Next Article in Journal
Dual Acting Carbon Monoxide Releasing Molecules and Carbonic Anhydrase Inhibitors Differentially Modulate Inflammation in Human Tenocytes
Next Article in Special Issue
Early Adolescence Prefrontal Cortex Alterations in Female Rats Lacking Dopamine Transporter
Previous Article in Journal
What Is Known about Theragnostic Strategies in Colorectal Cancer
Previous Article in Special Issue
Dopamine in Health and Disease: Much More Than a Neurotransmitter
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

The Role of the Renal Dopaminergic System and Oxidative Stress in the Pathogenesis of Hypertension

by
Waleed N. Qaddumi
1 and
Pedro A. Jose
2,3,*
1
Columbian College of Arts & Sciences, The George Washington University, Washington, DC 20052, USA
2
Department of Medicine, Division of Renal Diseases & Hypertension, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
3
Department of Physiology/Pharmacology, Division of Renal Diseases & Hypertension, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
*
Author to whom correspondence should be addressed.
Biomedicines 2021, 9(2), 139; https://doi.org/10.3390/biomedicines9020139
Submission received: 30 December 2020 / Revised: 26 January 2021 / Accepted: 28 January 2021 / Published: 1 February 2021
(This article belongs to the Special Issue Dopamine in Health and Disease)

Abstract

:
The kidney is critical in the long-term regulation of blood pressure. Oxidative stress is one of the many factors that is accountable for the development of hypertension. The five dopamine receptor subtypes (D1R–D5R) have important roles in the regulation of blood pressure through several mechanisms, such as inhibition of oxidative stress. Dopamine receptors, including those expressed in the kidney, reduce oxidative stress by inhibiting the expression or action of receptors that increase oxidative stress. In addition, dopamine receptors stimulate the expression or action of receptors that decrease oxidative stress. This article examines the importance and relationship between the renal dopaminergic system and oxidative stress in the regulation of renal sodium handling and blood pressure. It discusses the current information on renal dopamine receptor-mediated antioxidative network, which includes the production of reactive oxygen species and abnormalities of renal dopamine receptors. Recognizing the mechanisms by which renal dopamine receptors regulate oxidative stress and their degree of influence on the pathogenesis of hypertension would further advance the understanding of the pathophysiology of hypertension.

1. Introduction

The development of hypertension is determined by various factors, including genetics, habits, and environment, such as traffic noise and air pollution [1,2,3,4,5]. Both indoor and outdoor exposure to fine particulate matter (PM2.5) is associated with hypertension in humans [6]. Long-term exposure of rats or mice to PM2.5 causes hypertension that is related to impairment of sodium excretion [7,8]. In utero exposure to PM2.5 also causes hypertension in the offspring [9]. The kidney is a key organ that is involved in the regulation of sodium homeostasis and control of blood pressure [10,11,12]. Sodium retention in hypertension is associated with the failure of signals to decrease renal sodium transport when sodium intake is greater than what is needed to maintain a normal sodium balance [10,11,12]. Normal sodium balance is achieved by proper interactions among several organs, including the kidney, brain, heart, liver, intestines, muscle, skin, and immune system [13,14,15,16,17,18]. One of the main factors that maintains a normal sodium balance is the renal-selective action of dopamine produced by the kidney [19,20,21,22,23,24,25,26]. This effect can be independent of renal nerves [22,23], but renal nerves can modulate the renal actions of dopamine [24]. The natriuretic effect of intrarenal dopamine may be more evident under conditions of a moderate increase in sodium intake/volume expansion [25,26,27,28] but not with marked volume expansion that may be seen with very high sodium intake [29]. The role of renal dopamine and sodium excretion can also be influenced by ingested nutrients, e.g., miso soup increases urinary dopamine production [30]. Fava bean seedling contains the precursor of dopamine, L-dihydroxyphenylalanine (L-DOPA), which increases renal dopamine production [31]. The increase in urinary dopamine is associated with an increase in sodium excretion [31]. By contrast, fava bean, which increases urinary dopamine and urinary norepinephrine, does not increase sodium excretion [32], probably because norepinephrine antagonizes the ability of dopamine to inhibit renal sodium transport [33]. It should be noted, however, that the L-DOPA content of fava bean is 1/10 that of fava bean seedlings [31]. Prolonged hydralazine therapy in patients with stable essential hypertension induces a defect in DOPA decarboxylation, which is needed to convert L-DOPA to dopamine, that is remediable by pyridoxine supplementation. Catechol-O-methyltransferase (COMT) which degrades dopamine, epinephrine, and norepinephrine to 3-methoxytyramine is inhibited by mercury and cadmium and causes hypertension, probably due to the increase in epinephrine and norepinephrine concentrations [34].
The circadian rhythm of sodium excretion (daytime > nighttime) has been suggested to be related to renal dopamine production [35]. Other variables that are important regarding the role of renal dopamine production and sodium excretion in humans include age [36,37,38,39], body mass [40], ethnicity/race [40,41,42,43], genetics [44], mineral intake [45,46], and sex [39,47]. Aging is associated with a decrease in urinary dopamine and its natriuretic effect [36,37,38,39]. The activity of the enzyme aromatic L-amino acid decarboxylase (AADC), which converts L-DOPA to dopamine, is greater in the kidneys of female than male mice [47]. Lean male, relative to lean female Zucker rats, have lower renal expression of two of the five dopamine receptor subtypes, D1R and D3R. Obese Zucker rats, relative to lean Zucker rats, have decreased renal expression of three of the five dopamine receptor subtypes, D1R, D4R, and D5R, in both male and female rats but D3R is increased in female rats [48]. Humans in the normal weight range with essential hypertension have increased urinary dopamine, whereas overweight subjects have decreased urinary dopamine. The natriuretic effect of intravenously infused dopamine is decreased in overweight patients with essential hypertension, relative to non-overweight patients [49].
In rodents, rat/mouse strain [50,51,52,53] and source [54] also need to be taken into consideration in renal dopamine function. The function of renal dopamine receptors is impaired in hypertension, due in part, to oxidative stress [55,56,57,58]. In this article, we review the relationship between oxidative stress and the intrarenal dopaminergic system in the regulation of blood pressure and the abnormalities involved in the development of hypertension.

2. Oxidative Stress and Hypertension

Oxidative stress occurs when there is an imbalance between the production of reactive oxygen species (ROS), and reactive nitrogen species and the antioxidant defense systems [55,59,60,61,62,63,64,65,66,67,68]. ROS are produced by cell organelles, including the mitochondria, peroxisomes, and endoplasmic reticulum, and consist of free radicals and non-radical derivatives. Free radicals are a class of oxygen atoms that contain unpaired electrons that include superoxide (O2), hydroxyl radical (OH), lipid peroxyl-radicals (LOO), and alkoxy-radicals (LO). Non-radicals include H2O2, peroxynitrite (ONOO), hypochlorous acid (HOCl), lipid hydroperoxide (LOOH), ozone (O3), singlet oxygen (1O2), and reactive carbonyls [55,59,60,61,62]. ROS are naturally generated from various bodily reactions, such as the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, cyclooxygenases, xanthine oxidases, lipogenesis, iron-catalyzed Fenton reaction, and nitric oxide synthases (NOS) [55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71]. A major site for the intracellular production of ROS is from the process of mitochondrial respiration that occurs in all cells, including vascular and renal mesangial and tubular cells [55,59,60,61,62,63,64,65,66,67,68]. In the rat kidney, NADPH oxidase accounts for about half of ROS production, with the remaining half from mitochondria [69]. Normal generation of ROS is important in cellular signal transduction [59,60,61,62,63,70]. Levels of ROS are decreased by endogenous and exogenous antioxidants. Endogenously generated antioxidants include enzymatic and non-enzymatic antioxidants, which consist of metabolic and nutrient forms [59,60,61,62] (Table 1).
Oxidative stress is involved in the pathogenesis of high blood pressure, associated with impairment in sodium excretion [10,11,53,55,57,58,69,72,73,74,75]. A number of studies, both in humans and experimental animal models, have shown that unrestricted ROS production and/or impaired antioxidant mechanisms play a role in the development of hypertension [55,58,73,74,75,76,77,78]. In animal studies, it was confirmed with the use of specific ROS generating gene-knockout mice (e.g., gp91phox−/−) that inhibition of ROS production prevents or ameliorates the development of hypertension [79]. By contrast, germline deletion of SOD, which is expressed in the kidney, increases blood pressure [80]. The role of renal ROS production was proved by the increase in blood pressure with the renal-selective silencing of paraoxonase 2, DJ-1 (also known as Park 7), or sestrin2, which have antioxidant properties [81,82,83]. In the kidney, oxidative stress causes hypertension by promoting renal vasoconstriction and disrupting sodium homeostasis. However, it should be stated that the overall effect of ROS on renal sodium transport is very complex and cannot be fully determined due to the contrasting influence of ROS, which can increase or decrease renal sodium transport [52,72].

3. Renal Dopaminergic System

Dopamine, an endogenous catecholamine, is an important regulator of renal function and blood pressure [19,20,21,56,57,58,84,85,86,87]. In the kidney, dopamine is synthesized in the renal proximal tubule from the dopamine precursors, L-DOPA and tyrosine, which are taken up from the circulation [19,88,89,90,91]. L-DOPA is converted by AADC to dopamine [88,91]. Dopamine produced in renal proximal tubule cells can move across the basolateral and apical membranes and into the peritubular space and tubular lumen, respectively, to act on receptors present in most nephron segments [21,56,57,58,84,85,86,87]. Saline loading increases urinary dopamine, in part, by increasing the egress of dopamine into the tubular lumen, rather than into the interstitium [21,92]. Due to the lack of expression of dopamine β-hydroxylase in renal tubules, the synthesized dopamine is not metabolized into norepinephrine [93,94], which can otherwise increase renal sodium transport. However, dopamine is degraded in renal tissues both by deamination, via monoamine oxidase (MAO) to 3, 4-dihydroxyphenylacetic acid (DOPAC) [95,96], by methylation, via COMT to 3-methoxytyramine [96], and by renalase [97]. Renal dopamine is metabolized by MAO, predominantly in the proximal tubule while COMT metabolizes dopamine in more distal nephron segments [98]. Hormones, such as atrial natriuretic peptide, increase renal dopamine production, not only by increasing renal dopamine synthesis, but also by decreasing dopamine degradation via COMT [99]. Newly synthesized dopamine in the dog, rat, and human kidney is rapidly deaminated [100]. Moreover, as aforementioned, dopamine synthesized by renal proximal tubules, is preferentially secreted into the renal tubular lumen, and not secreted into the circulation [21,92,101,102,103], but there is spill-over of DOPA into the circulation with increased salt intake [90,104]. The normal circulating concentrations of dopamine (picomolar range) [26,105,106] are not sufficiently high enough for the activation of dopamine receptors, as the affinity of dopamine to its receptors is in the nanomolar range [107]. However, high nanomolar to low micromolar concentrations can be attained in dopamine-producing tissues (e.g., renal proximal tubule and jejunum) [106,108,109,110]. Intrarenal dopamine production is subject to adjustments made in response to dietary NaCl intake. Most studies have shown a correlation between urinary dopamine and sodium excretion; an increase in urinary dopamine is associated with an increase in urinary sodium excretion and a decrease in urinary dopamine is associated with a decrease in urinary sodium excretion [21,22,25,26,27,28,101,110,111,112,113]. However, this process is under genetic regulation [106]. In addition, age is considered as a factor in the amount of renal dopamine production, where relative to adults, dopamine synthesis is less in young and old humans and rodents [40,41,42,114,115,116,117]. In rodents, the age-related differences in renal dopamine synthesis may be strain-dependent [115,117]. In the brain, the amount of dopamine release is decreased by both D1-like and D2-like receptors [118,119,120]. However, in the kidney, the increase in renal dopamine production induced by uninephrectomy is further increased by a high salt intake [17,121].
The regulation of blood pressure by dopamine is different between the kidney and central nervous system. The increase in the activity of the renal dopaminergic system with the increase in the intake of salt prevents the development of hypertension [120,121]. The renal spill-over of dopamine into the circulation with salt loading [104] does not extend into the brain because dopamine does not cross the blood–brain barrier [122]. The delivery of dopamine-loaded poly(lactic-co-glycolic acid) nanoparticles into the brain that reached the striatum and substantia nigra of rats with Parkinson’s disease did not increase blood pressure [123]. It must be noted that the Parkinson’s disease in these rats was caused by 6-hydroxydopamine which destroys dopaminergic nerves. However, an overactivity of the dopaminergic system in certain regions in the brain, such as the amygdala and nucleus tractus solitarius, causes hypertension, but not in other brain regions such as the area postrema and locus coeruleus [103,124]. Rats made hypertensive by decreasing blood flow to one kidney have increased levels of dopamine and dopamine catabolites in the brain striatum [125]. Decreasing dopamine levels in the nigrostriatum of spontaneously hypertensive rats (SHRs) inhibits the development of hypertension [124]. However, monkeys made hypertensive by constricting the aorta have decreased D1-like receptor binding in the prefrontal cortex [126]. Additionally, SHRs have decreased postsynaptic dopaminergic and cholinergic functions in the ventrolateral striatum [127], reinforcing the similarities and differences on the regulation of blood pressure between the dopaminergic system inside and outside the central nervous system, such as the kidney.

4. Impaired Dopamine Receptor Function and Hypertension

Dopamine, via its five receptor subtypes, acts in an autocrine/paracrine manner to regulate renal tubular transport of sodium [120,121]. Dopamine receptors, belonging to the rhodopsin family (Class A) of seven-transmembrane G protein-coupled receptors (GPCRs), are classified into two families: D1-like receptors (dopamine D1 receptor [D1R] and dopamine D5 receptor [D5R]) couple to stimulatory G protein GαS and stimulate adenylate cyclase (AC) activity, whereas D2-like receptors (dopamine D2 receptor [D2R], dopamine D3 receptor [D3R], and dopamine D4 receptor [D4R]) couple to inhibitory G protein Gαi/Gαo and inhibit AC activity [56,57,58,84,85,86,87,107,120,121] (Figure 1).
The expression of dopamine receptor subtypes in nephron segments varies among species [121]. All the five dopamine receptor subtypes are expressed in the proximal tubule, distal convoluted tubule, and cortical collecting duct (Figure 2).
The D1R and D3R are expressed in the macula densa and juxtaglomerular cell. The D1R, D3R, D5R, and maybe the D4R are expressed in the medullary thick ascending limb. Only the D3R is expressed in the cortical thick ascending limb. All the dopamine receptor subtypes are expressed in the distal convoluted tubule and cortical collecting duct. The D2R, D3R, D4R, and D5R are expressed in the outer medullary collecting duct, while only the D2R, D3R, and D4R are expressed in the inner medullary collecting duct. Rodent podocytes express the D1R and D3R but not D2R [128,129,130,131,132,133]. Mesangial cells express D1-like [131] and D2-like [132,133] receptors, but the exact subtypes have not been identified by reverse transcription-polymerase chain reaction (RT-PCR) or immunohistochemistry, using subtype-specific antibodies. In all studied species, there are no dopamine receptors in the thin descending and thin ascending limb of the nephron. However, dopamine has been reported to stimulate prostaglandin E2 production in primary cultures of the lower portion of the thin limb of Henle of rats [134].
Variants of human dopamine receptor subtype genes and their regulators are associated with hypertension [86,135,136,137,138]. Global disruption of any dopamine receptor gene in animal models results in high blood pressure, indicating the importance of dopamine receptors in the pathogenesis of hypertension that may be salt-sensitive [139,140,141,142,143,144,145]. The results, however, are not always consistent. The germline deletion of Drd3 has been reported to increase blood pressure by two reports [142,143] but not by another report [146]. The reason for this discrepancy is not readily apparent; all the mice are in the same C57Bl/6 background (vide infra). The importance of the kidney in the regulation of blood pressure, as related to dopamine receptors, is attested by the normalization of the high blood pressure with the renal-selective rescue of the Drd2 in mice with renal-selective silencing of Drd2 [147]. The renal transplantation of a kidney from a Drd5 knockout mouse, which is hypertensive, to a nephrectomized wild-type mouse, which is normotensive, promotes hypertension while the renal transplantation of a kidney from a wild-type mouse to a nephrectomized Drd5 knockout mouse, which is hypertensive, normalizes blood pressure [148].

