New Perspectives on Avian Models for Studies of Basic Aging Processes
Abstract
:1. Introduction: Avian Models in Geroscience
2. Avian Aging Studies in Field vs. Laboratory
3. Early-Life Interventions and in Ovo Developmental Studies
4. Primary Cell Line Culture
5. The Erythrocyte Model
6. The “-omics” Era and Studies of Avian Aging
6.1. Avian Genomics
6.2. Avian Transcriptomics
6.3. Avian Proteomics, Lipidomic and Metabolomics
7. Neural Aging and Cognitive Function in Birds
8. Future Directions and Concluding Remarks
9. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The Hallmarks of Aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, B.K.; Berger, S.L.; Brunet, A.; Campisi, J.; Cuervo, A.M.; Epel, E.S.; Franceschi, C.; Lithgow, G.J.; Morimoto, R.I.; Pessin, J.E.; et al. Geroscience: Linking Aging to Chronic Disease. Cell 2014, 159, 709–713. [Google Scholar] [CrossRef] [Green Version]
- Holmes, D.J.; Kristan, D.M. Comparative and alternative approaches and novel animal models for aging research. AGE 2008, 30, 63–73. [Google Scholar] [CrossRef] [Green Version]
- Austad, S.N. Comparative Biology of Aging. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2009, 64, 199–201. [Google Scholar] [CrossRef]
- Holmes, D.J.; Austad, S.N. Birds as Animal Models for the Comparative Biology of Aging: A Prospectus. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 1995, 50, B59–B66. [Google Scholar] [CrossRef] [PubMed]
- Holmes, D.; Martin, K. A Bird’s-Eye View of Aging: What’s in it for Ornithologists? Auk 2009, 126, 1–23. [Google Scholar] [CrossRef]
- Holmes, D.J.; Harper, J.M. Birds as models for the biology of aging and age-related disease: An update. In Conn’s Handbook of Models for Human Aging, 2nd ed.; Ram, J.L., Conn, P.M., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 301–312. [Google Scholar]
- Brunet-Rossinni, A.K.; Austad, S.N. Senescence in wild populations of mammals and birds. In Handbook of the Biology of Aging, 6th ed.; Masoro, E.J., Austad, S.N., Eds.; Academic Press: Burlington, MA, USA, 2006; pp. 243–266. [Google Scholar]
- Speakman, J.R. Body size, energy metabolism and lifespan. J. Exp. Biol. 2005, 208, 1717–1730. [Google Scholar] [CrossRef] [Green Version]
- Hulbert, A.J.; Pamplona, R.; Buffenstein, R.; Buttemer, W.A. Life and Death: Metabolic Rate, Membrane Composition, and Life Span of Animals. Physiol. Rev. 2007, 87, 1175–1213. [Google Scholar] [CrossRef] [PubMed]
- Fischer, K.E.; Austad, S.N. The Development of Small Primate Models for Aging Research. ILAR J. 2011, 52, 78–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colman, R.J. Non-human primates as a model for aging. Biochim. Biophys. Acta Mol. Basis Dis. 2018, 1864, 2733–2741. [Google Scholar] [CrossRef]
- Platzer, M.; Englert, C. Nothobranchius furzeri: A Model for Aging Research and More. Trends Genet. 2016, 32, 543–552. [Google Scholar] [CrossRef]
- Tozzini, E.T.; Cellerino, A. Nothobranchius annual killifishes. EvoDevo 2020, 11, 1–9. [Google Scholar] [CrossRef]
- Schwabl, H.; Holmes, D.; Strasser, R.; Scheuerlein, A. Embryonic exposure to maternal testosterone influences age-specific mortality patterns in a captive passerine bird. AGE 2011, 34, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Ottinger, M. Neuroendocrine aging in birds: Comparing lifespan differences and conserved mechanisms. Ageing Res. Rev. 2007, 6, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Yuan, R.; Tsaih, S.-W.; Petkova, S.B.; De Evsikova, C.M.; Xing, S.; Marion, M.A.; Bogue, M.A.; Mills, K.D.; Peters, L.L.; Bult, C.J.; et al. Aging in inbred strains of mice: Study design and interim report on median lifespans and circulating IGF1 levels. Aging Cell 2009, 8, 277–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammers, M.; Kingma, S.A.; Bebbington, K.; van de Crommenacker, J.; Spurgin, L.; Richardson, D.S.; Burke, T.; Dugdale, H.; Komdeur, J. Senescence in the wild: Insights from a long-term study on Seychelles warblers. Exp. Gerontol. 2015, 71, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Nussey, D.H.; Froy, H.; Lemaitre, J.-F.; Gaillard, J.-M.; Austad, S.N. Senescence in natural populations of animals: Widespread evidence and its implications for bio-gerontology. Ageing Res. Rev. 2013, 12, 214–225. [Google Scholar] [CrossRef] [Green Version]
- Briga, M.; Koetsier, E.; Boonekamp, J.; Jimeno, B.; Verhulst, S. Food availability affects adult survival trajectories depending on early developmental conditions. Proc. R. Soc. B Biol. Sci. 2017, 284, 20162287. [Google Scholar] [CrossRef]
- Beaulieu, M. A Bird in the House: The Challenge of Being Ecologically Relevant in Captivity. Front. Ecol. Evol. 2016, 4, 141. [Google Scholar] [CrossRef] [Green Version]
- Noreen, E.; Bourgeon, S.; Bech, C. Growing old with the immune system: A study of immunosenescence in the zebra finch (Taeniopygia guttata). J. Comp. Physiol. B 2011, 181, 649–656. [Google Scholar] [CrossRef] [Green Version]
- Moe, B.; Rønning, B.; Verhulst, S.; Bech, C. Metabolic ageing in individual zebra finches. Biol. Lett. 2008, 5, 86–89. [Google Scholar] [CrossRef] [Green Version]
- Hau, M.; Haussmann, M.F.; Greives, T.J.; Matlack, C.; Costantini, D.; Quetting, M.; Adelman, J.S.; Miranda, A.C.; Partecke, J. Repeated stressors in adulthood increase the rate of biological ageing. Front. Zool. 2015, 12, 4–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delany, M.; Krupkin, A.; Miller, M. Organization of telomere sequences in birds: Evidence for arrays of extreme length and for in vivo shortening. Cytogenet. Cell Genet. 2000, 90, 139–145. [Google Scholar] [CrossRef]
- Delany, M.; Daniels, L.; Swanberg, S.; Taylor, H. Telomeres in the chicken: Genome stability and chromosome ends. Poult. Sci. 2003, 82, 917–926. [Google Scholar] [CrossRef] [PubMed]
- Lawless, C.; Wang, C.; Jurk, D.; Merz, A.; von Zglinicki, T.; Passos, J.F. Quantitative assessment of markers for cell senescence. Exp. Gerontol. 2010, 45, 772–778. [Google Scholar] [CrossRef] [PubMed]
- Sanders, J.L.; Newman, A.B. Telomere Length in Epidemiology: A Biomarker of Aging, Age-Related Disease, Both, or Neither? Epidemiol. Rev. 2013, 35, 112–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomes, N.M.V.; Ryder, O.A.; Houck, M.L.; Charter, S.J.; Walker, W.; Forsyth, N.R.; Austad, S.N.; Venditti, C.; Pagel, M.; Shay, J.W.; et al. Comparative biology of mammalian telomeres: Hypotheses on ancestral states and the roles of telomeres in longevity determination. Aging Cell 2011, 10, 761–768. [Google Scholar] [CrossRef] [Green Version]
