Almost 40 Years of Tissue Engineering in Russia: Where Are We Now?
Abstract
:1. Introduction
2. The History of Tissue Engineering in Russia
3. Skin Tissue Engineering in Russia in the Last Decade
4. Legislation and Marketing Authorization of Biomedical Products in Russia
5. Cell Banking in Russia
6. Perspectives
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Berthiaume, F.; Maguire, T.J.; Yarmush, M.L. Tissue Engineering and Regenerative Medicine: History, Progress, and Challenges. Annu. Rev. Chem. Biomol. Eng. 2011, 2, 403–430. [Google Scholar] [CrossRef] [PubMed]
- Rheinwald, J.G.; Green, H. Serial cultivation of strains of human epidermal keratinocytes: The formation of keratinizing colonies from single cells. Cell 1975, 6, 331–343. [Google Scholar] [CrossRef]
- O’Connor, N.E.; Mulliken, J.B.; Banks-Schlegel, S.; Kehinde, O.; Green, H. Grafting of burns with cultured epithelium prepared from autologous epidermal cells. Lancet 1981, 1, 75–78. [Google Scholar] [CrossRef]
- Bell, E.; Sher, S.; Hull, B.; Merrill, C.; Rosen, S.; Chamson, A.; Asselineau, D.; Dubertret, L.; Coulomb, B.; Lapiere, C.; et al. The reconstitution of living skin. J. Investig. Dermatol. 1983, 81 (1 Suppl.), 2s–10s. [Google Scholar] [CrossRef] [Green Version]
- Gavrilyuk, B.K.; Rochev, Y.A.; Nikolaeva, T.I. Cell Culture and Tissue Reconstruction (in the Case of Skin); Pushchino (Scientific Centre for Biological Research AS USSR): Pushchino, Russia, 1988. [Google Scholar]
- Tumanov, V.P.; Pal’tsyn, A.A.; Sarkisov, D.S. Plastic operations of burns using cultured epithelium. Acta Chir. Plast. 1989, 31, 15–21. [Google Scholar]
- Tumanov, V.P.; Glushchenko, E.V.; Morozov, S.S.; Sarkisov, D.S. Use of cultured fibroblasts in the treatment of burn wounds. Biull. Eksp. Biol. Med. 1990, 109, 400–402. [Google Scholar] [CrossRef]
- Malakhov, S.F.; Terskikh, V.V.; Bautin, E.A.; Vasil’ev, A.V.; Paramonov, B.A. The autotransplantation of keratinocytes grown outside the body to treat extensive burns. Vestn. Khir. Im. I. I. Grek. 1993, 150, 59–62. [Google Scholar]
- Malakhov, S.F.; Paramonov, B.A.; Vasiliev, A.V.; Terskikh, V.V. Preliminary report of the clinical use of cultured allogeneic keratinocytes. Burns 1994, 20, 463–466. [Google Scholar] [CrossRef]
- Paramonov, B.A.; Potokin, I.L. Method for Repairing Skin Cover. Russian Patent RU2148970C1, 20 May 2000. [Google Scholar]
- Terskikh, V.V.; Kiselev, I.V.; Smirnov, S.V.; Rogovaja, O.S.; Vasil’ev, A.V. Bioactive Complex for Organogenesis. Russian Patent RU2254146C2, 20 June 2005. [Google Scholar]
- Kalmykova, N.V.; Blinova, M.I.; Judintseva, N.M.; Kukhareva, L.V.; Spichkina, O.G.; Pinaev, G.P.; Vengilevskij, V.V. Skin Equivalent and Method for Its Production. Russian Patent RU2342164C2, 27 December 2008. [Google Scholar]
- Radaeva, I.F.; Nechaeva, E.A.; Evlanova, E.A.; Drozdov, I.G. Means for Cell Replacement Therapy. Russian Patent RU2342163C1, 27 December 2008. [Google Scholar]