5. Renal Dopamine D1 Receptor [D1R], Oxidative Stress, and Hypertension

Dopamine regulates renal ion transport, in part, through the activation of the D1-like receptors [120,121]. In normotensive dogs and rats, the renal-selective stimulation of D1-like receptors, D1R and D5R, increases the excretion of sodium and other ions [23,120,121,149,150,151,152]; this effect is not seen in the SHR [153]. The D1R inhibits renal ion transport by direct inhibition of the sodium-hydrogen exchanger type 3 (NHE3) [154,155,156,157,158], sodium phosphate cotransporter type 2 (NaPi2) [159] NaHCO3 exchanger (NBCE1) [160,161,162], chloride bicarbonate (Cl/HCO3) exchanger (SLC26A6) [163], and Na+/K+-ATPase [164,165]. On a high NaCl diet, fenoldopam, a D1-like receptor agonist, causes natriuresis by inhibiting renal proximal and distal tubule sodium transport. By contrast, on a low NaCl diet, the increased renin-angiotensin activity prevents the D1-like receptor from inhibiting renal proximal tubule sodium transport, neutralizing the natriuretic effect of fenoldopam [166]. The D1-like receptor that mediates inhibition of distal nephron sodium transport has not been determined but this may be due to D5R rather than D1R. The expressions of the sodium-potassium-2 chloride cotransporter (NKCC2), sodium chloride cotransporter (NCC), and α and γ epithelial sodium channel (ENaC) are increased in D5R knockout mice [167].
The D1R also decreases renal ion transport by interacting with natriuretic hormones and receptors and antinatriuretic hormones and receptors. Thus, the D1R adds to the inhibitory effect on ion transport caused by natriuretic hormones, such as angiotensin 1–7 [168], atrial natriuretic peptide [169], and prolactin [170], and receptors such as the angiotensin II type 2 receptor (AT2R) [171], and gastrin/cholecystokinin B receptor (CCKBR) [172] but decreases the stimulatory effect of renal ion transport caused by angiotensin II (Ang II) [166,173] and α1-adrenergic receptor [33].
The D1R function in the kidney is also regulated by the location of its expression in cell membranes and compartments. In normotensive Wistar–Kyoto (WKY) rats, where D1R function is normal, D1R is found at the microvillous brush border and apical membranes [174,175]. However, in SHRs, where D1R function is impaired [176], it is found mostly in the cytosol [177]. Impaired D1-like receptor-mediated inhibition of sodium transport is also observed in humans with essential hypertension [178].
Dopamine has a biphasic effect on ROS production in human lymphocytes; low concentrations (≤5 μM) decrease, while high concentrations (≥100 μM) increase ROS production [179]. However, in opossum kidney cells, low concentrations of dopamine (nM) increases ROS production [180]. By contrast, in human renal proximal tubule cells, low and high concentrations of D1-like receptor agonists (e.g., fenoldopam) decrease ROS levels by decreasing ROS production and increasing ROS degradation [181,182]. D1R inhibits the activity of the pro-oxidant enzyme, NADPH oxidase (NOX), and NOX2 and NOX4 expressions in renal proximal tubule cells [181,182] and vitalizes the antioxidant enzyme paraoxonase 2 (PON2) to prevent oxidative stress [183]. D1-like receptors also decrease ROS production by increasing the expression of phase II antioxidant enzymes such as glutathione peroxidase, superoxide dismutase-1 (SOD-1), and glutamyl cysteine transferase that involves Nfr-2 [184]. Oxidative stress can also impair the ability of D1R to inhibit renal sodium absorption, resulting in a decrease in sodium excretion, and eventually causing hypertension [185,186,187,188]. Conditions, such as inflammation and hyperglycemia, can negatively affect the function of D1-like receptors, in part via D1R, by creating an imbalance between oxidant and antioxidant systems, where oxidant systems exceed antioxidant systems which results in oxidative stress [129,189]. However, the role of oxidative stress in the hypertension of D1R knockout mice has not been determined. Nevertheless, oxidative stress has the capability to suppress D1R gene transcription and signaling by stimulating activator protein 1 (AP-1) and specificity protein 3 (SP3) [190].

6. Renal Dopamine D2 Receptor [D2R], Oxidative Stress, and Hypertension

D2R, as with the D1R, has many effects on the kidney, including alleviating kidney injury and inflammation, inhibiting renal sodium transport, and maintaining normal blood pressure [121,147,191,192,193,194]. There are three isoforms of D2R: D2R-short, D2R-long, and D2R-longer [195,196,197]; the D2R-longer expression in the brain is only about 2–3% of the D2R-short and D2R-long [195]. The D2R-short inhibits adenylate cyclase activity to a greater extent than D2R-long. The D2R-short, exogenously expressed in human embryonic kidney cells, also increases dopamine transporter cell surface expression in human embryonic kidney cells [196]. The D2R-short is presumed to be an autoreceptor (presynaptic) while the D2R-long is postsynaptic [197]. The D2R controls the renal synthesis of dopamine [198,199], presumably by the D2R-long, which is the isoform expressed in the kidney [200].
In the renal cortical collecting duct, D2R (isoform not determined) inhibits basolateral K+ channels Kir4.1/5.1 and Kir4.1 channels [201] that can eventually affect NCC and chloride-channel protein Cl-Kb activities [202,203]. In the cortical collecting duct, the D1-like but not D2-like receptors can inhibit Na+/K+-ATPase activity [204]. In the rat renal proximal convoluted tubule, the dopamine-mediated inhibition of Na+/K+-ATPase activity is markedly attenuated [205] in the presence of D1-like receptor (SCH23390) [206] or D2R and D3R antagonist (S-sulpiride) [207]. The D2R probably negatively regulates NHE3 and NCC expressions because their renal expressions are increased in Drd2−/− mice [199]. Between the WKY rat and SHR, there are no noticeable differences in the expression and allocation of renal D2R other than that D2R is expressed in the glomeruli of WKY but not SHR [208].
The D2R is important in the regulation of blood pressure because germline deletion of Drd2 in mice causes hypertension [140,141] that is salt-sensitive [141]. Drd2 siRNA-renal-selective deletion of Drd2 also increases blood pressure but salt sensitivity was not tested [147,193]. As with the D1R, the D2R regulates ROS production by inhibiting pro-oxidant systems and enabling antioxidant systems [199,209,210] (Figure 3).
One of the mechanisms that allows D2R to regulate blood pressure is by decreasing oxidative stress in the kidney; germline deletion of Drd2 in mice increases the renal activity of NADPH oxidase and expressions of NOX1, NOX2, and NOX4 and urinary excretion of isoprostane, a product of the non-enzymatic oxidation of arachidonic acid, and decreases the renal expression of the antioxidant enzymes, heme oxygenase 2 (HO-2), paraoxonase 2 (PON2), and sestrin2 but not heme oxygenase-1 (HO-1) [81,82,83,199,209,210,211,212]. Apocynin, a reduced NADPH oxidase inhibitor, or hemin, an inducer of HO-1, normalized the blood pressure of Drd2−/− mice [210]. It should be noted that the D2R in the striatum may actually increase ROS production [211]. However, renal ROS production is increased with the renal-selective silencing of Drd2 which also increases blood pressure [193,194,199]. The stimulation of D2R in human renal proximal tubule cells decreases hyperoxidized peroxiredoxins and ROS production [83]. The antioxidant effect of D2R involves its interaction with proteins, including PON2, DJ-1, and sestrin2 [81,82,83]. PON2 inhibits NADPH oxidase activity, ROS production, and maintains blood pressure within the normal range. D2R interacts with both, PON2 and DJ-1, in human renal proximal tubule cells [81,82,83] (Figure 3). DJ-1, which is expressed in the mouse kidney, protects cells against harm that can be mediated by ROS [82,212]. Silencing DJ-1 in mice increased blood pressure, NADPH oxidase activity, uncoupling protein 2, and ROS production [82,212].
Sestrin2 is involved in augmenting the D2R effect to normalize blood pressure by decreasing ROS production and protecting against cellular damage [82]. At the same time, the stimulation of D2R increases the expression of sestrin2 [83] (Figure 3).
In mice, the silencing of sestrin2 increased renal oxidative stress, inflammation, and blood pressure [83]. The expressions of the antioxidant proteins, PON2, sestrin2, and DJ-1, are increased by D2R stimulation and partially contribute to the inhibitory effects of D2R on ROS production [81,82,83]. There is an association between D2R-mediated inhibition of oxidative stress and inflammation; impaired D2R function would result in kidney damage and increased inflammation. Indeed, D2R single nucleotide polymorphisms (SNPs), such as rs6276 and rs1800497, decrease D2R expression and promote a proinflammatory and profibrotic phenotype in human renal proximal tubule cells [192,213] (Figure 3).

7. Renal Dopamine D3 Receptor [D3R], Oxidative Stress, and Hypertension

The D3R, as with the D1R and D2R, also maintains normal blood pressure, in part, by inhibition of renal ion transport [121], alleviation of kidney injury, and inhibition of inflammation, and ROS production [214]. There is tissue specificity of the beneficial effect of the D3R in the kidney because the D3R in astrocytes promotes inflammation [215]. Interestingly, the D3R is also anti-inflammatory in synovial mast cells [216] and mesolimbic neurons [217]. Renal-selective stimulation of D3R by the renal arterial infusion of PD128907 (D3R >> D2R) [218] or Z-1046 (D3R ≥ D4R > D2R) [219] increases sodium excretion in normotensive Wistar and WKY rats [218,219] but not in SHRs [219]. The D3R also interacts with the D1R [220], D4R [221], D5R [222], and endothelin B receptor (ETBR) [223] to inhibit Na+/K+-ATPase activity in rat renal proximal tubule cells from normotensive (WKY) but not hypertensive rats (i.e., SHR) [221]. The ability of dopamine to inhibit Na+/K+-ATPase activity in the rat proximal convoluted tubule [205] can be inhibited by YM 09151, a D3R and D4R antagonist [206], or sulpiride, a D2R and D3R antagonist [207]. The natriuresis caused by D3R stimulation in WKY rats is related to inhibition of Na+/K+-ATPase and NHE3 activities by interaction with Gα(12)/Gα(13) [224]. The disruption of Drd3 in C57Bl/6 mice increases blood pressure [142,143] and decreases sodium excretion [142]. However, another study showed that the disruption of Drd3, also in C57Bl/6 mice, was not associated with an increase in blood pressure, regardless of the amount of sodium intake [146]. The reason for this discrepancy is not clear but as stated earlier, some differences in dopamine metabolism in the same species from different suppliers have been reported [54]. Although, the blood pressure is not increased in Drd3−/− mice in that one report [146], sodium excretion is lower in Drd3−/− mice than their wild-type controls [146]. These investigators also reported in a later study that the pharmacological blockade of D3R increases blood pressure in Dahl salt-resistant rats fed a high salt diet [225].
It is still not clear whether D3R has antioxidant effects in renal cells. The rat D3R heterologously overexpressed in HEK293 cells stimulates phospholipase D (PLD) activity [226]; a product of its enzymatic activity, phosphatidic acid, causes superoxide formation via NADPH oxidase [227]. However, as stated above, the D3R in mast cells in synovial fluid has antioxidant activity [216]. Moreover, D3R activation protects rat oligodendrocytes from free radical-mediated lipid peroxidation [228]. Pramipexole, a dopamine receptor agonist (D3R > D2R) [229], prevents the development of experimental autoimmune encephalomyelitis in mice [230]. Pramipexole has also a protective effect on H2O2-induced retinal damage in mice [231]. However, the neuroprotective effect of pramipexole may not be related to its antioxidant properties via D3R > D2R activation [232]. By contrast, the anti-inflammatory effect of PD128907 (D3R > D2R) in renal ischemia/reperfusion injury is associated with a decrease in ROS production [214]. However, hypertension associated with germline deletion of Drd3 in mice is mild [142,143] and is not associated with oxidative stress [233]. This may be related to the increase in the renal expression of D5R which has antioxidant activities (vide infra).

8. Renal Dopamine D4 Receptor [D4R], Oxidative Stress, and Hypertension

The D4R, as with the D1R, D2R, and D3R, also maintains normal blood pressure, in part, by inhibition of renal ion transport [121,221]. Its role in inflammation in the kidney is not known but the D4R augments T helper 2 (Th2)-type allergic inflammation in the lung [234]. However, quinpirole (D3R = D4R > D2R agonist) attenuates the lymphocyte proliferation in response to concanavalin A (ConA) and decreases the IFN-γ but increases the interleukin-4 (IL-4) production [235]; IL-4 can be anti-inflammatory [236]. The role of D4R in renal oxidative stress is not known but activation of D4R protects against hypoxia/reoxygenation which increases intracellular ROS in a hippocampal neuronal cell line [237]. Clozapine, a drug with anti-D4R properties used for the treatment of schizophrenia, increases blood pressure [238]. Although renal Na+/K+-ATPase activity is not affected by germline deletion of Drd4 in mice [144], the D4R agonist, PD168077 [239], inhibits Na+/K+-ATPase activity in WKY renal proximal tubule cells but in SHR renal proximal tubule cells [240]. The D4R also inhibits the expression of the insulin receptor and the ability of insulin to stimulate Na+/K+-ATPase activity in renal proximal tubule cells from WKY but not SHRs [241]. The D4R, as with the other dopamine receptor subtypes, participate in blood pressure regulation, by impairing the effect or expression of angiotensin II receptor type 1 (AT1R) [144,242]. The hypertension in Drd4−/− in mice is related in part to an increased AT1R activity; the expression of AT1R is increased in the organs studied, brain and kidney [144]. D4R also decreases AT1R expression in renal proximal tubule cells from WKY rats but increases it in renal proximal tubule cells from SHRs [242]. Conversely, angiotensin II increases D4R expression in renal proximal tubule cells from WKY and SHRs [240]. The D4R also mediates the dopamine-mediated inhibition of arginine vasopressin-dependent transepithelial sodium transport in the rat cortical collecting duct [243]. The presence of prejunctional D4R in the kidney is suggestive of its participation in neurotransmitter release in the kidney [244].
It is not clearly known if D4R has a direct antioxidative effect on the kidney. However, it can be surmised that D4R may have indirect antioxidant properties in the kidney. As stated above, the expression AT1R, which can increase ROS [245,246], is negatively regulated by D4R [144,242]. Furthermore, D4R does have antioxidative effects in neuronal and leukemic cells [247,248,249,250].

9. Renal Dopamine D5 Receptor [D5R], Oxidative Stress, and Hypertension

The D5R, as with the D1R, D2R, D3R, and D4R, also maintains normal blood pressure [121,145], in part, by inhibition of renal ion transport [165]. The D5R also interacts with the other dopamine receptors, D1R [165] and D3R [222], to inhibit Na+/K+-ATPase activity in renal proximal tubule cells from normotensive humans [165] and normotensive (WKY) rats [222]. This effect is impaired in the SHR [222]. As with the D1R, the D5R also decreases renal ion transport by adding to or enhancing the natriuretic effect of hormones and receptors, such as gastrin/CCKBR [251] and antagonizing the effect of antinatriuretic hormones and receptors, such as AT1R [252,253,254] and α-adrenergic receptors [33]. The D1R and D5R interact to inhibit NHE3 and Na+/K+-ATPase activity in human renal proximal tubule cells via the phospholipase C pathway [165]. The D2R, D3R, D4R, and D5R may regulate NCC because its expression is increased in Drd2−/− [199], Drd3−/− [255], Drd4−/− [256], and Drd5−/− [167] mice. The D5R may also regulate ENaC because α and γ subunit expressions are increased in Drd5−/− mice [167]. The hypertension in Drd5−/− mice is salt-sensitive [167], as is the case in Drd2−/− mice [141].
Compared with the D1R, the D5R has a 10-fold higher affinity for dopamine and has trafficking features related to the third intracellular loop that is required for D5R endocytosis mediated by protein kinase C (PKC) [257,258,259]. As with the D1R and D2R, the antioxidant effect of D5R is related to the inhibition of NADPH oxidase expression and activity (Figure 4) [260,261,262]. The ability for D5R to inhibit NADPH oxidase activity may be related to the inhibition of PLD by D5R. PLD increases ROS synthesis; PLD2 but not PLD1 expression and activity are decreased when D5R is activated by the D1-like receptor agonist, fenoldopam, in HEK-293 cells heterologously expressing the D5R (HEK-hD5R) [263].
The D5R decreases ROS production not only by inhibiting pro-oxidant enzymes, such as NADPH oxidase but also by stimulating the activity of antioxidant enzymes. As is the case for the D1R [183] and D2R [81], the antioxidant enzyme PON2 participates in the D5R-mediated inhibition of ROS production [183]. The silencing of DRD5 in human renal proximal tubule cells decreases PON2 expression and increases ROS production [183]. NADPH oxidase activity is decreased in HEK-hD5R cells expressing HMOX1, the gene product of which is HO-1, an antioxidant enzyme [260] (Figure 4). Thus, the increase in blood pressure and ROS production in D5R deficiency is related to the decrease in HO-1 and PON2 expression/activity. Certain DRD5 SNPs hinder D5R function and sustain oxidative stress in the hypertensive state. Specifically, the human D5R173F > L (hD5R173F > L) mutation impedes cAMP production, increases renal NADPH activity, and increases AT1R expression which aids in the pathogenesis of salt-sensitive blood hypertension [252,262,264]. A pivotal factor in the impairment of D5R function and increased blood pressure is the hyperphosphorylation of hD5R173F > L [264] (Figure 4). Inflammation increases ROS production and vice versa [55]. The D5R has a complex effect on inflammation. The early inflammation in autoimmune experimental encephalomyelitis is potentiated by D5R signaling in CD4+ T cells but the D5R augments the anti-inflammatory effect of T regs [265]. The D5R also inhibits TLR2-induced NF-κB activation and inflammation in macrophages [266] and IFN-gamma production in natural killer cells [267]. The effect of the D5R in the inflammatory process in the kidney has not been determined.