- Swanberg, S.E. Telomeres and telomerase in birds: Measuring health, environmental stress, and longevity. In Conn’s Handbook of Models for Human Aging, 2nd ed.; Ram, J.L., Conn, P.M., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 313–322. [Google Scholar]
- Manning, E.L.; Crossland, J.; Dewey, M.J.; Van Zant, G. Influences of inbreeding and genetics on telomere length in mice. Mamm. Genome 2002, 13, 234–238. [Google Scholar] [CrossRef]
- Davis, K.; Chamseddine, D.; Harper, J.M. Nutritional limitation in early postnatal life and its effect on aging and longevity in rodents. Exp. Gerontol. 2016, 86, 84–89. [Google Scholar] [CrossRef]
- Stier, A.; Metcalfe, N.B.; Monaghan, P. Pace and stability of embryonic development affect telomere dynamics: An experimental study in a precocial bird model. Proc. R. Soc. B Biol. Sci. 2020, 287, 20201378. [Google Scholar] [CrossRef]
- Dorado-Correa, A.M.; Zollinger, S.; Heidinger, B.; Brumm, H. Timing matters: Traffic noise accelerates telomere loss rate differently across developmental stages. Front. Zool. 2018, 15, 29. [Google Scholar] [CrossRef] [PubMed]
- Stier, A.; Bize, P.; Massemin, S.; Criscuolo, F. Long-term intake of the illegal diet pill DNP reduces lifespan in a captive bird model. Comp. Biochem. Physiol. Part. C Toxicol. Pharmacol. 2021, 242, 108944. [Google Scholar] [CrossRef]
- Smulders, T.V. The Avian Hippocampal Formation and the Stress Response. Brain Behav. Evol. 2017, 90, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Cockrem, J.F. Individual variation in glucocorticoid stress responses in animals. Gen. Comp. Endocrinol. 2013, 181, 45–58. [Google Scholar] [CrossRef] [PubMed]
- Vágási, C.I.; Tóth, Z.; Pénzes, J.; Pap, P.L.; Ouyang, J.Q.; Lendvai, Á.Z. The Relationship between Hormones, Glucose, and Oxidative Damage Is Condition and Stress Dependent in a Free-Living Passerine Bird. Physiol. Biochem. Zool. 2020, 93, 466–476. [Google Scholar] [CrossRef] [PubMed]
- Gil, D.; Alfonso-Iñiguez, S.; Pérez-Rodríguez, L.; Muriel, J.; Monclús, R. Harsh conditions during early development influence telomere length in an altricial passerine: Links with oxidative stress and corticosteroids. J. Evol. Biol. 2019, 32, 111–125. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.W.; Dillworth, G.; Singleton, P.; Chen, Y.; Muirt, W.M. Effects of Group Selection for Productivity and Longevity on Blood Concentrations of Serotonin, Catecholamines, and Corticosterone of Laying Hens. Poult. Sci. 2001, 80, 1278–1285. [Google Scholar] [CrossRef]
- Haussmann, M.F.; Longenecker, A.S.; Marchetto, N.M.; Juliano, S.A.; Bowden, R.M. Embryonic exposure to corticosterone modifies the juvenile stress response, oxidative stress and telomere length. Proc. R. Soc. B Biol. Sci. 2011, 279, 1447–1456. [Google Scholar] [CrossRef] [Green Version]
- Monaghan, P.; Heidinger, B.J.; D’Alba, L.; Evans, N.P.; Spencer, K.A. For better or worse: Reduced adult lifespan following early-life stress is transmitted to breeding partners. Proc. R. Soc. B Biol. Sci. 2011, 279, 709–714. [Google Scholar] [CrossRef]
- Grace, J.K.; Froud, L.; Meillère, A.; Angelier, F. House sparrows mitigate growth effects of post-natal glucocorticoid exposure at the expense of longevity. Gen. Comp. Endocrinol. 2017, 253, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.A.; Harper, J.M.; Galecki, A.; Burke, D.T. Big mice die young: Early life body weight predicts longevity in genetically heterogeneous mice. Aging Cell 2002, 1, 22–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jimeno, B.; Briga, M.; Hau, M.; Verhulst, S. Male but not female zebra finches with high plasma corticosterone have lower survival. Funct. Ecol. 2018, 32, 713–721. [Google Scholar] [CrossRef]
- Marasco, V.; Boner, W.; Heidinger, B.J.; Griffiths, K.; Monaghan, P. Repeated exposure to stressful conditions can have beneficial effects on survival. Exp. Gerontol. 2015, 69, 170–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montoya, B.; Briga, M.; Jimeno, B.; Moonen, S.; Verhulst, S. Baseline glucose level is an individual trait that is negatively associated with lifespan and increases due to adverse environmental conditions during development and adulthood. J. Comp. Physiol. B 2018, 188, 517–526. [Google Scholar] [CrossRef]
- Matson, K.D.; Riedstra, B.; Tieleman, B.I. In ovo testosterone treatment reduces long-term survival of female pigeons: A preliminary analysis after nine years of monitoring. J. Anim. Physiol. Anim. Nutr. 2016, 100, 1031–1036. [Google Scholar] [CrossRef]
- Alonso-Alvarez, C.; Cantarero, A.; Romero-Haro, A.Á.; Chastel, O.; Pérez-Rodríguez, L. Life-long testosterone and antiandrogen treatments affect the survival and reproduction of captive male red-legged partridges (Alectoris rufa). Behav. Ecol. Sociobiol. 2020, 74, 1–12. [Google Scholar] [CrossRef]
- Austad, S.N. Birds as Models of Aging in Biomedical Research. ILAR J. 1997, 38, 137–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ottinger, M.A.; Abdelnabi, M.; Li, Q.; Chen, K.; Thompson, N.; Harada, N.; Viglietti-Panzica, C.; Panzica, G.C. The Japanese quail: A model for studying reproductive aging of hypothalamic systems. Exp. Gerontol. 2004, 39, 1679–1693. [Google Scholar] [CrossRef]
- Alper, S.J.; Bronikowski, A.M.; Harper, J.M. Comparative cellular biogerontology: Where do we stand? Exp. Gerontol. 2015, 71, 109–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, R.A.; Williams, J.B.; Kiklevich, J.V.; Austad, S.; Harper, J.M. Comparative cellular biogerontology: Primer and prospectus. Ageing Res. Rev. 2011, 10, 181–190. [Google Scholar] [CrossRef] [Green Version]
- Jimenez, A.G.; Cooper-Mullin, C.; Calhoon, E.A.; Williams, J.B. Physiological underpinnings associated with differences in pace of life and metabolic rate in north temperate and neotropical birds. J. Comp. Physiol. B 2014, 184, 545–561. [Google Scholar] [CrossRef]
- Jimenez, A.G.; Winward, J.; Beattie, U.; Cipolli, W. Cellular metabolism and oxidative stress as a possible determinant for longevity in small breed and large breed dogs. PLoS ONE 2018, 13, e0195832. [Google Scholar] [CrossRef] [Green Version]
