]
- Kawadler, J.M.; Kirkham, F.J.; Clayden, J.D.; Hollocks, M.J.; Seymour, E.L.; Edey, R.; Telfer, P.; Robins, A.; Wilkey, O.; Barker, S. White Matter Damage Relates to Oxygen Saturation in Children with Sickle Cell Anemia Without Silent Cerebral Infarcts. Stroke 2015, 46, 1793–1799. [Google Scholar] [CrossRef]
- Borzage, M.T.; Bush, A.M.; Choi, S.; Nederveen, A.J.; Václavů, L.; Coates, T.D.; Wood, J.C. Predictors of Cerebral Blood Flow in Patients with and without Anemia. J. Appl. Physiol. 2016, 120, 976–981. [Google Scholar] [CrossRef]
- Bush, A.M.; Borzage, M.T.; Choi, S.; Václavů, L.; Tamrazi, B.; Nederveen, A.J.; Coates, T.D.; Wood, J.C. Determinants of Resting Cerebral Blood Flow in Sickle Cell Disease. Am. J. Hematol. 2016, 91, 912–917. [Google Scholar] [CrossRef]
- Fields, M.E.; Guilliams, K.P.; Ragan, D.K.; Binkley, M.M.; Eldeniz, C.; Chen, Y.; Hulbert, M.L.; McKinstry, R.C.; Shimony, J.S.; Vo, K.D. Regional Oxygen Extraction Predicts Border Zone Vulnerability to Stroke in Sickle Cell Disease. Neurology 2018, 90, e1134–e1142. [Google Scholar] [CrossRef]
- Chai, K.L.; Cole-Sinclair, M. Review of Available Evidence Supporting Different Transfusion Thresholds in Different Patient Groups with Anemia. Ann. N. Y. Acad. Sci. 2019, 1450, 221–238. [Google Scholar] [CrossRef]
- Harvey, P.D. Domains of Cognition and Their Assessment. Dialogues Clin. Neurosci. 2022, 21, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Knight, S.; Singhal, A.; Thomas, P.; Serjeant, G. Factors Associated with Lowered Intelligence in Homozygous Sickle Cell Disease. Arch. Dis. Child. 1995, 73, 316–320. [Google Scholar] [CrossRef] [PubMed]
- Land, V.; Hijmans, C.T.; Ruiter, M.; Mutsaerts, H.J.M.M.; Cnossen, M.H.; Engelen, M.; Majoie, C.B.L.M.; Nederveen, A.J.; Grootenhuis, M.A.; Fijnvandraat, K. Volume of White Matter Hyperintensities Is an Independent Predictor of Intelligence Quotient and Processing Speed in Children with Sickle Cell Disease. Br. J. Haematol. 2015, 168, 553–556. [Google Scholar] [CrossRef]
- Scantlebury, N.; Mabbott, D.; Janzen, L.; Rockel, C.; Widjaja, E.; Jones, G.; Kirby, M.; Odame, I. White Matter Integrity and Core Cognitive Function in Children Diagnosed with Sickle Cell Disease. J. Pediatr. Hematol. Oncol. 2011, 33, 163–171. [Google Scholar] [CrossRef]
- Downes, M.; Keenan, L.; Duane, Y.; Duffy, K.; Fortune, G.; Geoghegan, R.; Conroy, H.; McMahon, C. Executive Function in Children with Sickle Cell Anemia on Transfusion: NIH Toolbox Utility in the Clinical Context. Clin. Neuropsychol. 2022, 36, 1573–1588. [Google Scholar] [CrossRef] [PubMed]
- Hood, A.M.; King, A.A.; Fields, M.E.; Ford, A.L.; Guilliams, K.P.; Hulbert, M.L.; Lee, J.-M.; White, D.A. Higher Executive Abilities Following a Blood Transfusion in Children and Young Adults with Sickle Cell Disease. Pediatr. Blood Cancer 2019, 66, e27899. [Google Scholar] [CrossRef] [PubMed]
- Hardy, S.J.; Bills, S.E.; Meier, E.R.; Schatz, J.C.; Keridan, K.J.; Wise, S.; Hardy, K.K. A Randomized Controlled Trial of Working Memory Training in Pediatric Sickle Cell Disease. J. Pediatr. Psychol. 2021, 46, 1001–1014. [Google Scholar] [CrossRef]