10. Renal Dopaminergic and Renin-Angiotensin Systems Interaction in Oxidative Stress and Inflammation

As aforementioned, dopamine and the renin-angiotensin system interact in the kidney in the regulation of sodium transport. In general, whereas all five dopamine receptor subtypes inhibit sodium transport [120,121], the AT1R increases [252,253,254], while the AT2R decreases sodium transport [171]. D1-like receptors interact with angiotensin-(1–7) to inhibit renal tubular Na+/K+-ATPase and NHE3 activities [168]. In this situation, angiotensin-(1–7) increases dopamine production that is not related to receptor/receptor interaction. Decreasing renal dopamine production in mice allows unrestrained angiotensin II effects to increase renal sodium transport that is related to an increase in renal expression of AT1bR and decrease in AT2R and the angiotensin-(1–7) receptors (Mas) [19]. The AT1R increases ROS production [245,246,247], whereas the dopamine receptors decrease ROS production [52]. As stated above, inflammation increases ROS production and vice versa [55]; dopamine receptors [52] and AT2R [268] also decrease inflammation while the AT1R increases inflammation [245,246,247]. Angiotensin-(1–9) can decrease inflammation independent of the AT2R [269]. Thus, dopamine receptors and AT1R attenuate each other’s function while dopamine receptors and AT2R and Mas receptors may augment each other’s function.

11. Conclusions

Based on current evidence, the five dopamine receptor subtypes, D1R, D2R, D3R, D4R, and D5R, by themselves, by their interaction among themselves and with other genes, regulate renal tubular ion transport and ROS production. Dysfunction of any of the dopamine receptor subtypes impairs the ability to excrete a sodium load and decrease ROS production, eventually resulting in the development of hypertension. There are still elements that remain to be resolved and should be considered in future studies, including the antioxidant activity of D3R and D4R in the kidney. It has to be borne in mind that the effects of dopamine receptor subtypes on the regulation of sodium transport and ROS in renal cells may be different from that seen in other cells [180,211,216,226,234,265,270,271]. A better understanding of the relationship between renal dopamine receptors and oxidative stress in the regulation of renal tubular function and blood pressure would improve our view on the pathogenesis and treatment of hypertension.

Author Contributions

W.N.Q. and P.A.J., writing, reviewing, and editing. All authors have read and agreed to the published version of the manuscript.

Funding

These studies were supported, in part, by grants from the National Institutes of Health (R01DK039308, P01HL074940, and R01DK119652).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Conflicts of Interest

There are no conflict of interest related to the findings on this topic.