- Jimenez, A.G.; Downs, C.J.; Lalwani, S.; Cipolli, W. Cellular metabolism and IL-6 concentrations during stimulated inflammation in small and large dog breeds’ primary fibroblasts cells, as they age. J. Exp. Biol. 2021. [Google Scholar] [CrossRef]
- Jimenez, A.G.; Winward, J.D.; Walsh, K.E.; Champagne, A.M. Effects of membrane fatty acid composition on cellular metabolism and oxidative stress in dermal fibroblasts from small and large breed dogs. J. Exp. Biol. 2020, 223, 221804. [Google Scholar] [CrossRef]
- Calhoon, E.; Miller, M.; Jimenez, A.; Harper, J.; Williams, J. Changes in cultured dermal fibroblasts during early passages across five wild bird species. Can. J. Zool. 2013, 91, 653–659. [Google Scholar] [CrossRef]
- Brown-Borg, H.M.; Borg, K.E.; Meliska, C.J.; Bartke, A. Dwarf mice and the ageing process. Nature 1996, 384, 33. [Google Scholar] [CrossRef] [PubMed]
- Brown-Borg, H.M. Role of the somatotropic axis in mammalian aging. In Handbook of the Biology of Aging, 7th ed.; Masoro, E.J., Austad, S.N., Eds.; Academic Press: New York, NY, USA, 2011; pp. 25–46. [Google Scholar]
- Wang, T.; Tsui, B.; Kreisberg, J.F.; Robertson, N.A.; Gross, A.M.; Carter, H.; Brown-Borg, H.; Adams, P.D.; Ideker, T. Epigenetic aging signatures in mice is slowed by dwarfism, caloric restriction and Rapamycin treatment. Genome Biol. 2017, 18, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murakami, S.; Salmon, A.; Miller, R.A. Multiplex stress resistance in cells from long-lived dwarf mice. FASEB J. 2003, 17, 1565–1576. [Google Scholar] [CrossRef]
- Salmon, A.B.; Murakami, S.; Bartke, A.; Kopchick, J.; Yasumura, K.; Miller, R.A. Fibroblast cell lines from young adult mice of long-lived mutant strains are resistant to multiple forms of stress. Am. J. Physiol. Endocrinol. Metab. 2005, 289, E23–E29. [Google Scholar] [CrossRef] [Green Version]
- Salmon, A.B.; Ljungman, M.; Miller, R.A. Cells from long-lived mutant mice exhibit enhanced repair of ultraviolet lesions. J. Gerontol. A. Biol. Sci. Med. Sci. 2008, 63, 219–231. [Google Scholar] [CrossRef] [Green Version]
- Kapahi, P.; Boulton, M.E.; Kirkwood, T.B. Positive correlation between mammalian life span and cellular resistance to stress. Free Radic. Biol. Med. 1999, 26, 495–500. [Google Scholar] [CrossRef]
- Harper, J.M.; Salmon, A.B.; Leiser, S.F.; Galecki, A.T.; Miller, R.A. Skin-derived fibroblasts from long-lived species are resistant to some, but not all, lethal stresses and to the mitochondrial inhibitor rotenone. Aging Cell 2006, 6, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edrey, Y.H.; Hanes, M.; Pinto, M.; Mele, J.; Buffenstein, R. Successful Aging and Sustained Good Health in the Naked Mole Rat: A Long-Lived Mammalian Model for Biogerontology and Biomedical Research. ILAR J. 2011, 52, 41–53. [Google Scholar] [CrossRef]
- Ogburn, C.E.; Austad, S.N.; Holmes, D.J.; Kiklevich, J.V.; Gollahon, K.; Rabinovitch, P.S.; Martin, G.M. Cultured Renal Epithelial Cells From Birds and Mice: Enhanced Resistance of Avian Cells to Oxidative Stress and DNA Damage. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 1998, 53, B287–B292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogburn, C.E.; Carlberg, K.; Ottinger, M.A.; Holmes, D.J.; Martin, G.M.; Austad, S.N. Exceptional cellular resistance to oxidative damage in long-lived birds requires active gene expression. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2001, 56, B468–B474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strecker, V.; Mai, S.; Muster, B.; Beneke, S.; Bürkle, A.; Bereiter-Hahn, J.; Jendrach, M. Aging of different avian cultured cells: Lack of ROS-induced damage and quality control mechanisms. Mech. Ageing Dev. 2010, 131, 48–59. [Google Scholar] [CrossRef] [Green Version]
- Harper, J.M.; Wang, M.; Galecki, A.T.; Ro, J.; Williams, J.B.; Miller, R.A. Fibroblasts from long-lived bird species are resistant to multiple forms of stress. J. Exp. Biol. 2011, 214, 1902–1910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sæther, B.-E.; Engen, S. The concept of fitness in fluctuating environments. Trends Ecol. Evol. 2015, 30, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Benton, T.; Stearne, S. The Evolution of Life-histories. J. Anim. Ecol. 1993, 62, 796. [Google Scholar] [CrossRef]
- Ricklefs, R.E.; Wikelski, M. The physiology/life-history nexus. Trends Ecol. Evol. 2002, 17, 462–468. [Google Scholar] [CrossRef]
- Schwabl, H.; Palacios, M.G.; Martin, T.E. Selection for rapid embryo development correlates with embryo exposure to maternal androgens among passerine birds. Am. Nat. 2007, 170, 196–206. [Google Scholar] [CrossRef]
- Finch, C.E.; Rose, M.R. Hormones and the Physiological Architecture of Life History Evolution. Q. Rev. Biol. 1995, 70, 1–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jimenez, A.G.; Harper, J.M.; Queenborough, S.A.; Williams, J.B. Linkages between the life-history evolution of tropical and temperate birds and the resistance of cultured skin fibroblasts to oxidative and non-oxidative chemical injury. J. Exp. Biol. 2013, 216, 1373–1380. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, K.A.; Edrey, Y.H.; Osmulski, P.; Gaczynska, M.; Buffenstein, R. Altered Composition of Liver Proteasome Assemblies Contributes to Enhanced Proteasome Activity in the Exceptionally Long-Lived Naked Mole-Rat. PLoS ONE 2012, 7, e35890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez, K.A.; Osmulski, P.; Pierce, A.; Weintraub, S.T.; Gaczynska, M.; Buffenstein, R. A cytosolic protein factor from the naked mole-rat activates proteasomes of other species and protects these from inhibition. Biochim. Biophys. Acta Mol. Basis Dis. 2014, 1842, 2060–2072. [Google Scholar] [CrossRef] [Green Version]
- Ma, S.; Upneja, A.; Galecki, A.; Tsai, Y.M.; Burant, C.F.; Raskind, S.; Zhang, Q.; Zhang, Z.D.; Seluanov, A.; Gorbunova, V.; et al. Cell culture-based profiling across mammals reveals DNA repair anmetabolism as determinants of species longevity. eLife 2016, 5, e19130. [Google Scholar] [CrossRef] [Green Version]
- Pickering, A.M.; Lehr, M.; Kohler, W.J.; Han, M.L.; Miller, R.A. Fibroblasts From Longer-Lived Species of Primates, Rodents, Bats, Carnivores, and Birds Resist Protein Damage. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2014, 70, 791–799. [Google Scholar] [CrossRef] [Green Version]