- Nashchekina, Y.A.; Veselova, T.V.; Nikonov, P.O.; Blinova, M.I. The study of the effect of polylactide scaffold and bone marrow stromal cells on reparative bone formation of the defect in the rabbit’s mandible. Hum. Gene Ther. 2015, 26, 195. [Google Scholar] [CrossRef] [Green Version]
- Kopelev, P.V.; Alexandrova, S.A.; Naschekina, Y.A.; Blinova, M.I. Chondroitinsulfate-based modification of polylactic tissue-engineered scaffolds for cartilage regeneration. Bull. Innov. Technol. 2017, 4, 39–43. [Google Scholar]
- Milanov, N.O.; Adamyan, R.T.; Rogovaya, O.S.; Vasil’ev, A.V.; Zhidkov, I.L.; Lipskiĭ, K.B.; Guliaev, I.V.; Suvorov, N.A.; Tagabilev, D.G.; Kiselev, I.V.; et al. Tissue equivalent for the closure of extended urethral defects. Vestn. Ross. Akad. Med. Nauk 2011, 7, 21–25. [Google Scholar]
- Rogovaya, O.S.; Fayzulin, A.K.; Vasiliev, A.V.; Kononov, A.V.; Terskikh, V.V. Reconstruction of rabbit urethral epithelium with skin keratinocytes. Acta Nat. 2015, 7, 70–77. [Google Scholar] [CrossRef]
- Yudintceva, N.M.; Nashchekina, Y.A.; Blinova, M.I.; Orlova, N.V.; Muraviov, A.N.; Vinogradova, T.I.; Sheykhov, M.G.; Shapkova, E.Y.; Emeljannikov, D.V.; Yablonskii, P.K.; et al. Experimental bladder regeneration using a poly-l-lactide/silk fibroin scaffold seeded with nanoparticle-labeled allogenic bone marrow stromal cells. Int. J. Nanomed. 2016, 11, 4521–4533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavlova, S.V.; Leonova, E.A.; Chepeleva, E.V.; Dokuchaeva, A.A.; Sergeevichev, D.S.; Pokushalov, E.A. Bioluminescent monitoring of rat cardiosphere-derived cells in platelet gel engraftment in ischemic heart. Genes Cells 2017, 12, 69–75. [Google Scholar]
- Tikhobrazova, O.P.; Balyabin, A.V.; Gladkov, A.A.; Muravyeva, M.S.; Kluev, E.A.; Shelchkova, N.A.; Timashev, P.S.; Bagratashvili, V.N.; Mukhina, I.V. The implantation of autologous neural progenitor cells based on the 3D biodegradable scaffold induces recovery of CNS functions in mice in the remote period at the traumatic brain injury therapy. Biomed. Radioeng. 2017, 10, 33–36. [Google Scholar]
- Got’e, S.V.; Shagidulin, M.I.; Onishchenko, N.A.; Krasheninnikov, M.E.; Il’inskiĭ, I.M.; Mozheĭko, N.P.; Liundup, A.V.; Volkova, E.A.; Petrakov, K.I.; Avramov, P.V.; et al. Correction of cronic liver failure by transplantation of liver cells suspension and cell-engineering designs (experimental investigation). Vestn. Ross. Akad. Med. Nauk 2013, 4, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Moisenovich, M.M.; Kulikov, D.A.; Goncharenko, A.V.; Arkhipova, A.Y.; Vasiljeva, T.V.; Filyushkin, Y.N.; Arkhipova, L.V.; Kotlyarova, M.S.; Kulikov, A.V.; Mashkov, A.E.; et al. Regeneration of jejunal wall defect using an implant based on silk fibroin fibers. Dokl. Biochem. Biophys. 2017, 472, 12–14. [Google Scholar] [CrossRef]
- Skaletskaya, G.N.; Skaletskiy, N.N.; Kirsanova, L.A.; Bubentsova, G.N.; Volkova, E.A.; Sevastyanov, V.I. Experimental implantation of tissue-engineering pancreatic construct. Russ. J. Transplantol. Artif. Organs 2019, 21, 104–111. [Google Scholar] [CrossRef]
