Effective Accentuation of Voltage-Gated Sodium Current Caused by Apocynin (4′-Hydroxy-3′-methoxyacetophenone), a Known NADPH-Oxidase Inhibitor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals, Drugs and Solutions Used in the Present Work
2.2. Cell Preparations
2.3. Electrophysiological Measurements
2.4. Whole-Cell Data Analyses
2.5. Curve-Fitting Procedures and Statistical Analyses
3. Results
3.1. Effect of aPO on the Voltage-Gated Na+ Current (INa) Recorded from Pituitary GH3 Cells
3.2. Evaluating aPO’s Time-Dependent Slowing of INa Inactivation
3.3. Effect of aPO on the Current-Voltage (I-V) Relationship or Steady-State Inactivation Curve of INa
3.4. Effect of aPO on the Recovery from INa Inactivation by Using Two-Step Voltage Protocol
3.5. Comparison among Effects of aPO, Tefluthrin (Tef), Tef Plus aPO, aPO Plus Rufinamide (RFM), and aPO Plus Ranolazine (Ran) on the Peak Amplitude of INa
3.6. Stimulatory Action of aPO on INa in Methylglyoxal- (MeG-) or Superoxide Dismutase- (SOD-) Treated Cells
3.7. Effect of aPO on the Amplitude and Voltage-Dependent Hysteresis (Vhys) of Persistent Na+ (INa(P))
3.8. Effect of aPO on Erg-Mediated K+ Current (IK(erg)) in GH3 Cells
3.9. Effect of aPO on INa Recorded from Murine HL-1 Cardiomyocytes
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Yang, T.; Zang, D.-W.; Shan, W.; Guo, A.-C.; Wu, J.-P.; Wang, Y.-J.; Wang, Q. Synthesis and Evaluations of Novel Apocynin Derivatives as Anti-Glioma Agents. Front. Pharmacol. 2019, 10, 951. [Google Scholar] [CrossRef]
- Stefanska, J.; Pawliczak, R. Apocynin: Molecular Aptitudes. Mediat. Inflamm. 2008, 2008, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Petrônio, M.S.; Zeraik, M.L.; Da Fonseca, L.M.; Ximenes, V.F. Apocynin: Chemical and Biophysical Properties of a NADPH Oxidase Inhibitor. Molecules 2013, 18, 2821–2839. [Google Scholar] [CrossRef] [Green Version]
- Abliz, A.; Chen, C.; Deng, W.; Wang, W.; Sun, R. NADPH Oxidase Inhibitor Apocynin Attenuates PCB153-Induced Thyroid Injury in Rats. Int. J. Endocrinol. 2016, 2016, 8354745. [Google Scholar] [CrossRef]
- Du, Z.-D.; Yu, S.; Qi, Y.; Qu, T.-F.; He, L.; Wei, W.; Liu, K.; Gong, S.-S. NADPH oxidase inhibitor apocynin decreases mitochondrial dysfunction and apoptosis in the ventral cochlear nucleus of D-galactose-induced aging model in rats. Neurochem. Int. 2019, 124, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Zhao, J.; Li, J.; Liang, X.; Yang, Y.; Zhang, Z.; Zhang, X.; Fu, H.; Korantzopoulos, P.; Liu, T.; et al. NADPH oxidase inhibitor apocynin prevents atrial remodeling in alloxan-induced diabetic rabbits. Int. J. Cardiol. 2016, 221, 812–819. [Google Scholar] [CrossRef] [PubMed]
- Gimenes, R.; Rosa, C.M.; Xavier, N.P.; Campos, D.H.S.; Fernandes, A.A.H.; Cezar, M.D.M.; Guirado, G.N.; Pagan, L.U.; Chaer, I.D.; Fernandes, D.D.C.; et al. Influence of apocynin on cardiac remodeling in rats with streptozotocin-induced diabetes mellitus. Cardiovasc. Diabetol. 2018, 17, 15. [Google Scholar] [CrossRef]