References

  1. Luft, F.C. Molecular genetics of human Hypertension. Curr. Opin. Cardiol. 2020, 35, 249–257. [Google Scholar] [CrossRef] [PubMed]
  2. Kokubo, Y.; Padmanabhan, S.; Iwashima, Y.; Yamagishi, K.; Goto, A. Gene and environmental interactions according to the components of lifestyle modifications in hypertension guidelines. Environ. Health Prev. Med. 2019, 24, 19. [Google Scholar] [CrossRef] [PubMed]
  3. Giorgini, P.; Di Giosia, P.; Grassi, D.; Rubenfire, M.; Brook, R.D.; Ferri, C. Air Pollution Exposure and Blood Pressure: An Updated Review of the Literature. Curr. Pharm. Des. 2016, 22, 28–51. [Google Scholar] [CrossRef] [PubMed]
  4. Basner, M.; Riggs, D.W.; Conklin, D.J. Environmental Determinants of Hypertension and Diabetes Mellitus: Sounding Off About the Effects of Noise. J. Am. Heart Assoc. 2020, 9, e016048. [Google Scholar] [CrossRef] [PubMed]
  5. Vallianou, N.G.; Geladari, E.; Kounatidis, D. Microbiome and hypertension: Where are we now? J. Cardiovasc. Med. (Hagerstown) 2020, 21, 83–88. [Google Scholar] [CrossRef]
  6. Baumgartner, J.; Schauer, J.J.; Ezzati, M.; Lu, L.; Cheng, C.; Patz, J.A.; Bautista, L.E. Indoor air pollution and blood pressure in adult women living in rural China. Environ. Health Perspect. 2011, 119, 1390–1395. [Google Scholar] [CrossRef] [Green Version]
  7. Lu, X.; Ye, Z.; Zheng, S.; Ren, H.; Zeng, J.; Wang, X.; Jose, P.A.; Chen, K.; Zeng, C. Long-Term Exposure of Fine Particulate Matter Causes Hypertension by Impaired Renal D1 Receptor-Mediated Sodium Excretion via Upregulation of G-Protein-Coupled Receptor Kinase Type 4 Expression in Sprague-Dawley Rats. J. Am. Heart Assoc. 2018, 7, e007185. [Google Scholar] [CrossRef] [Green Version]
  8. Rao, X.; Asico, L.D.; Zanos, P.; Mahabeleshwar, G.H.; Singh Gangwar, R.; Xia, C.; Duan, L.; Cisse, Y.M.; Rengasamy, P.; Jose, P.A.; et al. Alpha2B-Adrenergic Receptor Overexpression in the Brain Potentiate Air Pollution-induced Behavior and Blood Pressure Changes. Toxicol. Sci. 2019, 169, 95–107. [Google Scholar] [CrossRef]
  9. Ye, Z.; Lu, X.; Deng, Y.; Wang, X.; Zheng, S.; Ren, H.; Zhang, M.; Chen, T.; Jose, P.A.; Yang, J.; et al. In Utero Exposure to Fine Particulate Matter Causes Hypertension Due to Impaired Renal Dopamine D1 Receptor in Offspring. Cell. Physiol. Biochem. 2018, 46, 148–159. [Google Scholar] [CrossRef] [Green Version]
  10. Hall, J.E.; do Carmo, J.M.; da Silva, A.A.; Wang, Z.; Hall, M.E. Obesity, kidney dysfunction and hypertension: Mechanistic links. Nat. Rev. Nephrol. 2019, 15, 367–385. [Google Scholar] [CrossRef]
  11. Rucker, A.J.; Rudemiller, N.P.; Crowley, S.D. Salt, Hypertension, and Immunity. Annu. Rev. Physiol. 2018, 80, 283–307. [Google Scholar] [CrossRef] [PubMed]
  12. Fehrenbach, D.J.; Mattson, D.L. Inflammatory macrophages in the kidney contribute to salt–Sensitive Hypertension. Am. J. Physiol. Ren. Physiol. 2020, 318, F544–F548. [Google Scholar] [CrossRef] [PubMed]
  13. Minegishi, S.; Luft, F.C.; Titze, J.; Kitada, K. Sodium Handling and Interaction in Numerous Organs. Am. J. Hypertens. 2020, 33, 687–694. [Google Scholar] [CrossRef] [PubMed]
  14. Robles-Vera, I.; de la Visitación, N.; Sánchez, M.; Gómez-Guzmán, M.; Jiménez, R.; Moleón, J.; González-Correa, C.; Romero, M.; Yang, T.; Raizada, M.K.; et al. Mycophenolate Improves Brain-Gut Axis Inducing Remodeling of Gut Microbiota in DOCA–Salt Hypertensive Rats. Antioxidants 2020, 9, 1199. [Google Scholar] [CrossRef] [PubMed]
  15. Yang, J.; Jose, P.A.; Zeng, C. Gastrointestinal–Renal Axis: Role in the Regulation of Blood Pressure. J. Am. Heart Assoc. 2017, 6, e005536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  16. Tanaka, M.; Itoh, H. Hypertension as a Metabolic Disorder and the Novel Role of the Gut. Curr. Hypertens. Rep. 2019, 21, 63. [Google Scholar] [CrossRef] [Green Version]
  17. Soares-da–Silva, P.; Cabral, J.M.; Magalhães, D.; Fraga, S.; Magro, F. Amine neurotransmitters, inflammation and epithelial sodium transport. Exp. Physiol. 2016, 101, 459–464. [Google Scholar] [CrossRef] [Green Version]
  18. Feng, X.Y.; Li, Y.; Li, L.S.; Li, X.F.; Zheng, L.F.; Zhang, X.L.; Fan, R.F.; Song, J.; Hong, F.; Zhang, Y.; et al. Dopamine D1 receptors mediate dopamine-induced duodenal epithelial ion transport in rats. Transl. Res. 2013, 161, 486–494. [Google Scholar] [CrossRef]
  19. Zhang, M.Z.; Yao, B.; Wang, S.; Fan, X.; Wu, G.; Yang, H.; Yin, H.; Yang, S.; Harris, R.C. Intrarenal dopamine deficiency leads to hypertension and decreased longevity in mice. J. Clin. Investig. 2011, 121, 2845–2854. [Google Scholar] [CrossRef]
  20. Jiang, X.; Zhang, Y.; Yang, Y.; Yang, J.; Asico, L.D.; Chen, W.; Felder, R.A.; Armando, I.; Jose, P.A.; Yang, Z. Gastrin stimulates renal dopamine production by increasing the renal tubular uptake of l-DOPA. Am. J. Physiol. Endocrinol. Metab. 2017, 312, E1–E10. [Google Scholar] [CrossRef] [Green Version]
  21. Wang, Z.Q.; Siragy, H.M.; Felder, R.A.; Carey, R.M. Intrarenal dopamine production and distribution in the rat. Physiological control of sodium excretion. Hypertension 1997, 29, 228–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  22. Hegde, S.S.; Lokhandwala, M.F. Stimulation of renal dopamine production during acute volume expansion requires the presence of intact vagi but not renal nerves. Clin. Exp. Hypertens. A 1992, 14, 1169–1187. [Google Scholar] [CrossRef]
  23. Asico, L.D.; Eisner, G.M.; Jose, P.A. Renal nerves and D1-dopamine receptor-mediated natriuresis. Clin. Exp. Hypertens. 1998, 20, 259–271. [Google Scholar] [CrossRef] [PubMed]
  24. Luippold, G.; Osswald, H.; Mühlbauer, B. Renal effects of exogenous dopamine: Modulation by renal nerves and dopamine receptor antagonists. Naunyn Schmiedebergs Arch. Pharmacol. 1998, 358, 445–451. [Google Scholar] [CrossRef] [PubMed]
  25. Chen, C.J.; Lokhandwala, M.F. Role of endogenous dopamine in the natriuretic response to various degrees of iso-osmotic volume expansion in rats. Clin. Exp. Hypertens. A 1991, 13, 1117–1126. [Google Scholar] [CrossRef] [PubMed]
  26. Oates, N.S.; Ball, S.G.; Perkins, C.M.; Lee, M.R. Plasma and urine dopamine in man given sodium chloride in the diet. Clin. Sci. (Lond.) 1979, 56, 261–264. [Google Scholar] [CrossRef] [Green Version]
  27. Hansell, P.; Fasching, A. The effect of dopamine receptor blockade on natriuresis is dependent on the degree of hypervolemia. Kidney Int. 1991, 39, 253–258. [Google Scholar] [CrossRef] [Green Version]
  28. Ibarra, M.E.; Albertoni Borghese, M.F.; Majowicz, M.P.; Ortiz, M.C.; Loidl, F.; Rey-Funes, M.; Di Ciano, L.A.; Ibarra, F.R. Concerted regulation of renal plasma flow and glomerular filtration rate by renal dopamine and NOS I in rats on high salt intake. Physiol. Rep. 2017, 5, e13202. [Google Scholar] [CrossRef]
  29. Barendregt, J.N.; Muizert, Y.; van Nispen tot Pannerden, L.L.; Chang, P.C. Intrarenal production of dopamine and natriuresis following DOPA and saline infusions in healthy human volunteers. J. Hum. Hypertens. 1995, 9, 187–194. [Google Scholar]
  30. Du, D.D.; Yoshinaga, M.; Sonoda, M.; Kawakubo, K.; Uehara, Y. Blood pressure reduction by Japanese traditional Miso is associated with increased diuresis and natriuresis through dopamine system in Dahl salt–Sensitive rats. Clin. Exp. Hypertens. 2014, 36, 359–366. [Google Scholar] [CrossRef]
  31. Vered, Y.; Grosskopf, I.; Palevitch, D.; Harsat, A.; Charach, G.; Weintraub, M.S.; Graff, E. The influence of Vicia faba (broad bean) seedlings on urinary sodium excretion. Planta Med. 1997, 63, 237–240. [Google Scholar] [CrossRef] [PubMed]
  32. Garland, E.M.; Cesar, T.S.; Lonce, S.; Ferguson, M.C.; Robertson, D. An increase in renal dopamine does not stimulate natriuresis after fava bean ingestion. Am. J. Clin. Nutr. 2013, 97, 1144–1150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  33. Ennis, R.C.; Asico, L.D.; Armando, I.; Yang, J.; Feranil, J.B.; Jurgens, J.A.; Escano, C.S.; Yu, P., Jr.; Wang, X.; Sibley, D.R.; et al. Dopamine D₁-like receptors regulate the α₁A-adrenergic receptor in human renal proximal tubule cells and D₁-like dopamine receptor knockout mice. Am. J. Physiol. Ren. Physiol. 2014, 307, F1238–F1248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  34. Houston, M.C. The role of mercury and cadmium heavy metals in vascular disease, hypertension, coronary heart disease, and myocardial infarction. Altern. Ther. Health Med. 2007, 13, S128–S133. [Google Scholar]
  35. Kawano, Y.; Kawasaki, T.; Kawazoe, N.; Abe, I.; Uezono, K.; Ueno, M.; Fukiyama, K.; Omae, T. Circadian variations of urinary dopamine, norepinephrine, epinephrine and sodium in normotensive and hypertensive subjects. Nephron. 1990, 55, 277–282. [Google Scholar] [CrossRef]
  36. Sulyok, E.; Gyódi, G.; Ertl, T.; Bódis, J.; Hartmann, G. The influence of NaCl supplementation on the postnatal development of urinary excretion of noradrenaline, dopamine, and serotonin in premature infants. Pediatr. Res. 1985, 19, 5–8. [Google Scholar] [CrossRef] [Green Version]
  37. Vanpée, M.; Herin, P.; Lagercrantz, H.; Aperia, A. Effect of extreme prematurity on renal dopamine and norepinephrine excretion during the neonatal period. Pediatr. Nephrol. 1997, 11, 46–48. [Google Scholar] [CrossRef]
  38. Lakatua, D.J.; Nicolau, G.Y.; Bogdan, C.; Plinga, L.; Jachimowicz, A.; Sackett-Lundeen, L.; Petrescu, E.; Ungureanu, E.; Haus, E. Chronobiology of catecholamine excretion in different age groups. Prog. Clin. Biol. Res. 1987, 227B, 31–50. [Google Scholar]
  39. Gerlo, E.A.; Schoors, D.F.; Dupont, A.G. Age- and sex-related differences for the urinary excretion of norepinephrine, epinephrine, and dopamine in adults. Clin. Chem. 1991, 37, 875–878. [Google Scholar] [CrossRef]
  40. Young, J.B.; Troisi, R.J.; Weiss, S.T.; Parker, D.R.; Sparrow, D.; Landsberg, L. Relationship of catecholamine excretion to body size, obesity, and nutrient intake in middle-aged and elderly men. Am. J. Clin. Nutr. 1992, 56, 827–834. [Google Scholar] [CrossRef]
  41. Romero-Vecchione, E.; Vásquez, J.; Lema, G.; Guerrero, H.; Rosa, F.; Bermúdez, M. Low urinary dopamine excretion associated to low sodium excretion in normotensive Piaroa Amazonian ethnia compared to urban subjects. Investig. Clin. 1995, 36, 61–71. [Google Scholar]
  42. Chan, T.Y.; Critchley, J.A.; Ho, C.S.; Chan, J.C.; Tomlinson, B. Urinary dopamine outputs do not rise in healthy Chinese subjects during gradually increasing oral sodium intake over 8 days. J. Auton. Pharmacol. 1996, 16, 155–159. [Google Scholar] [PubMed]
  43. Critchley, J.A.; Makarananda, K.; Balali-Mood, M.; Sriwatanakul, K.; Lee, M.R. FurTher. ethnic differences in the renal sodium-dopamine relationship: Its uncoupling in Iranian but not in Thai normotensive subjects. J. Hypertens. Suppl. 1988, 6, S623–S625. [Google Scholar] [CrossRef] [PubMed]
  44. Saito, I.; Takeshita, E.; Saruta, T.; Nagano, S.; Sekihara, T. Urinary dopamine excretion in normotensive subjects with or without family history of Hypertension. J. Hypertens. 1986, 4, 57–60. [Google Scholar] [CrossRef]
  45. Dazai, Y.; Iwata, T.; Hiwada, K. Augmentation of the renal tubular dopaminergic activity by oral calcium supplementation in patients with essential Hypertension. Am. J. Hypertens. 1993, 6, 933–937. [Google Scholar] [CrossRef]
  46. Ball, S.G.; Oats, N.S.; Lee, M.R. Urinary dopamine in man and rat: Effects of inorganic salts on dopamine excretion. Clin. Sci. Mol. Med. 1978, 55, 167–173. [Google Scholar] [CrossRef] [Green Version]
  47. López-Contreras, A.J.; Galindo, J.D.; López-García, C.; Castells, M.T.; Cremades, A.; Peñafiel, R. Opposite sexual dimorphism of 3,4-dihydroxyphenylalanine decarboxylase in the kidney and small intestine of mice. J. Endocrinol. 2008, 196, 615–624. [Google Scholar] [CrossRef] [Green Version]
  48. Wang, X.; Li, F.; Jose, P.A.; Ecelbarger, C.M. Reduction of renal dopamine receptor expression in obese Zucker rats: Role of sex and angiotensin II. Am. J. Physiol. Ren. Physiol. 2010, 299, F1164–F1170. [Google Scholar] [CrossRef] [Green Version]
  49. Kikuchi, K.; Iimura, O.; Yamaji, I.; Shibata, S.; Nishimura, M.; Aoki, K.; Nozawa, A.; Hasegawa, T.; Honma, C.; Kobayakawa, H. The pathophysiological role of water–Sodium balance and renal dopaminergic activity in overweight patients with essential Hypertension. J. Clin. Hypertens. 1987, 3, 3–11. [Google Scholar] [CrossRef]
  50. Sakamoto, T.; Chen, C.; Lokhandwala, M.F. Lack of renal dopamine production during acute volume expansion in Dahl salt–Sensitive rats. Clin. Exp. Hypertens. 1994, 16, 197–206. [Google Scholar] [CrossRef]
  51. Escano, C.S.; Armando, I.; Wang, X.; Asico, L.D.; Pascua, A.; Yang, Y.; Wang, Z.; Lau, Y.S.; Jose, P.A. Renal dopaminergic defect in C57Bl/6J mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009, 297, R1660–R1669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  52. Cuevas, S.; Asico, L.D.; Jose, P.A.; Konkalmatt, P. Renal hydrogen peroxide production prevents salt–Sensitive Hypertension. J. Am. Heart Assoc. 2020, 9, e013818. [Google Scholar] [CrossRef] [PubMed]
  53. Combe, R.; Mudgett, J.; El Fertak, L.; Champy, M.F.; Ayme-Dietrich, E.; Petit-Demouliere, B.; Sorg, T.; Herault, Y.; Madwed, J.B.; Monassier, L. How Does Circadian Rhythm Impact Salt Sensitivity of Blood Pressure in Mice? A Study in Two Close C57Bl/6 Substrains. PLoS ONE 2016, 11, e0153472. [Google Scholar] [CrossRef]
  54. Sampaio-Maia, B.; Serrão, P.; Vieira-Coelho, M.A.; Pestana, M. Differences in the renal dopaminergic system activity between Wistar rats from two suppliers. Acta Physiol. Scand. 2003, 178, 83–99. [Google Scholar] [CrossRef] [PubMed]
  55. Loperena, R.; Harrison, D. Oxidative Stress and Hypertensive Diseases. Med. Clin. N. Am. 2017, 101, 169–193. [Google Scholar] [CrossRef] [Green Version]
  56. Choi, M.R.; Kouyoumdzian, N.M.; Rukavina Mikusic, N.L.; Kravetz, M.C.; Rosón, M.I.; Rodríguez Fermepin, M.; Fernández, B.E. Renal dopaminergic system: Pathophysiological implications and clinical perspectives. World J. Nephrol. 2015, 4, 196–212. [Google Scholar] [CrossRef]
  57. Cuevas, S.; Villar, V.A.; Jose, P.A.; Armando, I. Renal dopamine receptors, oxidative stress, and Hypertension. Int. J. Mol. Sci. 2013, 14, 17553–17572. [Google Scholar] [CrossRef] [Green Version]
  58. Banday, A.A.; Lokhandwala, M.F. Renal Dopamine Oxidation and Inflammation in High Salt Fed Rats. J. Am. Heart Assoc. 2020, 9, e014977. [Google Scholar] [CrossRef]
  59. George, S.; Abrahamse, H. Redox Potential of Antioxidants in Cancer Progression and Prevention. Antioxidants 2020, 9, 1156. [Google Scholar] [CrossRef]
  60. Szeliga, M. Peroxiredoxins in Neurodegenerative Diseases. Antioxidants 2020, 9, 1203. [Google Scholar] [CrossRef]
  61. Foret, M.K.; Lincoln, R.; Do Carmo, S.; Cuello, A.C.; Cosa, G. Connecting the “Dots”: From Free Radical Lipid Autoxidation to Cell Pathology and Disease. Chem. Rev. 2020, 120, 12757–12787. [Google Scholar] [CrossRef] [PubMed]