- Karpovich, V.V.; Kulikov, A.N.; Churashov, S.V.; Chernysh, V.F.; Blinova, M.I.; Nashchekina, Y.A.; Alexandrova, O.I.; Khorolskaya, Y.I.; Machel, T.V.; Pisugina, G.A.; et al. Research of the properties of synthetic polymer matrices made for transplantation of cultured limbal stem cells to eliminate a limbal deficiency. Vestnik Rossiiskoi Voenno-Meditsinskoi Akademii 2019, 1, 165–170. (In Russian) [Google Scholar]
- Kulakov, A.A.; Goldshtein, D.V.; Krechina, E.K.; Bukharova, T.B.; Volkov, A.V.; Gadzhiev, A.K. Regeneration of dental pulp tissue using pulpal autologous mesenchymal stem cells and platelet-rich plasma. Stomatologiia 2017, 96, 12–16. [Google Scholar] [CrossRef]
- Kalabusheva, E.; Terskikh, V.; Vorotelyak, E. Hair Germ Model In Vitro via Human Postnatal Keratinocyte-Dermal Papilla Interactions: Impact of Hyaluronic Acid. Stem Cells Int. 2017, 2017. [Google Scholar] [CrossRef] [PubMed]
- Zhuravleva, M.N.; Zakirova, E.Y.; Valeeva, A.N.; Masgutova, G.A.; Podkovirina, Y.S.; Yakimkin, A.E.; Rizvanov, A.A. Application of the gene modified dermal fibroblasts for treatment of the third-degree burns. In Proceedings of the III National Congress on Regenerative Medicine, Moscow, Russia, 15–18 November 2017; p. 97. [Google Scholar]
- Makeev, O.G.; Sichkar, D.A.; Melekhin, V.V.; Korotkov, A.V.; Shuhman, E.A. 3D bioequivalent for treatment of severe injury of skin. In Proceedings of the III National Congress on Regenerative Medicine, Moscow, Russia, 15–18 November 2017; p. 225. [Google Scholar]
- Karamova, A.E.; Vorotelyak, E.A.; Albanova, V.I.; Nefedova, M.A.; Monchakovskaya, E.S. Inherited epidermolysis bullosa. Diagnosis. Therapy using allogenic fibroblasts. In Proceedings of the III National Congress on Regenerative Medicine, Moscow, Russia, 15–18 November 2017; p. 92. [Google Scholar]
- Egorikhina, M.N.; Aleynik, D.Y.; Levin, G.Y.; Charykova, I.N.; Sosnina, L.N.; Davydenko, D.V. Scaffold for skin defects elimination. In Proceedings of the III National Congress on Regenerative Medicine, Moscow, Russia, 15–18 November 2017; pp. 88–89. [Google Scholar]
- Vig, K.; Chaudhari, A.; Tripathi, S.; Dixit, S.; Sahu, R.; Pillai, S.; Dennis, V.A.; Singh, S.R. Advances in Skin Regeneration Using Tissue Engineering. Int. J. Mol. Sci. 2017, 18, 789. [Google Scholar] [CrossRef] [PubMed]
- The Federal Law N 323-FZ “On the Basics of Citizens’ Health Protection” (21.11.2011). Available online: https://www.rosminzdrav.ru/documents/7025 (accessed on 8 December 2019).
- The Federal Law N 180-FZ “On Biomedical Cell Products” (23.06.2016). Available online: http://kremlin.ru/acts/bank/40894/page/1 (accessed on 8 December 2019).
- The Order of the Ministry of Health of Russian Federation N 669n (22.09.2017) “On the Approval of the Rules of Good Clinical Practice of Biomedical Cell Products”. Available online: http://docs.cntd.ru/document/542608950 (accessed on 8 December 2019).
- The State Standard R 52379–2005 (27.09.2005) “Good Clinical Practice”. Available online: http://docs.cntd.ru/document/1200041147 (accessed on 8 December 2019).