- Lee, S.H.; Choi, B.Y.; Kho, A.R.; Jeong, J.H.; Hong, D.K.; Kang, D.H.; Kang, B.S.; Song, H.K.; Choi, H.C.; Suh, S.W. Inhibition of NADPH Oxidase Activation by Apocynin Rescues Seizure-Induced Reduction of Adult Hippocampal Neurogenesis. Int. J. Mol. Sci. 2018, 19, 3087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olukman, M.; Önal, A.; Çelenk, F.G.; Uyanıkgil, Y.; Çavuşoğlu, T.; Duzenli, N.; Ülker, S. Treatment with NADPH oxidase inhibitor apocynin alleviates diabetic neuropathic pain in rats. Neural Regen. Res. 2018, 13, 1657–1664. [Google Scholar] [CrossRef]
- Hou, L.; Sun, F.; Huang, R.; Sun, W.; Zhang, D.; Wang, Q. Inhibition of NADPH oxidase by apocynin prevents learning and memory deficits in a mouse Parkinson’s disease model. Redox Biol. 2019, 22, 101134. [Google Scholar] [CrossRef]
- Wang, K.; Zhu, Z.; Chi, R.; Li, Q.; Yang, Z.; Jie, X.; Hu, X.; Han, X.; Wang, J.; Li, B.; et al. The NADPH oxidase inhibitor apocynin improves cardiac sympathetic nerve terminal innervation and function in heart failure. Exp. Physiol. 2019, 104, 1638–1649. [Google Scholar] [CrossRef] [PubMed]
- El-Sawalhi, M.M.; Ahmed, L.A. Exploring the protective role of apocynin, a specific NADPH oxidase inhibitor, in cisplatin-induced cardiotoxicity in rats. Chem. Interact. 2014, 207, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-J.; Lu, Y.; Ping, N.-N.; Li, X.; Lin, Y.-X.; Li, C.-F. Apocynin Ameliorates Pressure Overload-Induced Cardiac Remodeling by Inhibiting Oxidative Stress and Apoptosis. Physiol. Res. 2017, 66, 741–752. [Google Scholar] [CrossRef] [PubMed]
- Bui, Q.D.; .Weisz, J. Monooxygenase mediating catecholestrogen formation by rat anterior pituitary is an estrogen-4-hydroxylase. Endocrinology 1989, 124, 1085–1087. [Google Scholar] [CrossRef]
- Dang, A.K.; Chaplin, N.L.; Murtazina, D.A.; Boehm, U.; Clay, C.M.; Amberg, G.C. Subplasmalemmal hydrogen peroxide triggers calcium influx in gonadotropes. J. Biol. Chem. 2018, 293, 16028–16042. [Google Scholar] [CrossRef] [Green Version]
- Colaianna, M.; Schiavone, S.; Zotti, M.; Tucci, P.; Morgese, M.G.; Bäckdahl, L.; Holmdahl, R.; Krause, K.-H.; Cuomo, V.; Trabace, L. Neuroendocrine Profile in a Rat Model of Psychosocial Stress: Relation to Oxidative Stress. Antioxid. Redox Signal. 2013, 18, 1385–1399. [Google Scholar] [CrossRef] [Green Version]
- Song, W.; Shou, W. Cardiac Sodium Channel Nav1.5 Mutations and Cardiac Arrhythmia. Pediatr. Cardiol. 2012, 33, 943–949. [Google Scholar] [CrossRef] [Green Version]
- Jiang, D.; Shi, H.; Tonggu, L.; El-Din, T.M.G.; Lenaeus, M.J.; Zhao, Y.; Yoshioka, C.; Zheng, N.; Catterall, W.A. Structure of the Cardiac Sodium Channel. Cell 2020, 180, 122–134.e10. [Google Scholar] [CrossRef]
- Ilatovskaya, D.V.; Pavlov, T.S.; Levchenko, V.; Staruschenko, A. ROS production as a common mechanism of ENaC regulation by EGF, insulin, and IGF-Am. J. Physiol. Physiol. 2013, 304, C102–C111. [Google Scholar] [CrossRef] [Green Version]