- Crawford, R.D.; Jonassaint, C.R. Adults with Sickle Cell Disease May Perform Cognitive Tests as Well as Controls When Processing Speed Is Taken into Account: A Preliminary Case–Control Study. J. Adv. Nurs. 2016, 72, 1409–1416. [Google Scholar] [CrossRef] [PubMed]
- Kail, R.; Salthouse, T.A. Processing Speed as a Mental Capacity. Acta Psychol. 1994, 86, 199–225. [Google Scholar] [CrossRef] [PubMed]
- Akshoomoff, N.; Beaumont, J.L.; Bauer, P.J.; Dikmen, S.S.; Gershon, R.C.; Mungas, D.; Slotkin, J.; Tulsky, D.; Weintraub, S.; Zelazo, P.D. VIII. NIH Toolbox Cognition Battery (CB): Composite Scores of Crystallized, Fluid, and Overall Cognition. Monogr. Soc. Res. Child Dev. 2013, 78, 119–132. [Google Scholar] [CrossRef] [PubMed]
- Diamond, A. Executive Functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef] [PubMed]
- Watkins, K.E.; Hewes, D.E.M.; Connelly, A.; Kendall, B.E.; Kingsley, D.P.E.; Evans, J.E.P.; Gadian, D.G.; Vargha-Khadem, F.; Kirkham, F.J. Cognitive Deficits Associated with Frontal-lobe Infarction in Children with Sickle Cell Disease. Dev. Med. Child Neurol. 1998, 40, 536–543. [Google Scholar] [CrossRef]
- Clayden, J.D.; Stotesbury, H.; Kawadler, J.M.; Slee, A.; Koelbel, M.; Saunders, D.E.; Hood, A.M.; Wilkey, O.; Layton, M.; Inusa, B. Structural Connectivity Mediates the Relationship between Blood Oxygenation and Cognitive Function in Sickle Cell Anemia. Blood Adv. 2022, 7, 2297–2308. [Google Scholar] [CrossRef]
- Kral, M.C.; Brown, R.T.; Nietert, P.J.; Abboud, M.R.; Jackson, S.M.; Hynd, G.W. Transcranial Doppler Ultrasonography and Neurocognitive Functioning in Children with Sickle Cell Disease. Pediatrics 2003, 112, 324–331. [Google Scholar] [CrossRef]
- Sanchez, C.E.; Schatz, J.; Roberts, C.W. Cerebral Blood Flow Velocity and Language Functioning in Pediatric Sickle Cell Disease. J. Int. Neuropsychol. Soc. 2010, 16, 326–334. [Google Scholar] [CrossRef]
- Dajani, D.R.; Uddin, L.Q. Demystifying Cognitive Flexibility: Implications for Clinical and Developmental Neuroscience. Trends Neurosci. 2015, 38, 571–578. [Google Scholar] [CrossRef]
- Logue, S.F.; Gould, T.J. The Neural and Genetic Basis of Executive Function: Attention, Cognitive Flexibility, and Response Inhibition. Pharmacol. Biochem. Behav. 2014, 123, 45–54. [Google Scholar] [CrossRef]
- Downes, M.; Kirkham, F.J.; Telfer, P.T.; De Haan, M. Assessment of Executive Functions in Preschool Children with Sickle Cell Anemia. J. Int. Neuropsychol. Soc. 2018, 24, 949–954. [Google Scholar] [CrossRef] [PubMed]
- Burkhardt, L.; Lobitz, S.; Koustenis, E.; Rueckriegel, S.M.; Driever, P.H. Cognitive and Fine Motor Deficits in a Pediatric Sickle Cell Disease Cohort of Mixed Ethnic Origin. Ann. Hematol. 2016, 96, 199–213. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, F.D.; Thompson, R.J.; Wang, W.; Zimmerman, R.; Pegelow, C.H.; Miller, S.; Moser, F.; Bello, J.; Hurtig, A. Cognitive Functioning and Brain Magnetic Resonance Imaging in Children with Sickle Cell Disease. Pediatrics 1996, 97, 864–870. [Google Scholar] [CrossRef] [PubMed]