  62. Senoner, T.; Dichtl, W. Oxidative Stress in Cardiovascular Diseases: Still a Therapeutic Target? Nutrients 2019, 11, 2090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  63. Touyz, R.M.; Rios, F.J.; Alves-Lopes, R.; Neves, K.B.; Camargo, L.L.; Montezano, A.C. Oxidative Stress: A Unifying Paradigm in Hypertension. Can. J. Cardiol. 2020, 36, 659–670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  64. Hsu, C.N.; Tain, Y.L. Early Origins of Hypertension: Should Prevention Start Before Birth Using Natural Antioxidants? Antioxidants 2020, 9, 1034. [Google Scholar] [CrossRef] [PubMed]
  65. Daenen, K.; Andries, A.; Mekahli, D.; Van Schepdael, A.; Jouret, F.; Bammens, B. Oxidative Stress in Chronic Kidney Disease. Pediatr. Nephrol. 2019, 34, 975–991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  66. Lejri, I.; Agapouda, A.; Grimm, A.; Eckert, A. Mitochondria-and Oxidative Stress-Targeting Substances in Cognitive Decline–Related Disorders: From Molecular Mechanisms to Clinical Evidence. Oxid. Med. Cell. Longev. 2019, 2019, 9695412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  67. Russell, O.M.; Gorman, G.S.; Lightowlers, R.N.; Turnbull, D.M. Mitochondrial Diseases: Hope for the Future. Cell 2020, 181, 168–188. [Google Scholar] [CrossRef] [PubMed]
  68. Eirin, A.; Lerman, A.; Lerman, L.O. Enhancing Mitochondrial Health to Treat Hypertension. Curr. Hypertens. Rep. 2018, 20, 89. [Google Scholar] [CrossRef]
  69. Cowley, A.W., Jr.; Abe, M.; Mori, T.; O’Connor, P.M.; Ohsaki, Y.; Zheleznova, N.N. Reactive oxygen species as important determinants of medullary flow, sodium excretion, and Hypertension. Am. J. Physiol. Ren. Physiol. 2015, 308, F179–F197. [Google Scholar] [CrossRef] [Green Version]
  70. Knock, G.A. NADPH oxidase in the vasculature: Expression, regulation and signalling pathways; role in normal cardiovascular physiology and its dysregulation in Hypertension. Free Radic. Biol. Med. 2019, 145, 385–427. [Google Scholar] [CrossRef]
  71. Camargo, L.L.; Harvey, A.P.; Rios, F.J.; Tsiropoulou, S.; Da Silva, R.; Cao, Z.; Graham, D.; McMaster, C.; Burchmore, R.J.; Hartley, R.C.; et al. Vascular Nox (NADPH Oxidase) Compartmentalization, Protein Hyperoxidation, and Endoplasmic Reticulum Stress Response in Hypertension. Hypertension 2018, 72, 235–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  72. Gonzalez-Vicente, A.; Hong, N.; Garvin, J.L. Effects of reactive oxygen species on renal tubular transport. Am. J. Physiol. Ren. Physiol. 2019, 317, F444–F455. [Google Scholar] [CrossRef] [PubMed]
  73. Wilcox, C.S. Oxidative stress and nitric oxide deficiency in the kidney: A critical link to hypertension? Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005, 289, R913–R935. [Google Scholar] [CrossRef] [PubMed]
  74. Araujo, M.; Wilcox, C.S. Oxidative Stress in Hypertension: Role of the Kidney. Antioxid. Redox Signal. 2014, 20, 74–101. [Google Scholar] [CrossRef] [Green Version]
  75. Fellner, R.C.; Cook, A.K.; O’Connor, P.M.; Zhang, S.; Pollock, D.M.; Inscho, E.W. High–Salt diet blunts renal autoregulation by a reactive oxygen species-dependent mechanism. Am. J. Physiol. Ren. Physiol. 2014, 307, F33–F40. [Google Scholar] [CrossRef]
  76. Textor, S.C.; Gloviczki, M.L.; Flessner, M.F.; Calhoun, D.A.; Glockner, J.; Grande, J.P.; McKusick, M.A.; Cha, S.S.; Lerman, L.O. Association of filtered sodium load with medullary volumes and medullary hypoxia in hypertensive African Americans as compared with whites. Am. J. Kidney Dis. 2012, 59, 229–237. [Google Scholar] [CrossRef] [Green Version]
  77. Al–Solaiman, Y.; Jesri, A.; Zhao, Y.; Morrow, J.D.; Egan, B.M. Low–Sodium DASH reduces oxidative stress and improves vascular function in salt–Sensitive humans. J. Hum. Hypertens. 2009, 23, 826–835. [Google Scholar] [CrossRef]
  78. Jablonski, K.L.; Klawitter, J.; Chonchol, M.; Bassett, C.J.; Racine, M.L.; Seals, D.R. Effect of dietary sodium restriction on human urinary metabolomic profiles. Clin. J. Am. Soc. Nephrol. 2015, 10, 1227–1234. [Google Scholar] [CrossRef] [Green Version]
  79. Schulz, R.; Murzabekova, G.; Egemnazarov, B.; Kraut, S.; Eisele, H.J.; Dumitrascu, R.; Heitmann, J.; Seimetz, M.; Witzenrath, M.; Ghofrani, H.A.; et al. Arterial hypertension in a murine model of sleep apnea: Role of NADPH oxidase 2. J. Hypertens. 2014, 32, 300–305. [Google Scholar] [CrossRef]
  80. Welch, W.J.; Chabrashvili, T.; Solis, G.; Chen, Y.; Gill, P.S.; Aslam, S.; Wang, X.; Ji, H.; Sandberg, K.; Jose, P.; et al. Role of Extracellular Superoxide Dismutase in the Mouse Angiotensin Slow Pressor Response. Hypertension 2006, 48, 934–941. [Google Scholar] [CrossRef] [Green Version]
  81. Yang, Y.; Zhang, Y.; Cuevas, S.; Villar, V.A.; Escano, C.D.; Asico, L.; Yu, P.; Grandy, D.K.; Felder, R.A.; Armando, I.; et al. Paraoxonase 2 decreases renal reactive oxygen species production, lowers blood pressure, and mediates dopamine D2 receptor-induced inhibition of NADPH oxidase. Free Radic. Biol. Med. 2012, 53, 437–446. [Google Scholar] [CrossRef] [Green Version]
  82. Cuevas, S.; Zhang, Y.; Yang, Y.; Escano, C.; Asico, L.; Jones, J.E.; Armando, I.; Jose, P.A. Role of renal DJ-1 in the pathogenesis of hypertension associated with increased reactive oxygen species production. Hypertension 2012, 59, 446–452. [Google Scholar] [CrossRef] [PubMed]
  83. Yang, Y.; Cuevas, S.; Yang, S.; Villar, V.A.; Escano, C.; Asico, L.; Yu, P.; Jiang, X.; Weinman, E.J.; Armando, I.; et al. Sestrin2 decreases renal oxidative stress, lowers blood pressure, and mediates dopamine D2 receptor-induced inhibition of reactive oxygen species production. Hypertension 2014, 64, 825–832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  84. Zhang, M.; Harris, R. Antihypertensive mechanisms of intra-renal dopamine. Curr. Opin. Nephrol. Hypertens. 2015, 24, 117–122. [Google Scholar] [CrossRef] [Green Version]
  85. Carey, R.M. The intrarenal renin-angiotensin and dopaminergic systems: Control of renal sodium excretion and blood pressure. Hypertension 2013, 61, 673–680. [Google Scholar] [CrossRef] [PubMed]
  86. Armando, I.; Konkalmatt, P.; Felder, R.A.; Jose, P.A. The renal dopaminergic system: Novel diagnostic and therapeutic approaches in hypertension and kidney disease. Transl. Res. 2015, 165, 505–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  87. Herrera, M.; Coffman, T.M. The kidney and hypertension: Novel insights from transgenic models. Curr. Opin. Nephrol. Hypertens. 2012, 21, 171–178. [Google Scholar] [CrossRef] [PubMed]
  88. Taveira-da–Silva, R.; da Silva Sampaio, L.; Vieyra, A.; Einicker-Lamas, M. L-Tyr-Induced Phosphorylation of Tyrosine Hydroxylase at Ser40: An Alternative Route for Dopamine Synthesis and Modulation of Na+/K+-ATPase in Kidney Cells. Kidney Blood Press Res. 2019, 44. [Google Scholar] [CrossRef] [PubMed]
  89. Carranza, A.; Nowicki, S.; Barontini, M.; Armando, I. L-Dopa uptake and dopamine production in proximal tubular cells are regulated by β(2)-adrenergic receptors. Am. J. Physiol. Ren. Physiol. 2000, 279, F77–F83. [Google Scholar] [CrossRef] [Green Version]
  90. Wolfovitz, E.; Grossman, E.; Folio, C.J.; Keiser, H.R.; Kopin, I.J.; Goldstein, D.S. Derivation of urinary dopamine from plasma dihydroxyphenylalanine in humans. Clin. Sci. (Lond.) 1993, 84, 549–557. [Google Scholar] [CrossRef]
  91. Hayashi, M.; Yamaji, Y.; Kitajima, W.; Saruta, T. Aromatic L-amino acid decarboxylase activity along the rat nephron. Am. J. Physiol. 1990, 258, F28–F33. [Google Scholar] [CrossRef] [PubMed]
  92. Wang, Z.Q.; Siragy, H.M.; Felder, R.A.; Carey, R.M. Preferential release of renal dopamine into the tubule lumen: Effect of chronic sodium loading. Clin. Exp. Hypertens. 1997, 19, 107–116. [Google Scholar] [CrossRef] [PubMed]
  93. Lewis, E.J.; Allison, S.; Fader, D.; Claflin, V.; Baizer, L. Bovine dopamine β-hydroxylase cDNA. Complete coding sequence and expression in mammalian cells with vaccinia virus vector. J. Biol. Chem. 1990, 265, 1021–1028. [Google Scholar] [CrossRef]
  94. Catelas, D.; Serrão, M.; Soares-Da–Silva, P. Effects of nepicastat upon dopamine-β-hydroxylase activity and dopamine and norepinephrine levels in the rat left ventricle, kidney, and adrenal gland. Clin. Exp. Hypertens. 2019, 42, 118–125. [Google Scholar] [CrossRef]
  95. Guimarães, J.T.; Soares-da–Silva, P. The activity of MAO A and B in rat renal cells and tubules. Life Sci. 1998, 62, 727–737. [Google Scholar] [CrossRef]
  96. Wang, Y.; Berndt, T.J.; Gross, J.M.; Peterson, M.A.; So, M.J.; Knox, F.G. Effect of inhibition of MAO and COMT on intrarenal dopamine and serotonin and on renal function. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001, 280, R248–R254. [Google Scholar] [CrossRef] [Green Version]
  97. Quelhas–Santos, J.; Serrão, M.P.; Soares–Silva, I.; Fernandes-Cerqueira, C.; Simões–Silva, L.; Pinho, M.J.; Remião, F.; Sampaio-Maia, B.; Desir, G.V.; Pestana, M. Renalase regulates peripheral and central dopaminergic activities. Am. J. Physiol. Ren. Physiol. 2015, 308, F84–F91. [Google Scholar] [CrossRef] [Green Version]
  98. Ibarra, F.R.; Armando, I.; Nowicki, S.; Carranza, A.; De Luca Sarobe, V.; Arrizurieta, E.E.; Barontini, M. Dopamine is metabolised by different enzymes along the rat nephron. Pflug. Arch. 2005, 450, 185–191. [Google Scholar] [CrossRef]
  99. Correa, A.H.; Choi, M.R.; Gironacci, M.; Aprile, F.; Fernández, B.E. Atrial natriuretic factor decreases renal dopamine turnover and catabolism without modifying its release. Regul. Pept. 2008, 146, 238–242. [Google Scholar] [CrossRef]
  100. Soares-da–Silva, P.; Fernandes, M.H.; Pestana, M. A comparative study on the synthesis of dopamine in the human, dog and rat kidney. Acta Physiol. Scand. 1993, 148, 347–351. [Google Scholar] [CrossRef]
  101. Akama, H.; Noshiro, T.; Sano, N.; Watanabe, T.; Trigg, L.; Kotsonis, P.; Majewski, H.; McGrath, B.P.; Miura, Y.; Abe, K. Effects of isotonic saline loading on renal tubular and neurogenic dopamine release in conscious rabbits. Clin. Exp. Pharmacol. Physiol. 1995, 22, 469–471. [Google Scholar] [CrossRef] [PubMed]
  102. Wang, Z.Q.; Shimizu, K.; Way, D.; Secombe, J.; McGrath, B.P. The dopamine prodrug, gludopa, decreases both renal and extrarenal noradrenaline spillover in conscious rabbits. Clin. Exp. Pharmacol. Physiol. 1993, 20, 365–368. [Google Scholar] [CrossRef] [PubMed]
  103. De Brito Gariepy, H.; Carayon, P.; Ferrari, B.; Couture, R. Contribution of the central dopaminergic system in the anti-hypertensive effect of kinin B1 receptor antagonists in two rat models of Hypertension. Neuropeptides 2010, 44, 191–198. [Google Scholar] [CrossRef] [PubMed]
  104. Grossman, E.; Hoffman, A.; Chang, P.C.; Keiser, H.R.; Goldstein, D.S. Increased spillover of dopa into arterial blood during dietary salt loading. Clin. Sci. (Lond.) 1990, 78, 423–429. [Google Scholar] [CrossRef] [PubMed]
  105. Yu, S.; Yin, Y.; Li, Q.; Yu, J.; Liu, W.; Wang, D.; Cheng, Q.; Xie, S.; Cheng, X.; Qiu, L. Validation of an improved liquid chromatography tandem mass spectrometry method for rapid and simultaneous analysis of plasma catecholamine and their metabolites. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2019, 1129, 121805. [Google Scholar] [CrossRef] [PubMed]
  106. Miramontes-Gonzalez, J.P.; Hightower, C.M.; Zhang, K.; Kurosaki, H.; Schork, A.J.; Biswas, N.; Vaingankar, S.; Mahata, M.; Lipkowitz, M.S.; Nievergelt, C.M.; et al. A new common functional coding variant at the DDC gene change renal enzyme activity and modify renal dopamine function. Sci. Rep. 2019, 9, 5055. [Google Scholar] [CrossRef]
  107. Missale, C.; Nash, S.R.; Robinson, S.W.; Jaber, M.; Caron, M.G. Dopamine receptors: From structure to function. Physiol. Rev. 1998, 78, 189–225. [Google Scholar] [CrossRef] [Green Version]
  108. Soares-da–Silva, P.; Pestana, M.; Fernandes, M.H. Involvement of tubular sodium in the formation of dopamine in the human renal cortex. J. Am. Soc. Nephrol. 1993, 3, 1591–1599. [Google Scholar]
  109. Vieira-Coelho, M.A.; Soares-da–Silva, P. Dopamine formation, from its immediate precursor 3,4-dihydroxyphenylalanine, along the rat digestive tract. Fundam. Clin. Pharmacol. 1993, 7, 235–243. [Google Scholar] [CrossRef]
  110. Baines, A.D. Functional effects of proximal tubular dopamine production. Am. J. Hypertens. 1990, 3, 68S–71S. [Google Scholar] [CrossRef]
  111. DeFeo, M.; Jadhav, A.; Lokhandwala, M. Dietary Sodium Intake and Urinary Dopamine and Sodium Excretion During the Course of Blood Pressure Development in Dahl Salt–Sensitive and Salt–Resistant Rats. Clin. Exp. Hypertens. A 1987, 9, 2049–2060. [Google Scholar] [CrossRef] [PubMed]
  112. Hansell, P.; Ande’n, N.E.; Grabowska-Ande’n, M.; Ulfendahl, H.R. Atrial natriuretic factor, urinary catechol compounds and electrolyte excretion in rats during normal hydration and isotonic volume expansion. Influence of dopamine receptor blockade. Acta Physiol. Scand. 1988, 134, 421–428. [Google Scholar] [CrossRef] [PubMed]
  113. Goldstein, D.S.; Stull, R.; Eisenhofer, G.; Gill, J.R., Jr. Urinary excretion of dihydroxyphenylalanine and dopamine during alterations of dietary salt intake in humans. Clin. Sci. (Lond.) 1989, 76, 517–522. [Google Scholar] [CrossRef] [PubMed]
  114. Kuchel, O.; Kuchel, G. Peripheral dopamine in pathophysiology of Hypertension Interaction with aging and lifestyle. Hypertension 1991, 18, 709–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  115. Armando, I.; Nowicki, S.; Aguirre, J.; Barontini, M. A decreased tubular uptake of dopa results in defective renal dopamine production in aged rats. Am. J. Physiol. 1995, 268, F1087–F1092. [Google Scholar] [CrossRef]
  116. Voorhess, M.L. Urinary catecholamine excretion by healthy children. I. Daily excretion of dopamine, norepinephrine, epinephrine, and 3-methoxy-4-hydroxymandelic acid. Pediatrics 1967, 39, 252–257. [Google Scholar]
  117. Vieira-Coelho, M.A.; Hussain, T.; Kansra, V.; Serrao, M.P.; Guimaraes, J.T.; Pestana, M.; Soares-Da–Silva, P.; Lokhandwala, M.F. Aging, high salt intake, and renal dopaminergic activity in Fischer 344 rats. Hypertension 1999, 34, 666–672. [Google Scholar] [CrossRef] [Green Version]
  118. Cadet, J.L.; Jayanthi, S.; McCoy, M.T.; Beauvais, G.; Cai, N.S. Dopamine D1 Receptors, Regulation of Gene Expression in the Brain, and Neurodegeneration. CNS Neurol. Disord. Drug Targets 2010, 9, 526–538. [Google Scholar] [CrossRef]
  119. Saklayen, S.S.; Mabrouk, O.S.; Pehek, E.A. Negative Feedback Regulation of Nigrostriatal Dopamine Release: Mediation by Striatal D1 Receptors. J. Pharmacol. Exp. Ther. 2004, 311, 342–348. [Google Scholar] [CrossRef] [Green Version]
  120. Banday, A.A.; Lokhandwala, M.F. Dopamine receptors and Hypertension. Curr. Hypertens. Rep. 2008, 10, 268–275. [Google Scholar] [CrossRef]
  121. Armando, I.; Villar, V.A.; Jose, P.A. Dopamine and renal function and blood pressure regulation. Compr. Physiol. 2011, 1, 1075–1117. [Google Scholar] [CrossRef]
  122. Stansley, B.J.; Yamamoto, B.K. L-Dopa and Brain Serotonin System Dysfunction. Toxics 2015, 3, 75–88. [Google Scholar] [CrossRef]