- Downs, C.A.; Johnsona, N.M.; Cocab, C.; Helms, M.N. Angiotensin II regulates δ-ENaC in human umbilical vein endothelial cells. Microvasc. Res. 2018, 116, 26–33. [Google Scholar] [CrossRef]
- Bancroft, F.C.; Tashjian, A.H. Control of the production of two protein hormones by rat pituitary cells in culture. Vitr. Cell. Dev. Biol.-Plant 1970, 6, 180–189. [Google Scholar] [CrossRef]
- Chang, W.T.; Wu, S.N. Activation of voltage-gated sodium current and inhibition of erg-mediated potassium current caused by telmisartan, an antagonist of angiotensin II type-1 receptor, in HL-1 atrial cardiomyocytes. Clin. Exp. Pharm. Physiol. 2018, 45, 797–807. [Google Scholar] [CrossRef]
- Wu, S.N.; Wu, Y.-H.; Chen, B.-S.; Lo, Y.-C.; Liu, Y.-C. Underlying mechanism of actions of tefluthrin, a pyrethroid insecticide, on voltage-gated ion currents and on action currents in pituitary tumor (GH3) cells and GnRH-secreting (GT1-7) neurons. Toxicology 2009, 258, 70–77. [Google Scholar] [CrossRef]
- Chang, W.-T.; Wu, S.-N. Characterization of Direct Perturbations on Voltage-Gated Sodium Current by Esaxerenone, a Nonsteroidal Mineralocorticoid Receptor Blocker. Biomedicines 2021, 9, 549. [Google Scholar] [CrossRef]
- So, E.C.; Wu, S.-N.; Lo, Y.-C.; Su, K. Differential regulation of tefluthrin and telmisartan on the gating charges of I Na activation and inactivation as well as on resurgent and persistent I Na in a pituitary cell line (GH (3)). Toxicol. Lett. 2018, 285, 104–112. [Google Scholar] [CrossRef]
- Chang, W.T.; Wu, S.N. Effectiveness of Columbianadin, a Bioactive Coumarin Derivative, in Perturbing Transient and Persistent I(Na). Int. J. Mol. Sci. 2021, 22, 621. [Google Scholar] [CrossRef]
- Tan, J.; Soderlund, D.M. Actions of tefluthrin on rat Nav1.7 voltage-gated sodium channels expressed in Xenopus oocytes. Pestic. Biochem. Physiol. 2011, 101, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.-S.; Lo, Y.-C.; Peng, H.; Hsu, T.-I.; Wu, S.-N. Effects of Ranolazine, a Novel Anti-anginal Drug, on Ion Currents and Membrane Potential in Pituitary Tumor GH3 Cells and NG108-15 Neuronal Cells. J. Pharmacol. Sci. 2009, 110, 295–305. [Google Scholar] [CrossRef] [Green Version]
- Gupta, T.; Khera, S.; Kolte, D.; Aronow, W.S.; Iwai, S. Antiarrhythmic properties of ranolazine: A review of the current evidence. Int. J. Cardiol. 2015, 187, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Cappetta, D.; Esposito, G.; Coppini, R.; Piegari, E.; Russo, R.; Ciuffreda, L.P.; Rivellino, A.; Santini, L.; Rafaniello, C.; Scavone, C.; et al. Effects of ranolazine in a model of doxorubicin-induced left ventricle diastolic dysfunction. Br. J. Pharmacol. 2017, 174, 3696–3712. [Google Scholar] [CrossRef] [Green Version]
- Suter, M.R.; Kirschmann, G.; Laedermann, C.J.; Abriel, H.; Decosterd, I. Rufinamide Attenuates Mechanical Allodynia in a Model of Neuropathic Pain in the Mouse and Stabilizes Voltage-gated Sodium Channel Inactivated State. Anesthesiology 2013, 118, 160–172. [Google Scholar] [CrossRef] [Green Version]