- Tikhomirova, A.V.; Goryachev, D.V.; Merkulov, V.A.; Lysikova, I.V.; Gubenko, A.I.; Zebrev, A.I.; Solovieva, А.P.; Romodanovsky, D.P.; Melnikova, E.V. Preclinical and clinical aspects of the development of biomedical cell products. Bull. Sci. Cent. Expert Eval. Med. Prod. 2018, 8, 23–35. [Google Scholar] [CrossRef] [Green Version]
- The Order of the Ministry of Health of Russian Federation N 842n “On the Approval of the Requirements for the Organization and Activity of Biobanks and the Rules for Storage of the Biological Materials, Cells for Cell Line Preparation, Cell Lines for the Production of Biomedical Cell Products” (20.10.2017). Available online: https://rg.ru/2018/04/03/minzdrav-prikaz842-site-dok.html (accessed on 8 December 2019).
- Volodin, S.N.; Kirillov, B.A. Russian market of biomedical technologies: Advantages, complications and investing opportunities. Valyutnoe Regul. Valyutnij Control. 2017, 11, 50–58. [Google Scholar]
- “Long-Term Forecast of the Scientific and Technological Development of Russia for the period till 2030” (December 2013). Available online: https://prognoz2030.hse.ru/ (accessed on 8 December 2019).
- Government Resolution N 479 “On the Approval of the State Scientific and Technical Program for the Development of Gene Technology in Russian Federation in 2019-2027” (22.04.2019). Available online: http://government.ru/docs/36457/ (accessed on 8 December 2019).
- Strategy of the Development of Medical Science in Russian Federation for the Period Till 2025. Available online: https://www.rosminzdrav.ru/ministry/61/23/stranitsa-967/strategiya-razvitiya-meditsinskoy-nauki-v-rossiyskoy-federatsii-na-period-do-2025-goda (accessed on 8 December 2019).
Extracellular Matrix | Cell Component |
---|---|
polyethylene tetraflurate/polyimide/carboxymethyl cellulose | keratinocytes |
collagen/collagen containing fibronectin and/or laminin (and different growth factors) | keratinocytes and fibroblasts (embryonic or adult) |
fibrin/collagen | keratinocytes and fibroblasts (embryonic or adult)/bone marrow mesenchymal stem cells |
collagen-chitosan film/a crumb of collagen-chitosan film/high-polymeric gel made of a 5% macrogol solution 1500 | embryonic lung/myocutaneous tissue fibroblasts |
Disease/Tissue to Be Restored | Source of the Cells | Matrix |
---|---|---|
skin and other tissues | allogenic and autologous fibroblasts | − * |
skin and other tissues | dermal fibroblasts | collagen I/fibrinogen |
heart muscle | autologous bone marrow MSCs differentiated into cardiomyoblasts | |
bone defects of the upper and lower jaw | autologous MSCs differentiated in osteogenic direction | matrix |
cartilage tissue | autologous chondroblasts | three-dimensional gelatine matrix |
chronic lower limb ischemia | MSCs | − * |
recessions and mucosal deficiency in the area of teeth and dental implants | fibroblasts of the oral mucosa | − * |
ulcerative colitis and Crohn’s disease | MSCs | − * |
tuberculosis | MSCs | − * |
Reference | Organ/Tissue to Be Regenerated | What Was Investigated or Developed in the Study | Components Used |
---|---|---|---|
[14] | bone | the reparative osteogenesis in the rabbit mandible defect in the early stages of healing | polylactide scaffolds (modified by collagen or fibrin solutions) and bone marrow MSCs |
[15] | cartilage | a method of chondroitinsulfate depositing on polylactic scaffolds – in vitro study | polylactic scaffolds covered by chondroitinsulfate for better cell adhesion; newborn rabbit bone marrow MSCs |
[16] | urethra | tissue equivalent for the closure of extended urethral defects (rabbits) | collagen gel with embedded fibroblasts and epidermal keratinocytes grown on its surface; lavsan-mesh endoprosthesis as the framework |
[17] | urethra | transdifferentiation of epidermal keratinocytes in vivo in a model of the recovery of urethral injuries in rabbits | skin keratinocytes |
[18] | bladder | a potential approach for bladder tissue engineering in a model of partial bladder wall cystectomy in rabbits | a poly-L-lactide/silk fibroin bilayer scaffold seeded with allogenic bone marrow stromal cells |