- Elbourkadi, N.; Austad, S.N.; Miller, R.A. Fibroblasts from long-lived species of mammals and birds show delayed, but prolonged, phosphorylation of ERK. Aging Cell 2013, 13, 283–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jimenez, A.G.; O’Connor, E.S.; Tobin, K.J.; Anderson, K.N.; Winward, J.D.; Fleming, A.; Winner, C.; Chinchilli, E.; Maya, A.; Carlson, K.; et al. Does Cellular Metabolism from Primary Fibroblasts and Oxidative Stress in Blood Differ between Mammals and Birds? The (Lack-thereof) Scaling of Oxidative Stress. Integr. Comp. Biol. 2019, 59, 953–969. [Google Scholar] [CrossRef]
- Calhoon, E.A.; Jimenez, A.G.; Harper, J.M.; Jurkowitz, M.S.; Williams, J.B. Linkages between Mitochondrial Lipids and Life History in Temperate and Tropical Birds. Physiol. Biochem. Zool. 2014, 87, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Calhoon, E.A.; Ro, J.; Williams, J.B. Perspectives on the membrane fatty acid unsaturation/pacemaker hypotheses of metabolism and aging. Chem. Phys. Lipids 2015, 191, 48–60. [Google Scholar] [CrossRef] [PubMed]
- Hulbert, A.J. Metabolism and longevity: Is there a role for membrane fatty acids? Integr. Comp. Biol. 2010, 50, 808–817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castiglione, G.M.; Xu, Z.; Zhou, L.; Duh, E.J. Adaptation of the master antioxidant response connects metabolism, lifespan and feather development pathways in birds. Nat. Commun. 2020, 11, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Lewis, K.N.; Wason, E.; Edrey, Y.H.; Kristan, D.M.; Nevo, E.; Buffenstein, R. Regulation of Nrf2 signaling and longevity in naturally long-lived rodents. Proc. Natl. Acad. Sci. USA 2015, 112, 3722–3727. [Google Scholar] [CrossRef] [Green Version]
- Betin, V.M.; Singleton, B.K.; Parsons, S.F.; Anstee, D.J.; Lane, J.D. Autophagy facilitates organelle clearance during differentiation of human erythroblasts: Evidence for a role for ATG4 paralogs during autophagosome maturation. Autophagy 2013, 9, 881–893. [Google Scholar] [CrossRef] [Green Version]
- Udroiu, I.; Sgura, A. Rates of erythropoiesis in mammals and their relationship with lifespan and hematopoietic stem cells aging. Biogerontology 2019, 20, 445–456. [Google Scholar] [CrossRef]
- Stier, A.; Bize, P.; Schull, Q.; Zoll, J.; Singh, F.; Geny, B.; Gros, F.; Royer, C.; Massemin, S.; Criscuolo, F. Avian erythrocytes have functional mitochondria, opening novel perspectives for birds as animal models in the study of ageing. Front. Zool. 2013, 10, 33. [Google Scholar] [CrossRef] [Green Version]
- Stier, A.; Reichert, S.; Criscuolo, F.; Bize, P. Red blood cells open promising avenues for longitudinal studies of ageing in laboratory, non-model and wild animals. Exp. Gerontol. 2015, 71, 118–134. [Google Scholar] [CrossRef]
- Salmon, A.B.; Richardson, A.; Pérez, V.I. Update on the oxidative stress theory of aging: Does oxidative stress play a role in aging or healthy aging? Free Radic. Biol. Med. 2010, 48, 642–655. [Google Scholar] [CrossRef] [Green Version]
- Vatner, S.F.; Zhang, J.; Oydanich, M.; Berkman, T.; Naftalovich, R.; Vatner, D.E. Healthful aging mediated by inhibition of oxidative stress. Ageing Res. Rev. 2020, 64, 101194. [Google Scholar] [CrossRef]
- Stier, A.; Bize, P.; Roussel, D.; Schull, Q.; Massemin, S.; Criscuolo, F. Mitochondrial uncoupling as a regulator of life history trajectories in birds: An experimental study in the zebra finch. J. Exp. Biol. 2014, 217, 3579–3589. [Google Scholar] [CrossRef] [Green Version]
- Bize, P.; Devevey, G.; Monaghan, P.; Doligez, B.; Christe, P. Fecundity and survival in relation to resistance to oxidative stress in a free-living bird. Ecology 2008, 89, 2584–2593. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.A.; McGraw, K.J.; Wiersma, P.; Williams, J.B.; Robinson, W.D.; Robinson, T.R.; Brawn, J.D.; Ricklefs, R.E. Interspecific Associations between Circulating Antioxidant Levels and Life-History Variation in Birds. Am. Nat. 2008, 172, 178–193. [Google Scholar] [CrossRef] [PubMed]
- Norte, A.C.; Ramos, J.A.; Sousa, J.P.; Sheldon, B.C. Variation of adult great tit Parus major body condition and blood parameters in relation to sex, age, year and season. J. Ornithol. 2009, 150, 651–660. [Google Scholar] [CrossRef]
- Alonso-Alvarez, C.; Pérez-Rodríguez, L.; García, J.T.; Viñuela, J.; Mateo, R. Age and Breeding Effort as Sources of Individual Variability in Oxidative Stress Markers in a Bird Species. Physiol. Biochem. Zool. 2010, 83, 110–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devevey, G.; Bruyndonckx, N.; von Houwald, F.; Studer-Thiersch, A.; Christe, P. Age-specific variation of resistance to oxidative stress in the greater flamingo (Phoenicopterus ruber roseus). J. Ornithol. 2010, 151, 251–254. [Google Scholar] [CrossRef]
- Kim, S.Y.; Velando, A.; Sorci, G.; Alonso-Alvarez, C. Genetic correlation between resistance to oxidative stress and reproductive life span in a bird species. Evolution 2010, 64, 852–857. [Google Scholar] [CrossRef]
- Markó, G.; Costantini, D.; Michl, G.; Török, J. Oxidative damage and plasma antioxidant capacity in relation to body size, age, male sexual traits and female reproductive performance in the collared flycatcher (Ficedula albicollis). J. Comp. Physiol. B 2010, 181, 73–81. [Google Scholar] [CrossRef]
- Saino, N.; Caprioli, M.; Romano, M.; Boncoraglio, G.; Rubolini, D.; Ambrosini, R.; Bonisoli-Alquati, A.; Romano, A. Antioxidant Defenses Predict Long-Term Survival in a Passerine Bird. PLoS ONE 2011, 6, e19593. [Google Scholar] [CrossRef]
- Montgomery, M.K.; Hulbert, A.; Buttemer, W.A. Does the oxidative stress theory of aging explain longevity differences in birds? I. Mitochondrial ROS production. Exp. Gerontol. 2012, 47, 203–210. [Google Scholar] [CrossRef]
- Isaksson, C. Opposing effects on glutathione and reactive oxygen metabolites of sex, habitat, and spring date, but no effect of increased breeding density in great tits (Parus major). Ecol. Evol. 2013, 3, 2730–2738. [Google Scholar] [CrossRef]
- Bize, P.; Cotting, S.; Devevey, G.; Van Rooyen, J.; Lalubin, F.; Glaizot, O.; Christe, P. Senescence in cell oxidative status in two bird species with contrasting life expectancy. Oecologia 2014, 174, 1097–1105. [Google Scholar] [CrossRef] [Green Version]
- Urvik, J.; Meitern, R.; Rattiste, K.; Saks, L.; Hõrak, P.; Sepp, T. Variation in the Markers of Nutritional and Oxidative State in a Long-Lived Seabird: Associations with Age and Longevity. Physiol. Biochem. Zool. 2016, 89, 417–440. [Google Scholar] [CrossRef]