- Kharatmal, S.B.; Singh, J.N.; Sharma, S.S. Rufinamide Improves Functional and Behavioral Deficits via Blockade of Tetrodotoxin-Resistant Sodium Channels in Diabetic Neuropathy. Curr. Neurovasc. Res. 2015, 12, 262–268. [Google Scholar] [CrossRef]
- Wintergalen, N.; Thole, H.H.; Galla, H.-J.; Schlegel, W. Prostaglandin-E2 9-Reductase from Corpus Luteum of Pseudopregnant Rabbit is a Member of the Aldo-Keto Reductase Superfamily Featuring 20alpha-Hydroxysteroid Dehydrogenase Activity. JBIC J. Biol. Inorg. Chem. 1995, 234, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Mukohda, M.; Okada, M.; Hara, Y.; Yamawaki, H. Methylglyoxal Accumulation in Arterial Walls Causes Vascular Contractile Dysfunction in Spontaneously Hypertensive Rats. J. Pharmacol. Sci. 2012, 120, 26–35. [Google Scholar] [CrossRef] [Green Version]
- Eid, B.G.; Abu-Sharib, A.T.; El-Bassossy, H.M.; Balamash, K.; Smirnov, S.V. Enhanced calcium entry via activation of NOX/PKC underlies increased vasoconstriction induced by methylglyoxal. Biochem. Biophys. Res. Commun. 2018, 506, 1013–1018. [Google Scholar] [CrossRef] [PubMed]
- Cannio, R.; D’Angelo, A.; Rossi, M.; Bartolucci, S. A superoxide dismutase from the archaeon Sulfolobus solfataricus is an extracellular enzyme and prevents the deactivation by superoxide of cell-bound proteins. JBIC J. Biol. Inorg. Chem. 2000, 267, 235–243. [Google Scholar] [CrossRef]
- Korman, C.E.; Mayergoyz, I.D. On hysteresis of ion channels. Math. Model. Nat. Phenom. 2020, 15, 26. [Google Scholar] [CrossRef] [Green Version]
- Villalba-Galea, C.A.; Chiem, A.T. Hysteretic Behavior in Voltage-Gated Channels. Front. Pharmacol. 2020, 11, 579596. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.-N.; Jan, C.-R.; Li, H.-F.; Chiang, H.-T. Characterization of Inhibition by Risperidone of the Inwardly Rectifying K+ Current in Pituitary GH3 Cells. Neuropsychopharmacology 2000, 23, 676–689. [Google Scholar] [CrossRef]
- Wu, S.N.; Yang, W.-H.; Yeh, C.-C.; Huang, H.-C. The inhibition by di(2-ethylhexyl)-phthalate of erg-mediated K⁺ current in pituitary tumor (GH₃) cells. Arch. Toxicol. 2012, 86, 713–723. [Google Scholar] [CrossRef]
- Chang, W.-T.; Liu, P.-Y.; Wu, S.-N. High Capability of Pentagalloylglucose (PGG) in Inhibiting Multiple Types of Membrane Ionic Currents. Int. J. Mol. Sci. 2020, 21, 9369. [Google Scholar] [CrossRef]
- Yu, J.; Weïwer, M.; Linhardt, R.J.; Dordick, J.S. The Role of the Methoxyphenol Apocynin, a Vascular NADPH Oxidase Inhibitor, as a Chemopreventative Agent in the Potential Treatment of Cardiovascular Diseases. Curr. Vasc. Pharmacol. 2008, 6, 204–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Z.; Fefelova, N.; Shanmugam, M.; Bishara, P.; Babu, G.J.; Xie, L.-H. Angiotensin II induces afterdepolarizations via reactive oxygen species and calmodulin kinase II signaling. J. Mol. Cell. Cardiol. 