  123. Pahuja, R.; Seth, K.; Shukla, A.; Shukla, R.K.; Bhatnagar, P.; Chauhan, L.K.; Saxena, P.N.; Arun, J.; Chaudhari, B.P.; Patel, D.K.; et al. Trans-blood brain barrier delivery of dopamine-loaded nanoparticles reverses functional deficits in parkinsonian rats. ACS Nano 2015, 9, 4850–4871. [Google Scholar] [CrossRef]
  124. Van den Buuse, M. Pressor responses to brain dopaminergic stimulation. Clin. Exp. Pharmacol. Physiol. 1997, 24, 764–769. [Google Scholar] [CrossRef]
  125. Sawamura, T.; Nakada, T. Role of dopamine in the striatum, renin-angiotensin system and renal sympathetic nerve on the development of two-kidney, one-clip Goldblatt Hypertension. J. Urol. 1996, 155, 1108–1111. [Google Scholar] [CrossRef]
  126. Moore, T.L.; Killiany, R.J.; Rosene, D.L.; Prusty, S.; Hollander, W.; Moss, M.B. Hypertension-induced changes in monoamine receptors in the prefrontal cortex of rhesus monkeys. Neuroscience 2003, 120, 177–189. [Google Scholar] [CrossRef]
  127. Fujita, S.; Adachi, K.; Lee, J.; Uchida, T.; Koshikawa, N.; Cools, A.R. Decreased postsynaptic dopaminergic and cholinergic functions in the ventrolateral striatum of spontaneously hypertensive rat. Eur. J. Pharmacol. 2004, 484, 75–82. [Google Scholar] [CrossRef]
  128. Bek, M.; Fischer, K.G.; Greiber, S.; Hupfer, C.; Mundel, P.; Pavenstädt, H. Dopamine depolarizes podocytes via a D1-like receptor. Nephrol. Dial. Transplant. 1999, 14, 581–587. [Google Scholar] [CrossRef] [Green Version]
  129. Shao, X.; Zhang, X.; Hu, J.; Gao, T.; Chen, J.; Xu, C.; Wei, C. Dopamine 1 receptor activation protects mouse diabetic podocytes injury via regulating the PKA/NOX-5/p38 MAPK axis. Exp. Cell Res. 2020, 388, 111849. [Google Scholar] [CrossRef]
  130. O’Connell, D.P.; Vaughan, C.J.; Aherne, A.M.; Botkin, S.J.; Wang, Z.Q.; Felder, R.A.; Carey, R.M. Expression of the dopamine D3 receptor protein in the rat kidney. Hypertension 1998, 32, 886–895. [Google Scholar] [CrossRef] [Green Version]
  131. Shultz, P.J.; Sedor, J.R.; Abboud, H.E. Dopaminergic stimulation of cAMP accumulation in cultured rat mesangial cells. Am. J. Physiol. 1987, 253, H358–H364. [Google Scholar] [CrossRef]
  132. Barili, P.; Ricci, A.; Baldoni, E.; Mignini, F.; Amenta, F. Pharmacological characterisation and autoradiographic localisation of a putative dopamine D3 receptor in the rat kidney. Eur. J. Pharmacol. 1997, 338, 89–95. [Google Scholar] [CrossRef]
  133. Pizzinat, N.; Marchal-Victorion, S.; Maurel, A.; Ordener, C.; Bompart, G.; Parini, A. Substrate-dependent regulation of MAO-A in rat mesangial cells: Involvement of dopamine D2-like receptors. Am. J. Physiol. Ren. Physiol. 2003, 284, F167–F174. [Google Scholar] [CrossRef] [Green Version]
  134. Grupp, C.; Begher, M.; Cohen, D.; Raghunath, M.; Franz, H.E.; Müller, G.A. Isolation and characterization of the lower portion of the thin limb of Henle in primary culture. Am. J. Physiol. Ren. Physiol. 1998, 274, F775–F782. [Google Scholar] [CrossRef]
  135. Wang, Z.; Zeng, C.; Villar, V.A.; Chen, S.Y.; Konkalmatt, P.; Wang, X.; Asico, L.D.; Jones, J.E.; Yang, Y.; Sanada, H.; et al. Human GRK4γ142V Variant Promotes Angiotensin II Type I Receptor-Mediated Hypertension via Renal Histone Deacetylase Type 1 Inhibition. Hypertension 2016, 67, 325–334. [Google Scholar] [CrossRef] [Green Version]
  136. Sanada, H.; Jones, J.E.; Jose, P.A. Genetics of salt–Sensitive Hypertension. Curr. Hypertens. Rep. 2011, 13, 55–66. [Google Scholar] [CrossRef] [Green Version]
  137. Sato, M.; Soma, M.; Nakayama, T.; Kanmatsuse, K. Dopamine D1 receptor gene polymorphism is associated with essential Hypertension. Hypertension 2000, 36, 183–186. [Google Scholar] [CrossRef] [Green Version]
  138. Fung, M.M.; Rana, B.K.; Tang, C.M.; Shiina, T.; Nievergelt, C.M.; Rao, F.; Salem, R.M.; Waalen, J.; Ziegler, M.G.; Insel, P.A.; et al. Dopamine D1 receptor (DRD1) genetic polymorphism: Pleiotropic effects on heritable renal traits. Kidney Int. 2009, 76, 1070–1080. [Google Scholar] [CrossRef] [Green Version]
  139. Albrecht, F.E.; Drago, J.; Felder, R.A.; Printz, M.P.; Eisner, G.M.; Robillard, J.E.; Sbley, D.R.; Westphal, H.J.; Jose, P.A. Role of the D1A dopamine receptor in the pathogenesis of genetic Hypertension. J. Clin. Investig. 1996, 97, 2283–2288. [Google Scholar] [CrossRef]
  140. Li, X.X.; Bek, M.; Asico, L.D.; Yang, Z.; Grandy, D.K.; Goldstein, D.S.; Rubinstein, M.; Eisner, G.M.; Jose, P.A. Adrenergic and endothelin B receptor-dependent hypertension in dopamine receptor type-2 knockout mice. Hypertension 2001, 38, 303–308. [Google Scholar] [CrossRef] [Green Version]
  141. Ueda, A.; Ozono, R.; Oshima, T.; Yano, A.; Kambe, M.; Teranishi, Y.; Katsuki, M.; Chayama, K. Disruption of the type 2 dopamine receptor gene causes a sodium-dependent increase in blood pressure in mice. Am. J. Hypertens. 2003, 16, 853–858. [Google Scholar] [CrossRef] [Green Version]
  142. Asico, L.D.; Ladines, C.; Fuchs, S.; Accili, D.; Carey, R.M.; Semeraro, C.; Pocchiari, F.; Felder, R.A.; Eisner, G.M.; Jose, P.A. Disruption of the dopamine D3 receptor gene produces renin-dependent Hypertension. J. Clin. Investig. 1998, 102, 493–498. [Google Scholar] [CrossRef] [Green Version]
  143. Johnson, T.L.; Tulis, D.A.; Keeler, B.E.; Virag, J.A.; Lust, R.M.; Clemens, S. The dopamine D3 receptor knockout mouse mimics aging-related changes in autonomic function and cardiac fibrosis. PLoS ONE 2013, 8, e74116. [Google Scholar] [CrossRef]
  144. Bek, M.J.; Wang, X.; Asico, L.D.; Jones, J.E.; Zheng, S.; Li, X.; Eisner, G.M.; Grandy, D.K.; Carey, R.M.; Soares-da-Silva, P.; et al. Angiotensin-II type 1 receptor-mediated hypertension in D4 dopamine receptor-deficient mice. Hypertension 2006, 47, 288–295. [Google Scholar] [CrossRef] [Green Version]
  145. Hollon, T.R.; Bek, M.J.; Lachowicz, J.E.; Ariano, M.A.; Mezey, E.; Ramachandran, R.; Wersinger, S.R.; Soares-da–Silva, P.; Liu, Z.F.; Grinberg, A.; et al. Mice lacking D5 dopamine receptors have increased sympathetic tone and are hypertensive. J. Neurosci. 2002, 22, 10801–10810. [Google Scholar] [CrossRef] [Green Version]
  146. Staudacher, T.; Pech, B.; Tappe, M.; Gross, G.; Mühlbauer, B.; Luippold, G. Arterial blood pressure and renal sodium excretion in dopamine D3 receptor knockout mice. Hypertens. Res. 2007, 30, 93–101. [Google Scholar] [CrossRef] [Green Version]
  147. Konkalmatt, P.R.; Asico, L.D.; Zhang, Y.; Yang, Y.; Drachenberg, C.; Zheng, X.; Han, F.; Jose, P.A.; Armando, I. Renal rescue of dopamine D2 receptor function reverses renal injury and high blood pressure. JCI Insight 2016, 1, e85888. [Google Scholar] [CrossRef]
  148. Asico, L.; Zhang, X.; Jiang, J.; Cabrera, D.; Escano, C.S.; Sibley, D.R.; Wang, X.; Yang, Y.; Mannon, R.; Jones, J.E.; et al. Lack of renal dopamine D5 receptors promotes Hypertension. J. Am. Soc. Nephrol. 2011, 22, 82–89. [Google Scholar] [CrossRef] [Green Version]
  149. Jose, P.A.; Eisner, G.M.; Robillard, J.E. Renal hemodynamics and natriuresis induced by the dopamine-1 agonist, SKF 82526. Am. J. Med. Sci. 1987, 294, 181–186. [Google Scholar] [CrossRef]
  150. Gildea, J.J.; Kemp, B.A.; Howell, N.L.; Van Sciver, R.E.; Carey, R.M.; Felder, R.A. Inhibition of renal caveolin-1 reduces natriuresis and produces hypertension in sodium-loaded rats. Am. J. Physiol. Ren. Physiol. 2011, 300, F914–F920. [Google Scholar] [CrossRef] [Green Version]
  151. Wang, Z.Q.; Felder, R.A.; Carey, R.M. Selective inhibition of the renal dopamine subtype D1A receptor induces antinatriuresis in conscious rats. Hypertension 1999, 33, 504–510. [Google Scholar] [CrossRef] [Green Version]
  152. Di Ciano, L.A.; Azurmendi, P.J.; Colombero, C.; Levin, G.; Oddo, E.M.; Arrizurieta, E.E.; Nowicki, S.; Ibarra, F.R. Defective renal dopamine function and sodium-sensitive hypertension in adult ovariectomized Wistar rats: Role of the cytochrome P-450 pathway. Am. J. Physiol. Ren. Physiol. 2015, 308, F1358–F1368. [Google Scholar] [CrossRef] [Green Version]
  153. Felder, R.A.; Seikaly, M.G.; Cody, P.; Eisner, G.M.; Jose, P.A. Attenuated renal response to dopaminergic drugs in spontaneously hypertensive rats. Hypertension 1990, 15, 560–569. [Google Scholar] [CrossRef] [Green Version]
  154. Du, Z.; Yan, Q.; Wan, L.; Weinbaum, S.; Weinstein, A.M.; Wang, T. Regulation of glomerulotubular balance. I. Impact of dopamine on flow-dependent transport. Am. J. Physiol. Ren. Physiol. 2012, 303, F386–F395. [Google Scholar] [CrossRef] [Green Version]
  155. Hu, M.C.; Bobulescu, I.A.; Quiñones, H.; Gisler, S.M.; Moe, O.W. Dopamine reduces cell surface Na+/H+ exchanger-3 protein by decreasing NHE3 exocytosis and cell membrane recycling. Am. J. Physiol. Ren. Physiol. 2017, 313, F1018–F1025. [Google Scholar] [CrossRef] [Green Version]
  156. Pedrosa, R.; Gomes, P.; Soares-da-Silva, P. Distinct signalling cascades downstream to Gsalpha coupled dopamine D1-like NHE3 inhibition in rat and opossum renal epithelial cells. Cell Physiol. Biochem. 2004, 14, 91–100. [Google Scholar] [CrossRef]
  157. Albrecht, F.E.; Xu, J.; Moe, O.W.; Hopfer, U.; Simonds, W.F.; Orlowski, J.; Jose, P.A. Regulation of NHE3 activity by G protein subunits in renal brush-border membranes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000, 278, R1064–R1073. [Google Scholar] [CrossRef]
  158. Kocinsky, H.S.; Girardi, A.C.; Biemesderfer, D.; Nguyen, T.; Mentone, S.; Orlowski, J.; Aronson, P.S. Use of phospho–Specific antibodies to determine the phosphorylation of endogenous Na+/H+ exchanger NHE3 at PKA consensus sites. Am. J. Physiol. Ren. Physiol. 2005, 289, F249–F258. [Google Scholar] [CrossRef] [Green Version]
  159. Weinman, E.; Biswas, R.; Steplock, D.; Douglass, T.; Cunningham, R.; Shenolikar, S. Sodium–Hydrogen Exchanger Regulatory Factor 1 (NHERF-1) Transduces Signals That Mediate Dopamine Inhibition of Sodium-Phosphate Co-transport in Mouse Kidney. J. Biol. Chem. 2010, 285, 13454–13460. [Google Scholar] [CrossRef] [Green Version]
  160. Kunimi, M.; Seki, G.; Hara, C.; Taniguchi, S.; Uwatoko, S.; Goto, A.; Kimura, S.; Fujita, T. Dopamine inhibits renal Na+:HCO3-cotransporter in rabbits and normotensive rats but not in spontaneously hypertensive rats. Kidney Int. 2000, 57, 534–543. [Google Scholar] [CrossRef] [Green Version]
  161. Wang, T.; Weinbaum, S.; Weinstein, A.M. Regulation of glomerulotubular balance: Flow-activated proximal tubule function. Pflug. Arch. 2017, 469, 643–654. [Google Scholar] [CrossRef]
  162. Gildea, J.J.; Xu, P.; Kemp, B.A.; Carlson, J.M.; Tran, H.T.; Bigler Wang, D.; Langouët-Astrié, C.J.; McGrath, H.E.; Carey, R.M.; Jose, P.A.; et al. Sodium bicarbonate cotransporter NBCe2 gene variants increase sodium and bicarbonate transport in human renal proximal tubule cells. PLoS ONE 2018, 13, e0189464. [Google Scholar] [CrossRef] [Green Version]
  163. Pedrosa, R.; Jose, P.A.; Soares-da–Silva, P. Defective D1-like receptor-mediated inhibition of the Cl-/HCO3- exchanger in immortalized SHR proximal tubular epithelial cells. Am. J. Physiol. Ren. Physiol. 2004, 286, F1120–F1126. [Google Scholar] [CrossRef]
  164. Aperia, A. 2011 Homer Smith Award: To serve and protect: Classic and novel roles for Na+, K+-adenosine triphosphatase. J. Am. Soc. Nephrol. 2012, 23, 1283–1290. [Google Scholar] [CrossRef] [Green Version]
  165. Gildea, J.J.; Shah, I.T.; Van Sciver, R.E.; Israel, J.A.; Enzensperger, C.; McGrath, H.E.; Jose, P.A.; Felder, R.A. The cooperative roles of the dopamine receptors, D1R and D5R, on the regulation of renal sodium transport. Kidney Int. 2014, 86, 118–126. [Google Scholar] [CrossRef] [Green Version]
  166. Natarajan, A.R.; Eisner, G.M.; Armando, I.; Browning, S.; Pezzullo, J.C.; Rhee, L.; Dajani, M.; Carey, R.M.; Jose, P.A. The Renin-Angiotensin and Renal Dopaminergic Systems Interact in Normotensive Humans. J. Am. Soc. Nephrol. 2016, 27, 265–279. [Google Scholar] [CrossRef] [Green Version]
  167. Wang, X.; Luo, Y.; Escano, C.S.; Yang, Z.; Asico, L.; Li, H.; Jones, J.E.; Armando, I.; Lu, Q.; Sibley, D.R.; et al. Upregulation of renal sodium transporters in D5 dopamine receptor-deficient mice. Hypertension 2010, 55, 1431–1437. [Google Scholar] [CrossRef] [Green Version]
  168. Banday, A.A.; Diaz, A.D.; Lokhandwala, M. Kidney dopamine D(1)-like receptors and angiotensin 1-7 interaction inhibits renal Na(+) transporters. Am. J. Physiol. Ren. Physiol. 2019, 317, F949–F956. [Google Scholar] [CrossRef]
  169. Kouyoumdzian, N.M.; Rukavina Mikusic, N.L.; Kravetz, M.C.; Lee, B.M.; Carranza, A.; Del Mauro, J.S.; Pandolfo, M.; Gironacci, M.M.; Gorzalczany, S.; Toblli, J.E.; et al. Atrial Natriuretic Peptide Stimulates Dopamine Tubular Transport by Organic Cation Transporters: A Novel Mechanism to Enhance Renal Sodium Excretion. PLoS ONE 2016, 11, e0157487. [Google Scholar] [CrossRef] [Green Version]
  170. Crambert, S.; Sjöberg, A.; Eklöf, A.C.; Ibarra, F.; Holtbäck, U. Prolactin and dopamine 1-like receptor interaction in renal proximal tubular cells. Am. J. Physiol. Ren. Physiol. 2010, 299, F49–F54. [Google Scholar] [CrossRef] [Green Version]
  171. Gildea, J.J.; Xu, P.; Kemp, B.A.; Carey, R.M.; Jose, P.A.; Felder, R.A. The Dopamine D(1) Receptor and Angiotensin II Type-2 Receptor are Required for Inhibition of Sodium Transport Through a Protein Phosphatase 2A Pathway. Hypertension 2019, 73, 1258–1265. [Google Scholar] [CrossRef]
  172. Chen, Y.; Asico, L.D.; Zheng, S.; Villar, V.A.; He, D.; Zhou, L.; Zeng, C.; Jose, P.A. Gastrin and D1 dopamine receptor interact to induce natriuresis and diuresis. Hypertension 2013, 62, 927–933. [Google Scholar] [CrossRef] [Green Version]
  173. Kouyoumdzian, N.M.; Rukavina Mikusic, N.L.; Robbesaul, G.D.; Gorzalczany, S.B.; Carranza, A.; Trida, V.; Fernández, B.E.; Choi, M.R. Acute infusion of angiotensin II regulates organic cation transporters function in the kidney: Its impact on the renal dopaminergic system and sodium excretion. Hypertens. Res. 2020. [Google Scholar] [CrossRef]
  174. Trivedi, M.; Narkar, V.A.; Hussain, T.; Lokhandwala, M.F. Dopamine recruits D1A receptors to Na-K-ATPase-rich caveolar plasma membranes in rat renal proximal tubules. Am. J. Physiol. Ren. Physiol. 2004, 287, F921–F931. [Google Scholar] [CrossRef]
  175. Villar, V.A.; Armando, I.; Sanada, H.; Frazer, L.C.; Russo, C.M.; Notario, P.M.; Lee, H.; Comisky, L.; Russell, H.A.; Yang, Y.; et al. Novel role of sorting nexin 5 in renal D1 dopamine receptor trafficking and function: Implications for hypertension. FASEB J. 2013, 27, 1808–1819. [Google Scholar] [CrossRef] [Green Version]
  176. Chen, C.J.; Lokhandwala, M.F. An impairment of renal tubular DA-1 receptor function as the causative factor for diminished natriuresis to volume expansion in spontaneously hypertensive rats. Clin. Exp. Hypertens. A 1992, 14, 615–628. [Google Scholar] [CrossRef]
  177. Yu, P.; Asico, L.D.; Luo, Y.; Andrews, P.; Eisner, G.M.; Hopfer, U.; Felder, R.A.; Jose, P.A. D1 dopamine receptor hyperphosphorylation in renal proximal tubules in Hypertension. Kidney Int. 2006, 70, 1072–1079. [Google Scholar] [CrossRef] [Green Version]