- Marasco, V.; Stier, A.; Boner, W.; Griffiths, K.; Heidinger, B.; Monaghan, P. Environmental conditions can modulate the links among oxidative stress, age, and longevity. Mech. Ageing Dev. 2017, 164, 100–107. [Google Scholar] [CrossRef] [Green Version]
- López-Arrabé, J.; Cantarero, A.; Pérez-Rodríguez, L.; Palma, A.; Moreno, J. Oxidative Stress in Early Life: Associations with Sex, Rearing Conditions, and Parental Physiological Traits in Nestling Pied Flycatchers. Physiol. Biochem. Zool. 2016, 89, 83–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romero-Haro, A.A.; Alonso-Alvarez, C. Oxidative Stress Experienced during Early Development Influences the Offspring Phenotype. Am. Nat. 2020, 196, 704–716. [Google Scholar] [CrossRef] [PubMed]
- Goodchild, C.G.; Durant, S.E. Fluorescent Heme Degradation Products Are Biomarkers of Oxidative Stress and Linked to Impaired Membrane Integrity in Avian Red Blood Cells. Physiol. Biochem. Zool. 2020, 93, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Cortés-Gutiérrez, E.I.; García-Salas, J.A.; Dávila-Rodríguez, M.I.; Contreras, J.P.C.; González-Ramírez, E.G. Evaluation of oxidative DNA damage in pigeon erythrocytes using DNA breakage detection-fluorescence in situ hybridization (DBD-FISH). Biotech. Histochem. 2019, 94, 600–605. [Google Scholar] [CrossRef]
- Whittemore, K.; Martínez-Nevado, E.; Blasco, M.A. Slower rates of accumulation of DNA damage in leukocytes correlate with longer lifespans across several species of birds and mammals. Aging 2019, 11, 9829–9845. [Google Scholar] [CrossRef] [PubMed]
- Vijg, J.; Suh, Y. Genome Instability and Aging. Annu. Rev. Physiol. 2013, 75, 645–668. [Google Scholar] [CrossRef]
- Farag, M.R.; Alagawany, M. Erythrocytes as a biological model for screening of xenobiotics toxicity. Chem. Interact. 2018, 279, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Gormally, B.M.; Estrada, R.; Yin, H.; Romero, L.M. Recovery from repeated stressors: Physiology and behavior are affected on different timescales in house sparrows. Gen. Comp. Endocrinol. 2019, 282, 113225. [Google Scholar] [CrossRef] [PubMed]
- Gormally, B.M.; Fuller, R.; McVey, M.; Romero, L.M. DNA damage as an indicator of chronic stress: Correlations with corticosterone and uric acid. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2019, 227, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Robert, K.A.; Bronikowski, A.M. Evolution of Senescence in Nature: Physiological Evolution in Populations of Garter Snake with Divergent Life Histories. Am. Nat. 2010, 175, 147–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Shuhaib, M.B.S. A minimum requirements method to isolate large quantities of highly purified DNA from one drop of poultry blood. J. Genet. 2018, 97, e87–e94. [Google Scholar] [CrossRef]
- Lee, H.; Kim, J.; Weber, J.A.; Chung, O.; Cho, Y.S.; Jho, S.; Jun, J.; Kim, H.-M.; Lim, J.; Choi, J.-P.; et al. Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. Mol. Cells 2020, 43, 86–95. [Google Scholar]
- Munshi-South, J.; Wilkinson, G.S. Bats and birds: Exceptional longevity despite high metabolic rates. Ageing Res. Rev. 2010, 9, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Seabury, C.M.; Dowd, S.E.; Seabury, P.M.; Raudsepp, T.; Brightsmith, D.J.; Liboriussen, P.; Halley-Schultz, Y.; Fisher, C.A.; Owens, E.; Viswanathan, G.; et al. A Multi-Platform Draft de novo Genome Assembly and Comparative Analysis for the Scarlet Macaw (Ara macao). PLoS ONE 2013, 8, e62415. [Google Scholar] [CrossRef] [Green Version]
- Wirthlin, M.; Lima, N.C.; Guedes, R.L.M.; Soares, A.E.; Almeida, L.G.P.; Cavaleiro, N.P.; De Morais, G.L.; Chaves, A.V.; Howard, J.T.; Teixeira, M.D.M.; et al. Parrot Genomes and the Evolution of Heightened Longevity and Cognition. Curr. Biol. 2018, 28, 4001–4008. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Lin, Q.; Fang, W.; Chen, X. The complete mitochondrial genomes of sixteen ardeid birds revealing the evolutionary process of the gene rearrangements. BMC Genom. 2014, 15, 573. [Google Scholar] [CrossRef] [Green Version]
- Skujina, I.; McMahon, R.; Lenis, V.P.E.; Gkoutos, G.V.; Hegarty, M. Duplication of the mitochondrial control region is associated with increased longevity in birds. Aging 2016, 8, 1781–1789. [Google Scholar] [CrossRef] [Green Version]
- Urantówka, A.D.; Kroczak, A.; Silva, T.; Padrón, R.Z.; Gallardo, N.F.; Blanch, J.; Blanch, B.; Mackiewicz, P. New Insight into Parrots’ Mitogenomes Indicates That Their Ancestor Contained a Duplicated Region. Mol. Biol. Evol. 2018, 35, 2989–3009. [Google Scholar] [CrossRef]
- Cézilly, F.; Quinard, A.; Motreuil, S.; Pradel, R. Adult survival selection in relation to multilocus heterozygosity and body size in a tropical bird species, the Zenaida dove, Zenaida aurita. Oecologia 2015, 180, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Delhaye, J.; Salamin, N.; Roulin, A.; Criscuolo, F.; Bize, P.; Christe, P. Interspecific correlation between red blood cell mitochondrial ROS production, cardiolipin content and longevity in birds. AGE 2016, 38, 433–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pértille, F.; Brantsæter, M.; Nordgreen, J.; Coutinho, L.L.; Janczak, A.; Jensen, P.; Guerrero-Bosagna, C. DNA methylation profiles in red blood cells of adult hens correlate to their rearing conditions. J. Exp. Biol. 2017, 220, 3579–3587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mäkinen, H.; Viitaniemi, H.M.; Visser, M.E.; Verhagen, I.; van Oers, K.; Husby, A. Temporally replicated DNA methylation patterns in great tit using reduced representation bisulfite sequencing. Sci. Data 2019, 6, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Qu, J.; Liu, G.-H.; Belmonte, J.C.I. The ageing epigenome and its rejuvenation. Nat. Rev. Mol. Cell Biol. 2020, 21, 137–150. [Google Scholar] [CrossRef]
- Ng, L.T.; Gruber, J.; Moore, P.K. Is there a role of H2S in mediating health span benefits of caloric restriction? Biochem. Pharmacol. 2018, 149, 91–100. [Google Scholar] [CrossRef]
- McIsaac, R.S.; Lewis, K.N.; Gibney, P.A.; Buffenstein, R. From yeast to human: Exploring the comparative biology of methionine restriction in extending eukaryotic life span. Ann. N. Y. Acad. Sci. 2016, 1363, 155–170. [Google Scholar] [CrossRef]
- Jin, Z.; Zhang, Q.; Wondimu, E.; Verma, R.; Fu, M.; Shuang, T.; Arif, H.M.; Wu, L.; Wang, R. H2S-stimulated bioenergetics in chicken erythrocytes and the underlying mechanism. Am. J. Physiol. Integr. Comp. Physiol. 2020, 319, R69–R78. [Google Scholar] [CrossRef]