- Hensler, M.; Wolfe, K.; Lebensburger, J.; Nieman, J.; Barnes, M.; Nolan, W.; King, A.; Madan-Swain, A. Social Skills and Executive Function Among Youth with Sickle Cell Disease: A Preliminary Investigation. J. Pediatr. Psychol. 2014, 39, 493–500. [Google Scholar] [CrossRef]
- Berg, C.; Edwards, D.F.; King, A. Executive Function Performance on the Children’s Kitchen Task Assessment with Children with Sickle Cell Disease and Matched Controls. Child Neuropsychol. 2012, 18, 432–448. [Google Scholar] [CrossRef] [PubMed]
- Matte, A.; Zorzi, F.; Mazzi, F.; Federti, E.; Olivieri, O.; De Franceschi, L. New Therapeutic Options for the Treatment of Sickle Cell Disease. Mediterr. J. Hematol. Infect. Dis. 2019, 11, e2019002. [Google Scholar] [CrossRef]
- Orkin, S.H.; Bauer, D.E. Emerging Genetic Therapy for Sickle Cell Disease. Annu. Rev. Med. 2019, 70, 257–271. [Google Scholar] [CrossRef]
- Haywood, C.; Beach, M.C.; Lanzkron, S.; Strouse, J.J.; Wilson, R.; Park, H.; Witkop, C.; Bass, E.B.; Segal, J.B. A Systematic Review of Barriers and Interventions to Improve Appropriate Use of Therapies for Sickle Cell Disease. J. Natl. Med. Assoc. 2009, 101, 1022–1033. [Google Scholar] [CrossRef]
- Tucker, T.; Alishlash, A.S.; Lebensburger, J.D.; Clay, O.J.; Oates, G.R.; Nourani, A.; Bhatia, S.; Murdaugh, D.L. The Association between Sleep Disturbances and Neurocognitive Function in Pediatric Sickle Cell Disease. Sleep Med. 2022, 97, 27–35. [Google Scholar] [CrossRef]
- Ludwig, N.N.; Sil, S.; Khowaja, M.K.; Cohen, L.L.; Dampier, C. Executive Functioning Mediates the Relationship between Pain Coping and Quality of Life in Youth with Sickle Cell Disease. J. Pediatr. Psychol. 2018, 43, 1160–1169. [Google Scholar] [CrossRef]
- Hood, A.M.; Kölbel, M.; Stotesbury, H.; Kawadler, J.; Slee, A.; Inusa, B.; Pelidis, M.; Howard, J.; Chakravorty, S.; Height, S. Biopsychosocial Predictors of Quality of Life in Paediatric Patients with Sickle Cell Disease. Front. Psychol. 2021, 3976. [Google Scholar] [CrossRef] [PubMed]
- Allen, T.M.; Anderson, L.M.; Rothman, J.A.; Bonner, M.J. Executive Functioning and Health-Related Quality of Life in Pediatric Sickle Cell Disease. Child Neuropsychol. 2017, 23, 889–906. [Google Scholar] [CrossRef] [PubMed]
- Connolly, M.E.; Bills, S.E.; Hardy, S.J. Neurocognitive and Psychological Effects of Persistent Pain in Pediatric Sickle Cell Disease. Pediatr. Blood Cancer 2019, 66, e27823. [Google Scholar] [CrossRef] [PubMed]
- Perry, E.L.; Carter, P.A.; Becker, H.A.; Garcia, A.A.; Mackert, M.; Johnson, K.E. Health Literacy in Adolescents with Sickle Cell Disease. J. Pediatr. Nurs. 2017, 36, 191–196. [Google Scholar] [CrossRef]
- Saulsberry-Abate, A.C.; Partanen, M.; Porter, J.S.; Podila, P.S.B.; Hodges, J.R.; King, A.A.; Wang, W.C.; Schreiber, J.E.; Zhao, X.; Kang, G. Cognitive Performance as a Predictor of Healthcare Transition in Sickle Cell Disease. Br. J. Haematol. 2021, 192, 1082–1091. [Google Scholar] [CrossRef]