2011, 50, 128–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muñoz, M.; López-Oliva, M.E.; Rodríguez, C.; Martínez, M.P.; Sáenz-Medina, J.; Sánchez, A.; Climent, B.; Benedito, S.; García-Sacristán, A.; Rivera, L.; et al. Differential contribution of Nox1, Nox2 and Nox4 to kidney vascular oxidative stress and endothelial dysfunction in obesity. Redox Biol. 2020, 28, 101330. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, C.M.; Bezanilla, F. Currents Related to Movement of the Gating Particles of the Sodium Channels. Nat. Cell Biol. 1973, 242, 459–461. [Google Scholar] [CrossRef] [PubMed]
- Stühmer, W.; Conti, F.; Suzuki, H.; Wang, X.; Noda, M.; Yahagi, N.; Kubo, H.; Numa, S. Structural parts involved in activation and inactivation of the sodium channel. Nat. Cell Biol. 1989, 339, 597–603. [Google Scholar] [CrossRef]
- Liu, F.; Fan, L.M.; Michael, N.; Li, J. In vivo and in silico characterization of apocynin in reducing organ oxidative stress: A pharmacokinetic and pharmacodynamic study. Pharmacol. Res. Perspect. 2020, 8, e00635. [Google Scholar] [CrossRef]
- Henríquez-Olguín, C.; Díaz-Vegas, A.; Utreras-Mendoza, Y.; Campos, C.; Arias-Calderón, M.; Llanos, P.; Contreras-Ferrat, A.; Espinosa, A.; Altamirano, F.; Jaimovich, E.; et al. NOX2 Inhibition Impairs Early Muscle Gene Expression Induced by a Single Exercise Bout. Front. Physiol. 2016, 7, 282. [Google Scholar] [CrossRef] [Green Version]
- Nasuti, C.; Gabbianelli, R.; Falcioni, M.L.; Di Stefano, A.; Sozio, P.; Cantalamessa, F. Dopaminergic system modulation, behavioral changes, and oxidative stress after neonatal administration of pyrethroids. Toxicology 2007, 229, 194–205. [Google Scholar] [CrossRef]
- Zybura, A.; Hudmon, A.; Cummins, T.R. Distinctive Properties and Powerful Neuromodulation of Na(v)1.6 Sodium Channels Regulates Neuronal Excitability. Cells 2021, 10, 1595. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chuang, T.-H.; Cho, H.-Y.; Wu, S.-N. Effective Accentuation of Voltage-Gated Sodium Current Caused by Apocynin (4′-Hydroxy-3′-methoxyacetophenone), a Known NADPH-Oxidase Inhibitor. Biomedicines 2021, 9, 1146. https://doi.org/10.3390/biomedicines9091146
Chuang T-H, Cho H-Y, Wu S-N. Effective Accentuation of Voltage-Gated Sodium Current Caused by Apocynin (4′-Hydroxy-3′-methoxyacetophenone), a Known NADPH-Oxidase Inhibitor. Biomedicines. 2021; 9(9):1146. https://doi.org/10.3390/biomedicines9091146
Chicago/Turabian StyleChuang, Tzu-Hsien, Hsin-Yen Cho, and Sheng-Nan Wu. 2021. "Effective Accentuation of Voltage-Gated Sodium Current Caused by Apocynin (4′-Hydroxy-3′-methoxyacetophenone), a Known NADPH-Oxidase Inhibitor" Biomedicines 9, no. 9: 1146. https://doi.org/10.3390/biomedicines9091146
APA StyleChuang, T.-H., Cho, H.-Y., & Wu, S.-N. (2021). Effective Accentuation of Voltage-Gated Sodium Current Caused by Apocynin (4′-Hydroxy-3′-methoxyacetophenone), a Known NADPH-Oxidase Inhibitor. Biomedicines, 9(9), 1146. https://doi.org/10.3390/biomedicines9091146