- Lewis, K.N.; Soifer, I.; Melamud, E.; Roy, M.; McIsaac, R.S.; Hibbs, M.; Buffenstein, R. Unraveling the message: Insights into comparative genomics of the naked mole-rat. Mamm. Genome 2016, 27, 259–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jebb, D.; Huang, Z.; Pippel, M.; Hughes, G.M.; Lavrichenko, K.; Devanna, P.; Winkler, S.; Jermiin, L.S.; Skirmuntt, E.C.; Katzourakis, A.; et al. Six reference-quality genomes reveal evolution of bat adaptations. Nature 2020, 583, 578–584. [Google Scholar] [CrossRef] [PubMed]
- Spindler, S.R. Rapid and reversible induction of the longevity, anticancer and genomic effects of caloric restriction. Mech. Ageing Dev. 2005, 126, 960–966. [Google Scholar] [CrossRef]
- Kaeberlein, M. Genome-wide approaches to understanding human ageing. Hum. Genom. 2006, 2, 422–428. [Google Scholar] [CrossRef] [Green Version]
- Smith, E.D.; Tsuchiya, M.; Fox, L.A.; Dang, N.; Hu, D.; Kerr, E.O.; Johnston, E.D.; Tchao, B.N.; Pak, D.N.; Welton, K.L.; et al. Quantitative evidence for conserved longevity pathways between divergent eukaryotic species. Genome Res. 2008, 18, 564–570. [Google Scholar] [CrossRef] [Green Version]
- Campos, S.E.; DeLuna, A. Functional genomics of dietary restriction and longevity in yeast. Mech. Ageing Dev. 2019, 179, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.B.; Ward, E.; Staley, L.A.; Stevens, J.; Teerlink, C.C.; Tavana, J.P.; Cloward, M.; Page, M.; Dayton, L.; Cannon-Albright, L.A.; et al. Identification and genomic analysis of pedigrees with exceptional longevity identifies candidate rare variants. Neurobiol. Dis. 2020, 143, 104972. [Google Scholar] [CrossRef]
- Wang, F.; Yang, J.; Lin, H.; Li, Q.; Ye, Z.; Lu, Q.; Chen, L.; Tu, Z.; Tian, G. Improved Human Age Prediction by Using Gene Expression Profiles From Multiple Tissues. Front. Genet. 2020, 11, 1025. [Google Scholar] [CrossRef]
- Jarvis, E.D.; Mirarab, S.; Aberer, A.J.; Li, B.; Houde, P.; Li, C.; Ho, S.Y.W.; Faircloth, B.C.; Nabholz, B.; Howard, J.T.; et al. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 2014, 346, 1320–1331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukherjee, S.; Stamatis, D.; Bertsch, J.; Ovchinnikova, G.; Katta, H.Y.; Mojica, A.; Chen, I.-M.A.; Kyrpides, N.C.; Reddy, T. Genomes OnLine database (GOLD) v.7: Updates and new features. Nucleic Acids Res. 2019, 47, D649–D659. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, E.A.; Westerdahl, H.; Burri, R.; Edwards, S.V. Avian MHC Evolution in the Era of Genomics: Phase 1.0. Cells 2019, 8, 1152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minias, P.; Pikus, E.; A Whittingham, L.; O Dunn, P. Evolution of Copy Number at the MHC Varies across the Avian Tree of Life. Genome Biol. Evol. 2019, 11, 17–28. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Kuo, H.-C.; Lo, W.-S.; Hung, C.-M. Avian phenotypic convergence is subject to low genetic constraints based on genomic evidence. BMC Evol. Biol. 2020, 20, 147. [Google Scholar] [CrossRef] [PubMed]
- Hoekstra, L.A.; Schwartz, T.S.; Sparkman, A.M.; Miller, D.A.W.; Bronikowski, A.M. The untapped potential of reptile biodiversity for understanding how and why animals age. Funct. Ecol. 2020, 34, 38–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, G.; Li, C.; Li, Q.; Li, B.; Larkin, D.M.; Lee, C.; Storz, J.F.; Antunes, A.; Greenwold, M.J.; Meredith, R.W.; et al. Comparative genomics reveals insights into avian genome evolution and adaptation. Science 2014, 346, 1311–1320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reynolds, J.C.; Bwiza, C.P.; Lee, C. Mitonuclear genomics and aging. Hum. Genet. 2020, 139, 381–399. [Google Scholar] [CrossRef]
- Quillfeldt, P. Body mass is less important than bird order in determining the molecular rate for bird mitochondrial DNA. Mol. Ecol. 2017, 26, 2426–2429. [Google Scholar] [CrossRef] [Green Version]
- Shokhirev, M.N.; Johnson, A.A. Modeling the human aging transcriptome across tissues, health status, and sex. Aging Cell 2021, 20, e13280. [Google Scholar] [CrossRef]
- Lee, J.-R.; Choe, S.-H.; Kim, Y.-H.; Cho, H.-M.; Park, H.-R.; Lee, H.-E.; Jin, Y.B.; Kim, J.-S.; Jeong, K.J.; Park, S.-J.; et al. Longitudinal profiling of the blood transcriptome in an African green monkey aging model. Aging 2020, 13, 846–864. [Google Scholar] [CrossRef]
- Srivastava, A.; Barth, E.; Ermolaeva, M.A.; Guenther, M.; Frahm, C.; Marz, M.; Witte, O.W. Tissue-specific Gene Expression Changes Are Associated with Aging in Mice. Genom. Proteom. Bioinform. 2020, 10, 1672. [Google Scholar] [CrossRef]
- Barter, T.T.; Greenspan, Z.S.; Phillips, M.A.; Mueller, L.D.; Rose, M.R.; Ranz, J.M. Drosophila transcriptomics with and without ageing. Biogerontology 2019, 20, 699–710. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Avanesov, A.S.; Porter, E.; Lee, B.C.; Mariotti, M.; Zemskaya, N.; Guigo, R.; Moskalev, A.A.; Gladyshev, V.N. Comparative transcriptomics across 14 Drosophila species reveals signatures of longevity. Aging Cell 2018, 17, e12740. [Google Scholar] [CrossRef] [Green Version]
- Tarkhov, A.E.; Alla, R.; Ayyadevara, S.; Pyatnitskiy, M.; Menshikov, L.I.; Reis, R.J.S.; Fedichev, P.O. A universal transcriptomic signature of age reveals the temporal scaling of Caenorhabditis elegans aging trajectories. Sci. Rep. 2019, 9, 7368. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Wang, Y.; Li, Y.; Wang, L.; Zhang, W.; Cheng, J.; Zhu, Y.; Zhang, H.; Zhang, Q.; Niu, H.; et al. The whole transcriptome regulation as a function of mitochondrial polymorphisms and aging in Caenorhabditis elegans. Aging 2020, 12, 2453–2470. [Google Scholar] [CrossRef]
- Leupold, S.; Hubmann, G.; Litsios, A.; Meinema, A.C.; Takhaveev, V.; Papagiannakis, A.; Niebel, B.; Janssens, G.; Siegel, D.; Heinemann, M. Saccharomyces cerevisiae goes through distinct metabolic phases during its replicative lifespan. eLife 2019, 8, 41046. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Che, T.; Li, F.; Tian, K.; Zhu, Q.; Mishra, S.K.; Dai, Y.; Li, M.; Li, D. The temporal expression patterns of brain transcriptome during chicken development and ageing. BMC Genom. 2018, 19, 917. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lei, X.; Lu, H.; Guo, W.; Wu, S.; Yin, Z.; Sun, Q.; Yang, X. Age-Related Changes on CD40 Promotor Methylation and Immune Gene Expressions in Thymus of Chicken. Front. Immunol. 2018, 9, 2731. [Google Scholar] [CrossRef] [PubMed]