- Legdeur, N.; Heymans, M.W.; Comijs, H.C.; Huisman, M.; Maier, A.B.; Visser, P.J. Age Dependency of Risk Factors for Cognitive Decline. BMC Geriatr. 2018, 18, 187. [Google Scholar] [CrossRef]
- Longoria, J.N.; Heitzer, A.M.; Hankins, J.S.; Trpchevska, A.; Porter, J.S. Neurocognitive Risk in Sickle Cell Disease: Utilizing Neuropsychology Services to Manage Cognitive Symptoms and Functional Limitations. Br. J. Haematol. 2022, 197, 260–270. [Google Scholar] [CrossRef]
- Delis, D.C.; Kaplan, E.; Kramer, J.H. Delis-Kaplan Executive Function System; Pearson: London, UK, 2001. [Google Scholar]
- Gioia, G.A.; Isquith, P.K.; Guy, S.C.; Kenworthy, L. Behavior Rating Inventory of Executive Function. Child Neuropsychol. 2000, 6, 235–238. [Google Scholar] [CrossRef]
- Rahman, A.; Muktadir, M.G. SPSS: An Imperative Quantitative Data Analysis Tool for Social Science Research. Int. J. Res. Innov. Soc. Sci. 2021, 5, 300–302. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; The R Project for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Berkelhammer, L.D.; Williamson, A.L.; Sanford, S.D.; Dirksen, C.L.; Sharp, W.G.; Margulies, A.S.; Prengler, R.A. Neurocognitive Sequelae of Pediatric Sickle Cell Disease: A Review of the Literature. Child Neuropsychol. 2007, 13, 120–131. [Google Scholar] [CrossRef]
- Salinas Cisneros, G.; Thein, S.L. Recent Advances in the Treatment of Sickle Cell Disease. Front. Physiol. 2020, 11, 435. [Google Scholar] [CrossRef] [PubMed]
- Hardy, S.J.; Hardy, K.K.; Schatz, J.C.; Thompson, A.L.; Meier, E.R. Feasibility of Home-Based Computerized Working Memory Training with Children and Adolescents with Sickle Cell Disease. Pediatr. Blood Cancer 2016, 63, 1578–1585. [Google Scholar] [CrossRef] [PubMed]
- Hood, A.M.; Crosby, L.E.; Stotesbury, H.; Kölbel, M.; Kirkham, F.J. Considerations for Selecting Cognitive Endpoints and Psychological Patient-Reported Outcomes for Clinical Trials in Pediatric Patients with Sickle Cell Disease. Front. Neurol. 2022, 13, 835823. [Google Scholar] [CrossRef] [PubMed]
- Glass, P.; Brennan, T.; Wang, J.; Luchtman-Jones, L.; Hsu, L.; Bass, C.M.; Rana, S.; Martin, B.; Reed, C.; Cheng, Y.I.; et al. Neurodevelopmental Deficits among Infants and Toddlers with Sickle Cell Disease. J. Dev. Behav. Pediatr. 2013, 34, 399–405. [Google Scholar] [CrossRef]
- Hood, A.M.; Reife, I.; King, A.A.; White, D.A. Brief Screening Measures Identify Risk for Psychological Difficulties Among Children with Sickle Cell Disease. J. Clin. Psychol. Med. Settings 2020, 27, 651–661. [Google Scholar] [CrossRef]
- Heaton, R.K.; Akshoomoff, N.; Tulsky, D.; Mungas, D.; Weintraub, S.; Dikmen, S.; Beaumont, J.; Casaletto, K.B.; Conway, K.; Slotkin, J. Reliability and Validity of Composite Scores from the NIH Toolbox Cognition Battery in Adults. J. Int. Neuropsychol. Soc. 2014, 20, 588–598. [Google Scholar] [CrossRef]
- Wills, K.E.; Nelson, S.C.; Hennessy, J.; Nwaneri, M.O.; Miskowiec, J.; McDonough, E.; Moquist, K. Transition Planning for Youth with Sickle Cell Disease: Embedding Neuropsychological Assessment into Comprehensive Care. Pediatrics 2010, 126, S151–S159. [Google Scholar] [CrossRef]