[19] | heart | persistence of rat cardiosphere-derived cells after allogeneic transplantation into the peri-infarction zone by intramyocardial injection in rabbits | myocard cells (with luciferase reporter system) in the form of cardiospheres in suspension in a culture medium or in platelet rich plasma |
[20] | central nervous system | the possibilities of transplantation of autologous neural progenitor cells from C57BL/6 mouse nasal olfactory lamina propria during a reconstructive operation after an open traumatic brain injury | neural progenitor cells from nasal olfactory lamina propria in the hydrogel based on low-, medium-, and high-molecular weight hyaluronic acid |
[21] | liver | the effectiveness of cell therapy for the correction of chronic liver failure in chronic fibrotic liver damage in Wistar rats | suspension of allogenic liver cells or allogenic liver cells coculted with mesenchymal bone marrow stromal cells in biodegradable biopolymer gel resembling collagen (Sphero®GEL) used as matrix |
[22] | gut | regenerative properties of fibroin implant vitalized with allogenic bone marrow MSCs using the experimental model of rat jejunum wall damage | MSCs seeded on fibroin fiber scaffold |
[23] | pancreas | influence of intraperitoneal injection of tissue engineered constructs of pancreas on experimental diabetes mellitus in Wistar rats | floating insular-like cultures derived from pancreas of newborn rabbits cultured in presence of heterogeneous biopolymer hydrogel containing collagen |
[24] | eye | in vitro properties of different polylactide matrices made for transplantation of cultured limbal stem cells to eliminate a limbal deficiency | polylactide-glycolide, polylactide-caprolactone, poly-ɛ-caprolactone; human and rabbit limbal stem cells, human corneal epithelial cell line |
[25] | teeth | regeneration of dental pulp tissue using pulpal autologous MSCs and platelet-rich plasma transplanted in pulp chamber of miniature pigs after pulp removal | mesenchymal stromal cells from pulp of molars in combination with fibrin clot |
[26] | hair follicle | hair germ model in vitro | human postnatal dermal papilla cells and skin epidermal keratinocytes cocultured in a hanging drop to develop an artificial hair follicle germ |
Regulatory Act’s Number | Basic Effective Date | Regulatory Act’s Name |
---|---|---|
The state standard R 52379–2005 | 01.04.2006 | “Good Clinical Practice” |
The federal law N 323-FZ | 21.11.2011 | “On the Basics of Citizens’ Health Protection” |
The federal law N 180-FZ | 01.01.2017 | “On Biomedical Cell Products” |
The order of the Ministry of Health of the Russian Federation N 669n | 13.11.2017 | “On the approval of the Rules of Good Clinical Practice of Biomedical Cell Products” |
The order of the Ministry of Health of the Russian Federation N 842n | 13.04.2018 | “On the approval of the requirements for the organization and activity of biobanks and the rules for storage of the biological materials, cells for cell line preparation, cell lines for the production of biomedical cell products” |
The Government resolution N 479 | 22.04.2019 | “On the approval of the State Scientific and Technical Program for the Development of Gene Technology in the Russian Federation in 2019–2027” |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alpeeva, E.; Sukhanov, Y.; Vorotelyak, E. Almost 40 Years of Tissue Engineering in Russia: Where Are We Now? Biomedicines 2020, 8, 25. https://doi.org/10.3390/biomedicines8020025
Alpeeva E, Sukhanov Y, Vorotelyak E. Almost 40 Years of Tissue Engineering in Russia: Where Are We Now? Biomedicines. 2020; 8(2):25. https://doi.org/10.3390/biomedicines8020025
Chicago/Turabian StyleAlpeeva, Elena, Yury Sukhanov, and Ekaterina Vorotelyak. 2020. "Almost 40 Years of Tissue Engineering in Russia: Where Are We Now?" Biomedicines 8, no. 2: 25. https://doi.org/10.3390/biomedicines8020025
APA StyleAlpeeva, E., Sukhanov, Y., & Vorotelyak, E. (2020). Almost 40 Years of Tissue Engineering in Russia: Where Are We Now? Biomedicines, 8(2), 25. https://doi.org/10.3390/biomedicines8020025