- Piégu, B.; Arensburger, P.; Beauclair, L.; Chabault, M.; Raynaud, E.; Coustham, V.; Brard, S.; Guizard, S.; Burlot, T.; Le Bihan-Duval, E.; et al. Variations in genome size between wild and domesticated lineages of fowls belonging to the Gallus gallus species. Genomics 2020, 112, 1660–1673. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Guo, J.; Wang, L.; Tian, H.; Sui, J. Transcriptome analysis revealed potential mechanisms of differences in physiological stress responses between caged male and female magpies. BMC Genom. 2019, 20, 447. [Google Scholar] [CrossRef]
- Doherty, M.; McLean, L.; Beynon, R. Avian proteomics: Advances, challenges and new technologies. Cytogenet. Genome Res. 2007, 117, 358–369. [Google Scholar] [CrossRef]
- Liu, C.; Pan, D.; Ye, Y.; Cao, J. 1H NMR and multivariate data analysis of the relationship between the age and quality of duck meat. Food Chem. 2013, 141, 1281–1286. [Google Scholar] [CrossRef] [PubMed]
- Darcy, J.; Fang, Y.; McFadden, S.; Lynes, M.D.; Leiria, L.O.; Dreyfuss, J.M.; Bussburg, V.; Tolstikov, V.; Greenwood, B.; Narain, N.R.; et al. Integrated metabolomics reveals altered lipid metabolism in adipose tissue in a model of extreme longevity. GeroScience 2020, 42, 1527–1546. [Google Scholar] [CrossRef]
- Pollard, A.K.; Ingram, T.L.; Ortori, C.A.; Shephard, F.; Brown, M.; Liddell, S.; Barrett, D.A.; Chakrabarti, L. A comparison of the mitochondrial proteome and lipidome in the mouse and long-lived Pipistrelle bats. Aging 2019, 11, 1664–1685. [Google Scholar] [CrossRef] [PubMed]
- Tombline, G.; Gigas, J.; Macoretta, N.; Zacher, M.; Emmrich, S.; Zhao, Y.; Seluanov, A.; Gorbunova, V. Proteomics of Long-Lived Mammals. Proteomics 2020, 20, e1800416. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Yang, L.; Li, S.; Huang, P.; Liu, Y.; Wang, Y.; Tang, H. Metabolomics Insights into the Modulatory Effects of Long-Term Low Calorie Intake in Mice. J. Proteome Res. 2016, 15, 2299–2308. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.A.; Shokhirev, M.N.; Wyss-Coray, T.; Lehallier, B. Systematic review and analysis of human proteomics aging studies unveils a novel proteomic aging clock and identifies key processes that change with age. Ageing Res. Rev. 2020, 60, 101070. [Google Scholar] [CrossRef] [PubMed]
- Hulbert, A.J. Membrane Fatty Acids as Pacemakers of Animal Metabolism. Lipids 2007, 42, 811–819. [Google Scholar] [CrossRef]
- Hulbert, A.J. Explaining longevity of different animals: Is membrane fatty acid composition the missing link? AGE 2008, 30, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Wang, S.; Jia, W. Calorie restriction and its impact on gut microbial composition and global metabolism. Front. Med. 2018, 12, 634–644. [Google Scholar] [CrossRef] [Green Version]
- Saitoe, M.; Horiuchi, J.; Tamura, T.; Ito, N. Drosophila as a Novel Animal Model for Studying the Genetics of Age-related Memory Impairment. Rev. Neurosci. 2005, 16, 137–149. [Google Scholar] [CrossRef]
- Murakami, S. Caenorhabditis elegans as a model system to study aging of learning and memory. Mol. Neurobiol. 2007, 35, 85–94. [Google Scholar] [CrossRef]
- Madden, J.R.; Langley, E.J.G.; Whiteside, M.A.; Beardsworth, C.E.; Van Horik, J.O. The quick are the dead: Pheasants that are slow to reverse a learned association survive for longer in the wild. Philos. Trans. R. Soc. B 2018, 373, 20170297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ottinger, M.A. A comparative approach to metabolic aspects of aging: Conserved mechanisms and effects of calorie restriction and environment. In Progress in Molecular Biology and Translational Science Metabolic Aspects of Aging; Ottinger, M.A., Ed.; Academic Press, An imprint of Elsevier: London, UK, 2018. [Google Scholar]
- Hodos, W.; Miller, R.; Fite, K. Age-dependent changes in visual acuity and retinal morphology in pigeons. Vis. Res. 1991, 31, 669–677. [Google Scholar] [CrossRef]
- Porciatti, V.; Hodos, W.; Signorini, G.; Bramanti, F. Electroretinographic changes in aged pigeons. Vis. Res. 1991, 31, 661–668. [Google Scholar] [CrossRef]
- Kurkjian, M.L.; Hodos, W. Age-dependent intensity-difference thresholds in pigeons. Vis. Res. 1992, 32, 1249–1252. [Google Scholar] [CrossRef]
- Fitzgerald, M.E.; Tolley, E.; Frase, S.; Zagvazdin, Y.; Miller, R.F.; Hodos, W.; Reiner, A. Functional and morphological assessment of age-related changes in the choroid and outer retina in pigeons. Vis. Neurosci. 2001, 18, 299–317. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, M.; Tolley, E.; Jackson, B.; Zagvazdin, Y.; Cuthbertson, S.; Hodos, W.; Reiner, A. Anatomical and functional evidence for progressive age-related decline in parasympathetic control of choroidal blood flow in pigeons. Exp. Eye Res. 2005, 81, 478–491. [Google Scholar] [CrossRef] [PubMed]
- Reiner, A.; Del Mar, N.; Zagvazdin, Y.; Li, C.; Fitzgerald, M.E.C. Age-Related Impairment in Choroidal Blood Flow Compensation for Arterial Blood Pressure Fluctuation in Pigeons. Investig. Opthalmol. Vis. Sci. 2011, 52, 7238–7247. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-Y.; Holden, L.A.; Djamgoz, M.B. Effects of Ageing on Spatial Aspects of the Pattern Electroretinogram in Male and Female Quail. Vis. Res. 1997, 37, 505–514. [Google Scholar] [CrossRef] [Green Version]
- Kunert, K.S.; Fitzgerald, M.E.; Thomson, L.; Dorey, C.K. Microglia increase as photoreceptors decrease in the aging avian retina. Curr. Eye Res. 1999, 18, 440–447. [Google Scholar] [CrossRef] [PubMed]
- El-Sayyad, H.I.H.; Khalifa, S.A.; Al-Gebaly, A.S.; El-Mansy, A.A. Aging Related Changes of Retina and Optic Nerve of Uromastyx aegyptia and Falco tinnunculus. ACS Chem. Neurosci. 2013, 5, 39–50. [Google Scholar] [CrossRef] [Green Version]
- Langemann, U.; Hamann, I.; Friebe, A. A behavioral test of presbycusis in the bird auditory system. Hear. Res. 1999, 137, 68–76. [Google Scholar] [CrossRef]
- Krumm, B.; Klump, G.; Köppl, C.; Langemann, U. Barn owls have ageless ears. Proc. R. Soc. B Biol. Sci. 2017, 284, 20171584. [Google Scholar] [CrossRef] [Green Version]
- Heffner, H.E.; Koay, G.; Hill, E.M.; Heffner, R.S. Conditioned suppression/avoidance as a procedure for testing hearing in birds: The domestic pigeon (Columba livia). Behav. Res. Methods 2012, 45, 383–392. [Google Scholar] [CrossRef]