  178. O’Connell, D.; Ragsdale, N.; Boyd, D.; Felder, R.; Carey, R. Differential Human Renal Tubular Responses to Dopamine Type 1 Receptor Stimulation Are Determined by Blood Pressure Status. Hypertension 1997, 29, 115–122. [Google Scholar] [CrossRef]
  179. Cosentino, M.; Rasini, E.; Colombo, C.; Marino, F.; Blandini, F.; Ferrari, M.; Samuele, A.; Lecchini, S.; Nappi, G.; Frigo, G. Dopaminergic modulation of oxidative stress and apoptosis in human peripheral blood lymphocytes: Evidence for a D1-like receptor-dependent protective effect. Free Radic. Biol. Med. 2004, 36, 1233–1240. [Google Scholar] [CrossRef]
  180. Acquier, A.B.; Mori Sequeiros García, M.; Gorostizaga, A.B.; Paz, C.; Mendez, C.F. Reactive oxygen species mediate dopamine-induced signaling in renal proximal tubule cells. FEBS Lett. 2013, 587, 3254–3260. [Google Scholar] [CrossRef]
  181. Yu, P.; Han, W.; Villar, V.A.; Li, H.; Arnaldo, F.B.; Concepcion, G.P.; Felder, R.A.; Quinn, M.T.; Jose, P.A. Dopamine D1 receptor-mediated inhibition of NADPH oxidase activity in human kidney cells occurs via protein kinase A-protein kinase C cross talk. Free Radic. Biol. Med. 2011, 50, 832–840. [Google Scholar] [CrossRef] [Green Version]
  182. Han, W.; Li, H.; Villar, V.A.; Pascua, A.M.; Dajani, M.I.; Wang, X.; Natarajan, A.; Quinn, M.T.; Felder, R.A.; Jose, P.A.; et al. Lipid rafts keep NADPH oxidase in the inactive state in human renal proximal tubule cells. Hypertension 2008, 51, 481–487. [Google Scholar] [CrossRef] [Green Version]
  183. Yang, S.; Yang, Y.; Yu, P.; Yang, J.; Jiang, X.; Villar, V.A.; Sibley, D.R.; Jose, P.A.; Zeng, C. Dopamine D1 and D5 receptors differentially regulate oxidative stress through paraoxonase 2 in kidney cells. Free Radic. Res. 2015, 49, 397–410. [Google Scholar] [CrossRef] [Green Version]
  184. Banday, A.A.; Lokhandwala, M.F. Transcription factor Nrf2 protects renal dopamine D1 receptor function during oxidative stress. Hypertension 2013, 62, 512–517. [Google Scholar] [CrossRef] [Green Version]
  185. Banday, A.A.; Lau, Y.S.; Lokhandwala, M.F. Oxidative stress causes renal dopamine D1 receptor dysfunction and salt–Sensitive hypertension in Sprague-Dawley rats. Hypertension 2008, 51, 367–375. [Google Scholar] [CrossRef] [Green Version]
  186. Banday, A.A.; Fazili, F.R.; Lokhandwala, M.F. Oxidative stress causes renal dopamine D1 receptor dysfunction and hypertension via mechanisms that involve nuclear factor-kappa B and protein kinase C. J. Am. Soc. Nephrol. 2007, 18, 1446–1457. [Google Scholar] [CrossRef]
  187. Asghar, M.; George, L.; Lokhandwala, M.F. Exercise decreases oxidative stress and inflammation and restores renal dopamine D1 receptor function in old rats. Am. J. Physiol. Ren. Physiol. 2007, 293, F914–F919. [Google Scholar] [CrossRef] [Green Version]
  188. Tapia, E.; García-Arroyo, F.; Silverio, O.; Rodríguez-Alcocer, A.N.; Jiménez–Flores, A.B.; Cristobal, M.; Arellano, A.S.; Soto, V.; Osorio-Alonso, H.; Molina-Jijón, E.; et al. Mycophenolate mofetil and curcumin provide comparable therapeutic benefit in experimental chronic kidney disease: Role of Nrf2-Keap1 and renal dopamine pathways. Free Radic. Res. 2016, 50, 781–792. [Google Scholar] [CrossRef]
  189. Marwaha, A.; Lokhandwala, M.F. Tempol reduces oxidative stress and restores renal dopamine D1-like receptor- G protein coupling and function in hyperglycemic rats. Am. J. Physiol. Ren. Physiol. 2006, 291, F58–F66. [Google Scholar] [CrossRef] [Green Version]
  190. Banday, A.A.; Lokhandwala, M.F. Transcriptional Regulation of Renal Dopamine D1 Receptor Function During Oxidative Stress. Hypertension 2015, 65, 1064–1072. [Google Scholar] [CrossRef] [Green Version]
  191. Han, F.; Konkalmatt, P.; Mokashi, C.; Kumar, M.; Zhang, Y.; Ko, A.; Farino, Z.J.; Asico, L.D.; Xu, G.; Gildea, J.; et al. Dopamine D2 receptor modulates Wnt expression and control of cell proliferation. Sci. Rep. 2019, 9, 16861. [Google Scholar] [CrossRef] [PubMed]
  192. Jiang, X.; Konkalmatt, P.; Yang, Y.; Gildea, J.; Jones, J.E.; Cuevas, S.; Felder, R.A.; Jose, P.A.; Armando, I. Single-nucleotide polymorphisms of the dopamine D2 receptor increase inflammation and fibrosis in human renal proximal tubule cells. Hypertension 2014, 63, e74–e80. [Google Scholar] [CrossRef] [PubMed]
  193. Zhang, Y.; Cuevas, S.; Asico, L.D.; Escano, C.; Yang, Y.; Pascua, A.M.; Wang, X.; Jones, J.E.; Grandy, D.; Eisner, G.; et al. Deficient Dopamine D2 Receptor Function Causes Renal Inflammation Independently of High Blood Pressure. PLoS ONE 2012, 7, e38745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  194. Zhang, Y.; Jiang, X.; Qin, C.; Cuevas, S.; Jose, P.A.; Armando, I. Dopamine D2 receptors’ effects on renal inflammation are mediated by regulation of PP2A function. Am. J. Physiol. Ren. Physiol. 2016, 310, F128–F134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  195. Liu, I.S.; George, S.R.; Seeman, P. The human dopamine D2(Longer) receptor has a high-affinity state and inhibits adenylyl cyclase. Brain Res. Mol. Brain Res. 2000, 77, 281–284. [Google Scholar] [CrossRef]
  196. Bolan, E.A.; Kivell, B.; Jaligam, V.; Oz, M.; Jayanthi, L.D.; Han, Y.; Sen, N.; Urizar, E.; Gomes, I.; Devi, L.A.; et al. D2 receptors regulate dopamine transporter function via an extracellular signal-regulated kinases 1 and 2-dependent and phosphoinositide 3 kinase-independent mechanism. Mol. Pharmacol. 2007, 71, 1222–1232. [Google Scholar] [CrossRef] [Green Version]
  197. Khan, Z.U.; Mrzljak, L.; Gutierrez, A.; de la Calle, A.; Goldman–Rakic, P.S. Prominence of the dopamine D2 short isoform in dopaminergic pathways. Proc. Natl. Acad. Sci. USA 1998, 95, 7731–7736. [Google Scholar] [CrossRef] [Green Version]
  198. Ozono, R.; Ueda, A.; Oishi, Y.; Yano, A.; Kambe, M.; Katsuki, M.; Oshima, T. Dopamine D2 Receptor Modulates Sodium Handling via Local Production of Dopamine in the Kidney. J. Cardiovasc. Pharmacol. 2003, 42, S75–S80. [Google Scholar] [CrossRef]
  199. Armando, I.; Asico, L.D.; Wang, X.; Jones, J.E.; Serrão, M.P.; Cuevas, S.; Grandy, D.K.; Soares-da–Silva, P.; Jose, P.A. Antihypertensive effect of etamicastat in dopamine D2 receptor-deficient mice. Hypertens. Res. 2018, 41, 489–498. [Google Scholar] [CrossRef]
  200. Gao, D.Q.; Canessa, L.M.; Mouradian, M.M.; Jose, P.A. Expression of the D2 subfamily of dopamine receptor genes in kidney. Am. J. Physiol. 1994, 266, F646–F650. [Google Scholar] [CrossRef]
  201. Zaika, O.L.; Mamenko, M.; Palygin, O.; Boukelmoune, N.; Staruschenko, A.; Pochynyuk, O. Direct inhibition of basolateral Kir4.1/5.1 and Kir4.1 channels in the cortical collecting duct by dopamine. Am. J. Physiol. Ren. Physiol. 2013, 305, F1277–F1287. [Google Scholar] [CrossRef] [Green Version]
  202. Wang, M.X.; Cuevas, C.A.; Su, X.T.; Wu, P.; Gao, Z.X.; Lin, D.H.; McCormick, J.A.; Yang, C.L.; Wang, W.H.; Ellison, D.H. Potassium intake modulates the thiazide–Sensitive sodium-chloride cotransporter (NCC) activity via the Kir4.1 potassium channel. Kidney Int. 2018, 93, 893–902. [Google Scholar] [CrossRef] [PubMed]
  203. Su, X.T.; Klett, N.J.; Sharma, A.; Allen, C.N.; Wang, W.H.; Yang, C.L.; Ellison, D.H. Distal convoluted tubule Cl- concentration is modulated via K+ channels and transporters. Am. J. Physiol. Ren. Physiol. 2020, 319, F534–F540. [Google Scholar] [CrossRef] [PubMed]
  204. Takemoto, F.; Cohen, H.T.; Satoh, T.; Katz, A.I. Dopamine inhibits Na/K-ATPase in single tubules and cultured cells from distal nephron. Pflug. Arch. 1992, 421, 302–306. [Google Scholar] [CrossRef] [PubMed]
  205. Bertorello, A.; Aperia, A. Inhibition of proximal tubule Na(+)-K(+)-ATPase activity requires simultaneous activation of DA1 and DA2 receptors. Am. J. Physiol. 1990, 259, F924–F928. [Google Scholar] [CrossRef]
  206. IUPHAR/BPS Guide to Pharmacology: Nemonapride Page. Available online: https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?tab=biology&ligandId=983 (accessed on 10 December 2020).
  207. IUPHAR/BPS Guide to Pharmacology: Sulpiride Page. Available online: https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?tab=biology&ligandId=5501 (accessed on 10 December 2020).
  208. Shin, Y.; Kumar, U.; Patel, Y.; Patel, S.; Sidhu, A. Differential expression of D2-like dopamine receptors in the kidney of the spontaneously hypertensive rat. J. Hypertens. 2003, 21, 199–207. [Google Scholar] [CrossRef]
  209. Yang, J.; Villar, V.; Jose, P.A.; Zeng, C. Renal Dopamine Receptors and Oxidative Stress: Role in Hypertension. Antioxid. Redox Signal. 2020. [Google Scholar] [CrossRef]
  210. Armando, I.; Wang, X.; Villar, V.A.; Jones, J.E.; Asico, L.D.; Escano, C.; Jose, P.A. Reactive oxygen species dependent hypertension in dopamine D2 receptor-deficient mice. Hypertension 2007, 49, 672–678. [Google Scholar] [CrossRef] [Green Version]
  211. Charvin, D.; Vanhoutte, P.; Pagès, C.; Borrelli, E.; Caboche, J. Unraveling a role for dopamine in Huntington’s disease: The dual role of reactive oxygen species and D2 receptor stimulation. Proc. Natl. Acad. Sci. USA 2005, 102, 12218–12223. [Google Scholar] [CrossRef] [Green Version]
  212. De Miguel, C.; Hamrick, W.C.; Sedaka, R.; Jagarlamudi, S.; Asico, L.D.; Jose, P.A.; Cuevas, S. Uncoupling Protein 2 Increases Blood Pressure in DJ-1 Knockout Mice. J. Am. Heart Assoc. 2019, 8, e011856. [Google Scholar] [CrossRef]
  213. Han, F.; Konkalmatt, P.; Chen, J.; Gildea, J.; Felder, R.A.; Jose, P.A.; Armando, I. miR-217 Mediates the Protective Effects of the Dopamine D2 Receptor on Fibrosis in Human Renal Proximal Tubule Cells. Hypertension 2015, 65, 1118–1125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  214. Wang, Z.; Guan, W.; Han, Y.; Ren, H.; Tang, X.; Zhang, H.; Liu, Y.; Fu, J.; He, D.; Asico, L.D.; et al. Stimulation of Dopamine D3 Receptor Attenuates Renal Ischemia–Reperfusion Injury via Increased Linkage with Gα12. Transplantation 2015, 99, 2274–2284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  215. Montoya, A.; Elgueta, D.; Campos, J.; Chovar, O.; Falcón, P.; Matus, S.; Alfaro, I.; Bono, M.R.; Pacheco, R. Dopamine receptor D3 signalling in astrocytes promotes neuroinflammation. J. Neuroinflamm. 2019, 16, 258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  216. Xue, L.; Li, X.; Chen, Q.; He, J.; Dong, Y.; Wang, J.; Shen, S.; Jia, R.; Zang, Q.J.; Zhang, T.; et al. Associations between D3R expression in synovial mast cells and disease activity and oxidant status in patients with rheumatoid arthritis. Clin. Rheumatol. 2018, 37, 2621–2632. [Google Scholar] [CrossRef] [PubMed]
  217. Wang, J.; Jia, Y.; Li, G.; Wang, B.; Zhou, T.; Zhu, L.; Chen, T.; Chen, Y. The Dopamine Receptor D3 Regulates Lipopolysaccharide-Induced Depressive-Like Behavior in Mice. Int. J. Neuropsychopharm. 2018, 21, 448–460. [Google Scholar] [CrossRef] [Green Version]
  218. Yang, S.; Han, Y.; Zheng, S.; Kou, X.; Asico, L.D.; Huang, H.; Gao, Z.; Jose, P.A.; Zeng, C. Enhanced natriuresis and diuresis in wistar rats caused by the costimulation of renal dopamine D3 and angiotensin II type 2 receptors. Am. J. Hypertens. 2015, 28, 1267–1276. [Google Scholar] [CrossRef] [Green Version]
  219. Ladines, C.A.; Zeng, C.; Asico, L.D.; Sun, X.; Pocchiari, F.; Semeraro, C.; Pisegna, J.; Wank, S.; Yamaguchi, I.; Eisner, G.M.; et al. Impaired renal D1-like and D2-like dopamine receptor interaction in the spontaneously hypertensive rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001, 281, R1071–R1078. [Google Scholar] [CrossRef]
  220. Zeng, C.; Wang, Z.; Li, H.; Yu, P.; Zheng, S.; Wu, L.; Asico, L.D.; Hopfer, U.; Eisner, G.M.; Felder, R.A.; et al. D3 dopamine receptor directly interacts with D1 dopamine receptor in immortalized renal proximal tubule cells. Hypertension 2006, 47, 573–579. [Google Scholar] [CrossRef] [Green Version]
  221. Chen, X.; Liu, Y.; Wang, W.E.; Chen, C.; Ren, H.; Zheng, S.; Zhou, L.; Zeng, C. Effect of D3 dopamine receptor on dopamine D4 receptor expression and function in renal proximal tubule cells from Wistar-Kyoto rats and spontaneously hypertensive rats. J. Hypertens. 2016, 34, 1599–15606. [Google Scholar] [CrossRef]
  222. Huang, H.; Ren, H.; Chen, C.; Wang, X.; Yang, J.; Han, Y.; He, D.; Zhou, L.; Asico, L.D.; Jose, P.A.; et al. D3 dopamine receptor regulation of D5 receptor expression and function in renal proximal tubule cells. Hypertens. Res. 2012, 35, 639–647. [Google Scholar] [CrossRef] [Green Version]
  223. Yu, C.; Yang, Z.; Ren, H.; Zhang, Y.; Han, Y.; He, D.; Lu, Q.; Wang, X.; Wang, X.; Yang, C.; et al. D3 dopamine receptor regulation of ETB receptors in renal proximal tubule cells from WKY and SHRs. Am. J. Hypertens. 2009, 22, 877–883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  224. Zhang, Y.; Fu, C.; Asico, L.D.; Villar, V.A.; Ren., H.; He, D.; Wang, Z.; Yang, J.; Jose, P.A.; Zeng, C. Role of Galpha(12)- and Galpha(13)-protein subunit linkage of D(3) dopamine receptors in the natriuretic effect of D(3) dopamine receptor in kidney. Hypertens. Res. 2011, 34, 1011–1016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  225. Luippold, G.; Zimmermann, C.; Mai, M.; Kloor, D.; Starck, D.; Gross, G.; Mühlbauer, B. Dopamine D(3) receptors and salt-dependent hypertension. J. Am. Soc. Nephrol. 2001, 12, 2272–2279. [Google Scholar]
  226. Everett, P.B.; Senogles, S.E. D3 dopamine receptor signals to activation of phospholipase D through a complex with Rho. J. Neurochem. 2010, 112, 963–971. [Google Scholar] [CrossRef] [PubMed]
  227. Touyz, R.M.; Schiffrin, E.L. Ang II–Stimulated superoxide production is mediated via phospholipase D in human vascular smooth muscle cells. Hypertension 1999, 34, 976–982. [Google Scholar] [CrossRef] [Green Version]
  228. Rosin, C.; Colombo, S.; Calver, A.; Bates, T.; Skaper, S. Dopamine D2 and D3 receptor agonists limit oligodendrocyte injury caused by glutamate oxidative stress and oxygen/glucose deprivation. Glia 2005, 52, 336–343. [Google Scholar] [CrossRef]
  229. IUPHAR/BPS Guide to Pharmacology: Pramipexole Page. Available online: https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?tab=biology&ligandId=953 (accessed on 10 December 2020).
  230. Lieberknecht, V.; Junqueira, S.C.; Cunha, M.P.; Barbosa, T.A.; de Souza, L.F.; Coelho, I.S.; Santos, A.R.; Rodrigues, A.L.; Dafré, A.L.; Dutra, R.C. Pramipexole, a Dopamine D2/D3 Receptor-Preferring Agonist, Prevents Experimental Autoimmune Encephalomyelitis Development in Mice. Mol. Neurobiol. 2017, 54, 1033–1045. [Google Scholar] [CrossRef]
  231. Shibagaki, K.; Okamoto, K.; Katsuta, O.; Nakamura, M. Beneficial protective effect of pramipexole on light-induced retinal damage in mice. Exp. Eye Res. 2015, 139, 64–72. [Google Scholar] [CrossRef]
  232. Le, W.D.; Jankovic, J.; Xie, W.; Appel, S.H. Antioxidant property of pramipexole independent of dopamine receptor activation in neuroprotection. J. Neural Transm. (Vienna) 2000, 107, 1165–1173. [Google Scholar] [CrossRef]