- Walker, E.J.; Kirkham, F.J.; Stotesbury, H.; Dimitriou, D.; Hood, A.M. Tele-Neuropsychological Assessment of Children and Young People: A Systematic Review. J. Pediatr. Neuropsychol. 2023, 9, 113–126. [Google Scholar] [CrossRef]
- Yarboi, J.; Compas, B.E.; Brody, G.H.; White, D.; Rees Patterson, J.; Ziara, K.; King, A. Association of Social-Environmental Factors with Cognitive Function in Children with Sickle Cell Disease. Child Neuropsychol. 2017, 23, 343–360. [Google Scholar] [CrossRef]
- King, A.A.; Strouse, J.J.; Rodeghier, M.J.; Compas, B.E.; Casella, J.F.; McKinstry, R.C.; Noetzel, M.J.; Quinn, C.T.; Ichord, R.; Dowling, M.M. Parent Education and Biologic Factors Influence on Cognition in Sickle Cell Anemia. Am. J. Hematol. 2014, 89, 162–167. [Google Scholar] [CrossRef]
- Diamond, A.; Ling, D.S. Conclusions about Interventions, Programs, and Approaches for Improving Executive Functions That Appear Justified and Those That, despite Much Hype, Do Not. Dev. Cogn. Neurosci. 2016, 18, 34–48. [Google Scholar] [CrossRef] [PubMed]
- Schatz, J.; Schlenz, A.M.; Smith, K.E.; Roberts, C.W. Predictive Validity of Developmental Screening in Young Children with Sickle Cell Disease: A Longitudinal Follow-up Study. Dev. Med. Child Neurol. 2018, 60, 520–526. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Sickle Cell Anemia n = 59 | Controls n = 24 | p-Value |
---|---|---|---|
Age (years) | |||
Mean (SD) | 12.97 (2.70) | 11.68 (2.16) | 0.04 |
Range | 8–18 years | 8–16 years | |
Sex assigned at birth | |||
Female | 34 (57.6%) | 10 (41.7%) | 0.28 |
Male | 25 (42.4%) | 14 (58.3%) | |
Ethnicity | |||
African or Caribbean Heritage (Black) | 59 (100%) | 24 (100%) | – |
Genotype | |||
HbSS | 59 (100%) | 0 (0%) | – |
HbAA and HbAS | – | 24 (100%) | – |
Infarct Status | |||
SCI or mild stroke | 17 (28.8%) | – | – |
No infarct | 39 (66.1%) | – | – |
Unknown | 3 (5.1%) | – | – |
Variables | SCI (n = 17) | No SCI (n = 39) | Controls (n = 24) | p-Value |
---|---|---|---|---|
Hemodynamic markers | ||||
Hemoglobin levels | 8.31 (1.36) | 8.47 (1.19) | – | 0.70 |
Oxygen saturation | 96.79 (1.85) | 96.45 (3.09) | – | 0.71 |
D-KEFS Cognitive Flexibility | ||||
Tower Test (Achievement Score) | 8.00 (1.54) | 9.18 (2.35) | 10.05 (1.90) | 0.01 |
Trail-Making Switching Condition | 5.53 (3.62) | 7.45 (3.85) | 6.71 (3.45) | 0.24 |
Color–Word Switching Condition | 6.94 (2.99) | 8.12 (3.57) | 9.94 (2.79) | 0.04 |
BRIEF | ||||
GEC (T-score) | 58.40 (10.07) | 52.81(9.91) | 49.46 (9.90) | 0.14 |
Processing Speed | ||||
Trail-Making Scanning Condition | 8.56 (3.24) | 8.69 (3.85) | 9.19 (3.34) | 0.84 |
Variable | 1 | 2 | 3 |
---|---|---|---|
1. BRIEF GEC T-Score | |||
2. Tower Test (Achievement Score) | −0.33 | ||
[−0.60, 0.01] | |||
3. Trail-Making Switching Condition | −0.41 * | 0.36 * | |
[−0.66, −0.08] | [0.09, 0.58] | ||
4. Color–Word Switching Condition | −0.45 ** | 0.12 | 0.51 ** |
[−0.68, −0.13] | [0.02, 0.51] | [0.35, 0.72] |
Predictor | b | b 95% CI [LL, UL] | sr2 | sr2 95% CI [LL, UL] | p | Partial Eta-Squared | Fit |
---|---|---|---|---|---|---|---|
Trail-Making Switching | |||||||
(Intercept) | 10.72 * | [1.11, 20.32] | 0.03 | ||||
Age | −0.23 | [−0.61, 0.15] | 0.02 | [−0.04, 0.09] | 0.22 | 0.03 | |
Infarct Status | −5.19 | [−12.51, 2.12] | 0.03 | [−0.05, 0.11] | 0.16 | 0.06 | |
Trail-Making Visual Scanning | −0.21 | [−0.91, 0.50] | 0.00 | [−0.03, 0.04] | 0.56 | 0.20 | |
Infarct Status * Visual scanning (Processing Speed) | 0.77 * | [0.01, 1.53] | 0.06 | [−0.05, 0.17] | 0.04 | 0.08 | |
R2 = 0.307 ** | |||||||
95% CI [0.06, 0.44] | |||||||
Color–Word Interference Switching | |||||||
(Intercept) | 14.42 ** | [6.21, 22.63] | 0.001 | ||||
Age | −0.27 | [−0.67, 0.12] | 0.04 | [−0.06, 0.14] | 0.17 | 0.04 | |
Infarct Status | −4.49 | [−10.66, 1.68] | 0.04 | [−0.06, 0.15] | 0.15 | 0.02 | |
Trail-Making Visual Scanning | −0.45 | [−1.02, 0.12] | 0.05 | [−0.06, 0.16] | 0.12 | 0.001 | |
Infarct Status * Visual scanning (Processing Speed) | 0.64 | [−0.02, 1.30] | 0.07 | [−0.06, 0.21] | 0.05 | 0.08 | |
R2 = 0.139 | |||||||
95% CI [0.00, 0.27] | |||||||
Tower Planning | |||||||
(Intercept) | 11.27 ** | [6.85, 15.69] | <0.001 | ||||
Age | −0.18 | [−0.39, 0.03] | 0.05 | [−0.05, 0.15] | 0.09 | 0.06 | |
Infarct Status | −2.46 | [−5.78, 0.86] | 0.03 | [−0.05, 0.12] | 0.14 | 0.03 | |
Trail-Making Visual Scanning | −0.06 | [−0.37, 0.24] | 0.00 | [−0.02, 0.03] | 0.68 | 0.15 | |
Infarct Status * Visual scanning (Processing Speed) | 0.37 * | [0.01, 0.72] | 0.07 | [−0.05, 0.19] | 0.04 | 0.09 | |
R2 = 0.295 ** | |||||||
95% CI [0.05, 0.43] | |||||||
BRIEF GEC T-score | |||||||
(Intercept) | 55.58 ** | [26.05, 85.11] | 0.001 | ||||
Age | −0.09 | [−1.70, 1.52] | 0.00 | [−0.01, 0.01] | 0.91 | 0.0004 | |
Infarct Status | 3.89 | [−17.65, 25.42] | 0.00 | [−0.03, 0.04] | 0.71 | 0.06 | |
Trail-Making Visual Scanning | 0.47 | [−1.63, 2.56] | 0.01 | [−0.04, 0.05] | 0.65 | 0.02 | |
Infarct Status * Visual scanning (Processing Speed) | −1.09 | [−3.43, 1.24] | 0.03 | [−0.07, 0.12] | 0.35 | 0.03 | |
R2 = 0.112 | |||||||
95% CI [0.00, 0.24] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kelleher, S.C.; Kirkham, F.J.; Hood, A.M. Executive Function and Processing Speed in Children Living with Sickle Cell Anemia. Children 2023, 10, 1585. https://doi.org/10.3390/children10101585
Kelleher SC, Kirkham FJ, Hood AM. Executive Function and Processing Speed in Children Living with Sickle Cell Anemia. Children. 2023; 10(10):1585. https://doi.org/10.3390/children10101585
Chicago/Turabian StyleKelleher, Stephanie C., Fenella J. Kirkham, and Anna M. Hood. 2023. "Executive Function and Processing Speed in Children Living with Sickle Cell Anemia" Children 10, no. 10: 1585. https://doi.org/10.3390/children10101585
APA StyleKelleher, S. C., Kirkham, F. J., & Hood, A. M. (2023). Executive Function and Processing Speed in Children Living with Sickle Cell Anemia. Children, 10(10), 1585. https://doi.org/10.3390/children10101585