- Burns, J.; Christophel, J.J.; Collado, M.S.; Magnus, C.; Carfrae, M.; Corwin, J.T. Reinforcement of cell junctions correlates with the absence of hair cell regeneration in mammals and its occurrence in birds. J. Comp. Neurol. 2008, 511, 396–414. [Google Scholar] [CrossRef]
- Coppola, V.J.; Hough, G.; Bingman, V.P. Age-related spatial working memory deficits in homing pigeons (Columba livia). Behav. Neurosci. 2014, 128, 666–675. [Google Scholar] [CrossRef]
- Coppola, V.J.; Flaim, M.E.; Carney, S.N.; Bingman, V.P. An age-related deficit in spatial–feature reference memory in homing pigeons (Columba livia). Behav. Brain Res. 2015, 280, 1–5. [Google Scholar] [CrossRef]
- Coppola, V.J.; Bingman, V.P. Aging is associated with larger brain mass and volume in homing pigeons (Columba livia). Neurosci. Lett. 2019, 698, 39–43. [Google Scholar] [CrossRef]
- Coppola, V.J.; Kanyok, N.; Schreiber, A.J.; Flaim, M.E.; Bingman, V.P. Changes in hippocampal volume and neuron number co-occur with memory decline in old homing pigeons (Columba livia). Neurobiol. Learn. Mem. 2016, 131, 117–120. [Google Scholar] [CrossRef]
- Meskenaite, V.; Krackow, S.; Lipp, H.-P. Age-Dependent Neurogenesis and Neuron Numbers within the Olfactory Bulb and Hippocampus of Homing Pigeons. Front. Behav. Neurosci. 2016, 10, 126. [Google Scholar] [CrossRef] [Green Version]
- Gagliardo, A.; Pollonara, E.; Casini, G.; Rossino, M.G.; Wikelski, M.; Bingman, V.P. Importance of the hippocampus for the learning of route fidelity in homing pigeons. Biol. Lett. 2020, 16, 20200095. [Google Scholar] [CrossRef]
- Coppola, V.J.; Nardi, D.; Bingman, V.P. Age-associated decline in septum neuronal activation during spatial learning in homing pigeons (Columba livia). Behav. Brain Res. 2021, 397, 112948. [Google Scholar] [CrossRef]
- Kosarussavadi, S.; Pennington, Z.T.; Covell, J.; Blaisdell, A.P.; Schlinger, B.A. Across sex and age: Learning and memory and patterns of avian hippocampal gene expression. Behav. Neurosci. 2017, 131, 483–491. [Google Scholar] [CrossRef]
- Murphy, K.; James, L.S.; Sakata, J.T.; Prather, J.F. Advantages of comparative studies in songbirds to understand the neural basis of sensorimotor integration. J. Neurophysiol. 2017, 118, 800–816. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Ye, R.; Goldman, S.A. Testosterone modulation of angiogenesis and neurogenesis in the adult songbird brain. Neuroscience 2013, 239, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Schlinger, B.A.; Saldanha, C.J. Songbirds: A novel perspective on estrogens and the aging brain. AGE 2005, 27, 287–296. [Google Scholar] [CrossRef] [Green Version]
- Rosenfeld, C.S.; Shay, D.A.; Vieira-Potter, V.J. Cognitive Effects of Aromatase and Possible Role in Memory Disorders. Front. Endocrinol. 2018, 9, 610. [Google Scholar] [CrossRef]
- Kranz, T.M.; Lent, K.L.; Miller, K.E.; Chao, M.V.; Brenowitz, E.A. Rapamycin blocks the neuroprotective effects of sex steroids in the adult birdsong system. Dev. Neurobiol. 2019, 79, 794–804. [Google Scholar] [CrossRef]
- Bjedov, I.; Rallis, C. The Target of Rapamycin Signalling Pathway in Ageing and Lifespan Regulation. Genes 2020, 11, 1043. [Google Scholar] [CrossRef] [PubMed]
- Bailey, D.J.; Wade, J.; Saldanha, C.J. Hippocampal lesions impair spatial memory performance, but not song-A developmental study of independent memory systems in the zebra finch. Dev. Neurobiol. 2009, 69, 491–504. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Hurley, P.; Pytte, C.; Kirn, J.R. Vocal Control Neuron Incorporation Decreases with Age in the Adult Zebra Finch. J. Neurosci. 2002, 22, 10864–10870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pytte, C.L.; Gerson, M.; Miller, J.; Kirn, J.R. Increasing stereotypy in adult zebra finch song correlates with a declining rate of adult neurogenesis. Dev. Neurobiol. 2007, 67, 1699–1720. [Google Scholar] [CrossRef]
- Kleiman, G.H.; Barnea, A.; Gozes, I. ADNP: A major autism mutated gene is differentially distributed (age and gender) in the songbird brain. Peptides 2015, 72, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Hacohen-Kleiman, G.; Sragovich, S.; Karmon, G.; Gao, A.Y.L.; Grigg, I.; Pasmanik-Chor, M.; Le, A.; Korenková, V.; McKinney, R.A.; Gozes, I. Activity-dependent neuroprotective protein deficiency models synaptic and developmental phenotypes of autism-like syndrome. J. Clin. Investig. 2018, 128, 4956–4969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berg, M.L.; Beebe, S.C.; Komdeur, J.; Cardilini, A.P.A.; Ribot, R.F.H.; Bennett, A.T.D.; Buchanan, K.L. Senescence of song revealed by a long-term study of the Seychelles warbler (Acrocephalus sechellensis). Sci. Rep. 2020, 10, 20479. [Google Scholar] [CrossRef]
- Cooper, B.G.; Méndez, J.M.; Saar, S.; Whetstone, A.G.; Meyers, R.; Goller, F. Age-related changes in the Bengalese finch song motor program. Neurobiol. Aging 2012, 33, 564–568. [Google Scholar] [CrossRef] [Green Version]
- Badwal, A.; Borgstrom, M.; Samlan, R.A.; Miller, J.E. Middle age, a key time point for changes in birdsong and human voice. Behav. Neurosci. 2020, 134, 208–221. [Google Scholar] [CrossRef]
- Calder, W.A. The comparative biology of longevity and lifetime energetics. Exp. Gerontol. 1985, 20, 161–170. [Google Scholar] [CrossRef]
- Checa, J.; Aran, J.M. Reactive Oxygen Species: Drivers of Physiological and Pathological Processes. J. Inflamm. Res. 2020, 13, 1057–1073. [Google Scholar] [CrossRef]
- Chakravarti, D.; Labella, K.A.; Depinho, R.A. Telomeres: History, health, and hallmarks of aging. Cell 2021, 184, 306–322. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harper, J.M.; Holmes, D.J. New Perspectives on Avian Models for Studies of Basic Aging Processes. Biomedicines 2021, 9, 649. https://doi.org/10.3390/biomedicines9060649
Harper JM, Holmes DJ. New Perspectives on Avian Models for Studies of Basic Aging Processes. Biomedicines. 2021; 9(6):649. https://doi.org/10.3390/biomedicines9060649
Chicago/Turabian StyleHarper, James M., and Donna J. Holmes. 2021. "New Perspectives on Avian Models for Studies of Basic Aging Processes" Biomedicines 9, no. 6: 649. https://doi.org/10.3390/biomedicines9060649
APA StyleHarper, J. M., & Holmes, D. J. (2021). New Perspectives on Avian Models for Studies of Basic Aging Processes. Biomedicines, 9(6), 649. https://doi.org/10.3390/biomedicines9060649