  233. Wang, X.; Johns, J.; Asico, L.; Armando, I.; Jose, P. High blood pressure but normal oxidative stress in D3 dopamine receptor deficient mice. FASEB J. 2013, 27, 955.11. [Google Scholar]
  234. Wang, W.; Cohen, J.A.; Wallrapp, A.; Trieu, K.G.; Barrios, J.; Shao, F.; Krishnamoorthy, N.; Kuchroo, V.K.; Jones, M.R.; Fine, A.; et al. Age–Related Dopaminergic Innervation Augments T Helper 2-Type Allergic Inflammation in the Postnatal Lung. Immunity 2019, 51, 1102–1118.e7. [Google Scholar] [CrossRef] [PubMed]
  235. Huang, Y.; Qiu, A.W.; Peng, Y.P.; Liu, Y.; Huang, H.W.; Qiu, Y.H. Roles of dopamine receptor subtypes in mediating modulation of T lymphocyte function. Neuro Endocrinol. Lett. 2010, 31, 782–791. [Google Scholar] [PubMed]
  236. Guenova, E.; Skabytska, Y.; Hoetzenecker, W.; Weindl, G.; Sauer, K.; Tham, M.; Kim, K.W.; Park, J.H.; Seo, J.H.; Ignatova, D.; et al. IL-4 abrogates T(H)17 cell-mediated inflammation by selective silencing of IL-23 in antigen-presenting cells. Proc. Natl. Acad. Sci. USA 2015, 112, 2163–2168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  237. Shimada, S.; Hirabayashi, M.; Ishige, K.; Kosuge, Y.; Kihara, T.; Ito, Y. Activation of dopamine D4 receptors is protective against hypoxia/reoxygenation-induced cell death in HT22 cells. J. Pharmacol. Sci. 2010, 114, 217–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  238. Norman, S.M.; Sullivan, K.M.; Liu, F.; DiPaula, B.A.; Jose, P.A.; Kitchen, C.A.; Feldman, S.M.; Kelly, D.L. Blood Pressure and Heart Rate Changes During Clozapine Treatment. Psychiatr. Q. 2017, 88, 545–552. [Google Scholar] [CrossRef] [PubMed]
  239. IUPHAR/BPS Guide to Pharmacology: PD168,077 Page. Available online: https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?tab=biology&ligandId=975 (accessed on 10 December 2020).
  240. Tang, L.; Zheng, S.; Ren, H.; He, D.; Zeng, C.; Wang, W. Activation of angiotensin II type 1 receptors increases D4 dopamine receptor expression in rat renal proximal tubule cells. Hypertens. Res. 2017, 40, 652–657. [Google Scholar] [CrossRef]
  241. Zhang, Y.; Ren, H.; Lu, X.; He, D.; Han, Y.; Wang, H.; Zeng, C.; Shi, W. Inhibition of D4 Dopamine Receptors on Insulin Receptor Expression and Effect in Renal Proximal Tubule Cells. J. Am. Heart Assoc. 2016, 5, e002448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  242. Chen, K.; Deng, K.; Wang, X.; Wang, Z.; Zheng, S.; Ren, H.; He, D.; Han, Y.; Asico, L.D.; Jose, P.A.; et al. Activation of D4 Dopamine Receptor Decreases Angiotensin II Type 1 Receptor Expression in Rat Renal Proximal Tubule Cells. Hypertension 2015, 65, 153–160. [Google Scholar] [CrossRef] [Green Version]
  243. Sun, D.; Schafer, J.A. Dopamine inhibits AVP-dependent Na+ transport and water permeability in rat CCD via a D4-like receptor. Am. J. Physiol. 1996, 271, F391–F400. [Google Scholar] [CrossRef]
  244. Ricci, A.; Marchal-Victorion, S.; Bronzetti, E.; Parini, A.; Amenta, F.; Tayebati, S.K. Dopamine D4 receptor expression in rat kidney: Evidence for pre- and postjunctional localization. J. Histochem. Cytochem. 2002, 50, 1091–1096. [Google Scholar] [CrossRef] [Green Version]
  245. Lara, L.S.; McCormack, M.; Semprum-Prieto, L.C.; Shenouda, S.; Majid, D.S.; Kobori, H.; Navar, L.G.; Prieto, M.C. AT1 receptor-mediated augmentation of angiotensinogen, oxidative stress, and inflammation in ANG II–Salt Hypertension. Am. J. Physiol. Ren. Physiol. 2012, 302, F85–F94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  246. Agarwal, R.; Campbell, R.C.; Warnock, D.G. Oxidative stress in hypertension and chronic kidney disease: Role of angiotensin II. Semin. Nephrol. 2004, 24, 101–114. [Google Scholar] [CrossRef] [PubMed]
  247. Yu, C.; Chen, J.; Guan, W.; Han, Y.; Wang, W.E.; Wang, X.; Wang, H.; Jose, P.A.; Zeng, C. Activation of the D4 dopamine receptor attenuates proliferation and migration of vascular smooth muscle cells through downregulation of AT1a receptor expression. Hypertens. Res. 2015, 38, 588–596. [Google Scholar] [CrossRef] [PubMed]
  248. Ishige, K.; Chen, Q.; Sagara, Y.; Schubert, D. The activation of dopamine D4 receptors inhibits oxidative stress-induced nerve cell death. J. Neurosci. 2001, 21, 6069–6076. [Google Scholar] [CrossRef] [Green Version]
  249. Bastianetto, S.; Danik, M.; Mennicken, F.; Williams, S.; Quirion, R. Prototypical antipsychotic drugs protect hippocampal neuronal cultures against cell death induced by growth medium deprivation. BMC Neurosci. 2006, 7, 28. [Google Scholar] [CrossRef] [Green Version]
  250. Costa, F.B.; Cortez, A.P.; de Ávila, R.I.; de Carvalho, F.S.; Andrade, W.M.; da Cruz, A.F.; Reis, K.B.; Menegatti, R.; Lião, L.M.; Romeiro, L.; et al. The novel piperazine-containing compound LQFM018: Necroptosis cell death mechanisms, dopamine D(4) receptor binding and toxicological assessment. Biomed. Pharmacother. 2018, 102, 481–493. [Google Scholar] [CrossRef]
  251. Jiang, X.; Chen, W.; Liu, X.; Wang, Z.; Liu, Y.; Felder, R.A.; Gildea, J.J.; Jose, P.A.; Qin, C.; Yang, Z. The Synergistic Roles of Cholecystokinin B and Dopamine D5 Receptors on the Regulation of Renal Sodium Excretion. PLoS ONE 2016, 11, e0146641. [Google Scholar] [CrossRef] [Green Version]
  252. Liu, X.; Wang, W.; Chen, W.; Jiang, X.; Zhang, Y.; Wang, Z.; Yang, J.; Jones, J.E.; Jose, P.A.; Yang, Z. Regulation of blood pressure, oxidative stress and AT1R by high salt diet in mutant human dopamine D5 receptor transgenic mice. Hypertens. Res. 2015, 38, 394–399. [Google Scholar] [CrossRef]
  253. Zeng, C.; Yang, Z.; Wang, Z.; Jones, J.; Wang, X.; Altea, J.; Mangrum, A.J.; Hopfer, U.; Sibley, D.R.; Eisner, G.M.; et al. Interaction of angiotensin II type 1 and D5 dopamine receptors in renal proximal tubule cells. Hypertension 2005, 45, 804–810. [Google Scholar] [CrossRef] [Green Version]
  254. Li, H.; Armando, I.; Yu, P.; Escano, C.; Mueller, S.C.; Asico, L.; Pascua, A.; Lu, Q.; Wang, X.; Villar, V.A.; et al. Dopamine 5 receptor mediates Ang II type 1 receptor degradation via a ubiquitin-proteasome pathway in mice and human cells. J. Clin. Investig. 2008, 118, 2180–2189. [Google Scholar] [CrossRef] [Green Version]
  255. Wang, X.; Escano, C.S.; Asico, L.; Jones, J.E.; Jose, P.A. Upregulation of the thiazide-sensitive sodium chloride cotransporter in the kidney is associated with the hypertension in D3 dopamine receptor heterozygous (D3−/+) mice. FASEB J. 2009, 23, 605.13. [Google Scholar]
  256. Wang, X.; Asico, L.; Jones, J.E.; Escano, C.S.; Luo, Y.; Armando, I.; Jose, P.A. Profiling Protein Abundance of Renal Sodium Transporters in D4 Dopamine Receptor–Deficient Mice on Normal, High, or Low NaCl Intake. In Proceedings of the 61st Annual High Blood Pressure Research Conference, Phoenix, AZ, USA, 26–29 September 2007; p. 90. [Google Scholar]
  257. Plouffe, B.; Yang, X.; Tiberi, M. The third intracellular loop of D1 and D5 dopaminergic receptors dictates their subtype–Specific PKC-induced sensitization and desensitization in a receptor conformation-dependent manner. Cell Signal. 2012, 24, 106–118. [Google Scholar] [CrossRef] [PubMed]
  258. Sunahara, R.K.; Guan, H.C.; O’Dowd, B.F.; Seeman, P.; Laurier, L.G.; Ng, G.; George, S.R.; Torchia, J.; Van Tol, H.H.; Niznik, H.B. Cloning of the gene for a human dopamine D5 receptor with higher affinity for dopamine than D1. Nature 1991, 350, 614–619. [Google Scholar] [CrossRef] [PubMed]
  259. Thompson, D.; Whistler, J. Trafficking Properties of the D5 Dopamine Receptor. Traffic 2011, 12, 644–656. [Google Scholar] [CrossRef] [PubMed]
  260. Lu, Q.; Yang, Y.; Villar, V.A.; Asico, L.; Jones, J.E.; Yu, P.; Li, H.; Weinman, E.J.; Eisner, G.M.; Jose, P.A. D5 dopamine receptor decreases NADPH oxidase, reactive oxygen species and blood pressure via heme oxygenase-1. Hypertension Res. 2013, 36, 684–690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  261. Yang, Z.; Asico, L.D.; Yu, P.; Wang, Z.; Jones, J.E.; Escano, C.S.; Wang, X.; Quinn, M.T.; Sibley, D.R.; Romero, G.G.; et al. D5 dopamine receptor regulation of reactive oxygen species production, NADPH oxidase, and blood pressure. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006, 290, R96–R104. [Google Scholar] [CrossRef]
  262. Jiang, X.; Liu, Y.; Liu, X.; Wang, W.; Wang, Z.; Hu, Y.; Zhang, Y.; Zhang, Y.; Jose, P.A.; Wei, Q.; et al. Over-expression of a cardiac–Specific human dopamine D5 receptor mutation in mice causes a dilated cardiomyopathy through ROS over-generation by NADPH oxidase activation and Nrf2 degradation. Redox Biol. 2018, 19, 134–146. [Google Scholar] [CrossRef]
  263. Yang, Z.; Asico, L.D.; Yu, P.; Wang, Z.; Jones, J.E.; Bai, R.K.; Sibley, D.R.; Felder, R.A.; Jose, P.A. D5 dopamine receptor regulation of phospholipase D. Am. J. Physiol. Heart Circ. Physiol. 2005, 288, H55–H61. [Google Scholar] [CrossRef]
  264. Wang, S.; Tan, X.; Chen, P.; Zheng, S.; Ren, H.; Cai, J.; Zhou, L.; Jose, P.A.; Yang, J.; Zeng, C. Role of Thioredoxin 1 in Impaired Renal Sodium Excretion of hD5RF173L Transgenic Mice. J. Am. Heart Assoc. 2019, 8, e012192. [Google Scholar] [CrossRef] [Green Version]
  265. Osorio-Barrios, F.; Prado, C.; Contreras, F.; Pacheco, R. Dopamine Receptor D5 Signaling Plays a Dual Role in Experimental Autoimmune Encephalomyelitis Potentiating Th17-Mediated Immunity and Favoring Suppressive Activity of Regulatory T-Cells. Front. Cell. Neurosci. 2018, 12, 192. [Google Scholar] [CrossRef] [Green Version]
  266. Wu, Y.; Hu, Y.; Wang, B.; Li, S.; Ma, C.; Liu, X.; Moynagh, P.N.; Zhou, J.; Yang, S. Dopamine Uses the DRD5-ARRB2-PP2A Signaling Axis to Block the TRAF6-Mediated NF-kappaB Pathway and Suppress Systemic Inflammation. Mol. Cell. 2020, 78, 42–56.e6. [Google Scholar] [CrossRef] [PubMed]
  267. Mikulak, J.; Bozzo, L.; Roberto, A.; Pontarini, E.; Tentorio, P.; Hudspeth, K.; Lugli, E.; Mavilio, D. Dopamine inhibits the effector functions of activated NK cells via the upregulation of the D5 receptor. J. Immunol. 2014, 193, 2792–2800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  268. Patel, S.N.; Fatima, N.; Ali, R.; Hussain, T. Emerging Role of Angiotensin AT2 Receptor in Anti-Inflammation: An Update. Curr. Pharm. Des. 2020, 26, 492–500. [Google Scholar] [CrossRef] [PubMed]
  269. Gonzalez, L.; Novoa, U.; Moya, J.; Gabrielli, L.; Jalil, J.E.; García, L.; Chiong, M.; Lavandero, S.; Ocaranza, M.P. Angiotensin-(1-9) reduces cardiovascular and renal inflammation in experimental renin-independent Hypertension. Biochem. Pharmacol. 2018, 156, 357–370. [Google Scholar] [CrossRef]
  270. Skaaning Jensen, B.; Levavi–Sivan, B.; Fishburn., C.S.; Fuchs, S. Functional expression of the murine D2, D3 and D4 dopamine receptors in Xenopus laevis oocytes. FEBS Lett. 1997, 420, 191–195. [Google Scholar] [CrossRef] [Green Version]
  271. Ljungstrom, T.; Grunnet, M.; Skaaning Jensen, B.S.; Olesen, S.-P. Functional coupling between heterologously expressed dopamine D(2) receptors and KCNQ channels. Pflug. Arch. 2003, 446, 684–694. [Google Scholar] [CrossRef]
Figure 1. Schematic diagram summarizing dopamine receptor subtypes. GαS, GS alpha subunit; Gαi/Gαo, Gi alpha subunit/Go alpha subunit; AC, Adenylyl Cyclase; cAMP, Cyclic Adenosine Monophosphate.
Figure 1. Schematic diagram summarizing dopamine receptor subtypes. GαS, GS alpha subunit; Gαi/Gαo, Gi alpha subunit/Go alpha subunit; AC, Adenylyl Cyclase; cAMP, Cyclic Adenosine Monophosphate.
Biomedicines 09 00139 g001
Figure 2. Diagram displaying the distribution of dopamine receptor subtypes (D1R-D5R) along the parts of a nephron. OS: outer stripe; IS: inner stripe; S1: first segment of the proximal tubule [121].
Figure 2. Diagram displaying the distribution of dopamine receptor subtypes (D1R-D5R) along the parts of a nephron. OS: outer stripe; IS: inner stripe; S1: first segment of the proximal tubule [121].
Biomedicines 09 00139 g002
Figure 3. Schematic diagram displaying the role of renal D2R and interrelated components on the development of hypertension. The dashed lines illustrate inhibitory effects and solid lines illustrate stimulatory effects. D2R, Dopamine D2 Receptor; D2R SNPs, Dopamine D2 Receptor Single Nucleotide Polymorphisms; DJ-1, Park 7; HO-2, Heme-Oxygenase-2; NOX, NADPH oxidase; PON2, Paraoxonase 2.
Figure 3. Schematic diagram displaying the role of renal D2R and interrelated components on the development of hypertension. The dashed lines illustrate inhibitory effects and solid lines illustrate stimulatory effects. D2R, Dopamine D2 Receptor; D2R SNPs, Dopamine D2 Receptor Single Nucleotide Polymorphisms; DJ-1, Park 7; HO-2, Heme-Oxygenase-2; NOX, NADPH oxidase; PON2, Paraoxonase 2.
Biomedicines 09 00139 g003
Figure 4. Schematic diagram displaying the role of renal D5R and interrelated components on the development of hypertension. The dashed lines illustrate inhibitory effects and solid lines illustrate stimulatory effects. D5R, Dopamine D5 Receptor; PON2, Paraoxonase 2; HO-1, Heme Oxygenase-1; PLD2, Phospholipase D2; PKC, Protein Kinase C.
Figure 4. Schematic diagram displaying the role of renal D5R and interrelated components on the development of hypertension. The dashed lines illustrate inhibitory effects and solid lines illustrate stimulatory effects. D5R, Dopamine D5 Receptor; PON2, Paraoxonase 2; HO-1, Heme Oxygenase-1; PLD2, Phospholipase D2; PKC, Protein Kinase C.
Biomedicines 09 00139 g004
Table 1. Table classifying the different forms of endogenous antioxidants with appropriate examples.
Table 1. Table classifying the different forms of endogenous antioxidants with appropriate examples.
Endogenous Antioxidants
Enzymatic AntioxidantsNon-Enzymatic Antioxidants
AntioxidantsMetabolic AntioxidantsNutrient Antioxidants
  • Arylesterase
  • Catalase
  • Coenzyme Q10 (ubiquinol)
  • Glutathione-dependent enzymes
    Glutathione Peroxidase
    Glutathione Reductase
    Glutathione S-transferase
  • Heme Oxygenase
  • Paraoxonase-1
  • Peroxiredoxins
  • Superoxide dismutase
  • Bilirubin
  • Glutathione
  • L-arginine
  • Melatonin
  • Quinones
  • Thioredoxin
  • Uric acid
  • Carotenoids
  • Flavonoids
  • Lipoic acid
  • Polyphenols
  • Polyunsaturated Fatty Acids
  • Vitamin A
  • Vitamin C
  • Vitamin E (α-Tocopherol)
  • Vitamin K1 (Ubiquinone)
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Qaddumi, W.N.; Jose, P.A. The Role of the Renal Dopaminergic System and Oxidative Stress in the Pathogenesis of Hypertension. Biomedicines 2021, 9, 139. https://doi.org/10.3390/biomedicines9020139

AMA Style

Qaddumi WN, Jose PA. The Role of the Renal Dopaminergic System and Oxidative Stress in the Pathogenesis of Hypertension. Biomedicines. 2021; 9(2):139. https://doi.org/10.3390/biomedicines9020139

Chicago/Turabian Style

Qaddumi, Waleed N., and Pedro A. Jose. 2021. "The Role of the Renal Dopaminergic System and Oxidative Stress in the Pathogenesis of Hypertension" Biomedicines 9, no. 2: 139. https://doi.org/10.3390/biomedicines9020139

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop