The Potential of Volatilomics as Female Fertilization Biomarkers in Assisted Reproductive Techniques
Abstract
1. Introduction
2. Materials and Methods
2.1. Subject Sample Collection
2.2. FF Sample Collection and Preparation
2.3. VOCs Extraction and Analysis
2.4. Study Variables
2.5. Data Analysis
3. Results
3.1. Age
3.2. Body Mass Index
3.3. Smoking Habits
3.4. Infertility Cause
3.5. Gonadotropin Dosage
3.6. Number of Aspirated Oocytes
3.7. Embryo Quality
3.8. β-hCG Outcome
3.9. Nationality
3.10. Pregnancy History
4. Discussion
4.1. Cyclic Hydrocarbons
4.2. Aromatic Hydrocarbons
4.3. Other Endocrine Disruptors and Environmental Contaminants
4.4. Lipid-Derived and Steroidal Compounds
4.5. Volatile Lipid Derivatives and Esters
4.6. Straight-Chain and Branched Alkanes
4.7. Fatty Acids and Their Derivatives
4.8. Aldehydes and Related Compounds
4.9. Silicon-Based Compounds
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| VOCs | Volatile organic compounds |
| ART | Assisted reproductive techniques |
| FF | Follicular fluid |
| FFRP | Female fertilization-related parameters |
| GC–MS | Gas chromatography–mass spectrometry |
| BMI | Body mass index |
| PCOS | Polycystic ovary syndrome |
| DOR | Diminished ovarian reserve |
| GC | Granulosa cell |
| POF | Premature ovarian failure |
| IVF | In vitro fertilization |
| PDMS | Polydimethylsiloxane |
| SPME | Solid-phase microextraction |
| SH | Smoking habits |
| IF | Infertility factor |
| TDG | Total dosage of gonadotropins |
| AO | Aspirated oocytes g10 |
| TEQ | Transferred embryo quality |
| CB | Country of birth |
| PPH | Previous pregnancy history |
| OS | Oxidative stress |
| DEHP | Di(2-ethylhexyl) phthalate |
| DBP | Dibutyl phthalate |
| DiBP | Diisobutyl phthalate |
| BBP | Benzyl butyl phthalate |
| DIPP | Diisopentyl phthalate |
| DMEP | Dimethyl ester of phthalic acid |
| DPP | Dipropyl phthalate |
| DnHP | Di-n-hexyl phthalate |
| DEP | Diethyl phthalate |
| EDC | Endocrine-disrupting chemical |
| EU | European Union |
| US | United States |
| FDA | Food and Drug Administration |
| PFAS | Per- and Polyfluoroalkyl Substances |
| LDL | Low-density lipoprotein |
| HDL | High-density lipoprotein |
| SFA | Saturated fatty acid |
| ER | Endoplasmic reticulum |
| ROS | Reactive oxygen species |
References
- Brinca, A.T.; Anjos, O.; Alves, M.M.C.; Sousa, Â.; Oliani, A.H.; Breitenfeld, L.; Passarinha, L.A.; Ramalhinho, A.C.; Gallardo, E. Volatilomics as an Emerging Strategy to Determine Potential Biomarkers of Female Infertility: A Pilot Study. Biomedicines 2022, 10, 2852. [Google Scholar] [CrossRef]
- Carson, S.A.; Kallen, A.N. Diagnosis and Management of Infertility: A Review. J. Am. Med. Assoc. 2021, 326, 65–76. [Google Scholar] [CrossRef]
- Highway, M. Fertility Evaluation of Infertile Women: A Committee Opinion. Fertil. Steril. 2021, 116, 1255–1265. [Google Scholar] [CrossRef]
- Bala, R.; Singh, V.; Rajender, S. Environment, Lifestyle, and Female Infertility. Reprod. Sci. 2021, 28, 617–638. [Google Scholar] [CrossRef]
- Taebi, M.; Kariman, N.; Montazeri, A.; Alavi Majd, H. Infertility Stigma: A Qualitative Study on Feelings and Experiences of Infertile Women. Int. J. Fertil Steril. 2021, 15, 189–196. [Google Scholar] [CrossRef]
- Pan, Y.; Pan, C.; Zhang, C. Unraveling the Complexity of Follicular Fluid: Insights into Its Composition, Function, and Clinical Implications. J. Ovarian Res. 2024, 17, 237. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, X.; Wang, J. Essential Role of Granulosa Cell Glucose and Lipid Metabolism on Oocytes and the Potential Metabolic Imbalance in Polycystic Ovary Syndrome. Int. J. Mol. Sci. 2023, 24, 16247. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Ren, J.; Wang, F.; Pan, M.; Cui, L.; Li, M.; Qu, F. Free Radical Biology and Medicine Mitochondrial and Glucose Metabolic Dysfunctions in Granulosa Cells Induce Impaired Oocytes of Polycystic Ovary Syndrome through Sirtuin 3. Free. Radic. Biol. Med. 2022, 187, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Brinca, A.T.; Ramalhinho, A.C.; Sousa, Â.; Oliani, A.H.; Breitenfeld, L.; Passarinha, L.A.; Gallardo, E. Follicular Fluid: A Powerful Tool for the Understanding and Diagnosis of Polycystic Ovary Syndrome. Biomedicines 2022, 10, 1254. [Google Scholar] [CrossRef] [PubMed]
- Vale-fernandes, E.; Carrageta, D.F.; Leal, C.; Sousa, D.; Brand, R.; Alves, M.G.; Oliveira, P.F.; Monteiro, M.P. Molecular and Cellular Endocrinology Follicular Fluid Profiling Unveils Anti-Müllerian Hormone alongside Glycolytic and Mitochondrial Dysfunction as Markers of Polycystic Ovary Syndrome Ant O. Mol. Cell. Endocrinol. 2025, 602, 112536. [Google Scholar] [CrossRef]
- Brinca, A.T.; Peiró, A.M.; Evangelio, P.M.; Eleno, I.; Oliani, A.H.; Silva, V.; Vicente, L.F.; Ramalhinho, A.C.; Gallardo, E. Follicular Fluid and Blood Monitorization of Infertility Biomarkers in Women with Endometriosis. Int. J. Mol. Sci. 2024, 25, 7177. [Google Scholar] [CrossRef]
- Barbosa, J.M.G.; Filho, N.R.A. The Human Volatilome Meets Cancer Diagnostics: Past, Present, and Future of Noninvasive Applications. Metabolomics 2024, 20, 113. [Google Scholar] [CrossRef]
- Parastar, H.; Weller, P. Towards Greener Volatilomics: Is GC-IMS the New Swiss Army Knife of Gas Phase Analysis? TrAC—Trends Anal. Chem. 2024, 170, 117438. [Google Scholar] [CrossRef]
- Mansour, E.; Saliba, W.; Broza, Y.Y.; Frankfurt, O.; Zuri, L.; Ginat, K.; Palzur, E.; Shamir, A.; Haick, H. Continuous Monitoring of Psychosocial Stress by Non-Invasive Volatilomics. ACS Sensors 2023, 8, 3215–3224. [Google Scholar] [CrossRef]
- Alves, M.M.C.; Almeida, M.; Oliani, A.H.; Breitenfeld, L.; Ramalhinho, A.C. Women with Polycystic Ovary Syndrome and Other Causes of Infertility Have a Higher Prevalence of GSTT1 Deletion. Reprod. Biomed. Online 2020, 41, 892–901. [Google Scholar] [CrossRef]
- Harrath, A.H.; Alrezaki, A.; Jalouli, M.; Al-Dawood, N.; Dahmash, W.; Mansour, L.; Sirotkin, A.; Alwasel, S. Benzene Exposure Causes Structural and Functional Damage in Rat Ovaries: Occurrence of Apoptosis and Autophagy. Environ. Sci. Pollut. Res. 2022, 29, 76275–76285. [Google Scholar] [CrossRef] [PubMed]
- Alviggi, C.; Guadagni, R.; Conforti, A.; Coppola, G.; Picarelli, S.; De Rosa, P.; Vallone, R.; Strina, I.; Pagano, T.; Mollo, A.; et al. Association between Intrafollicular Concentration of Benzene and Outcome of Controlled Ovarian Stimulation in IVF/ICSI Cycles: A Pilot Study. J. Ovarian Res. 2014, 7, 67. [Google Scholar] [CrossRef] [PubMed]
- Sirotkin, A.V.; Macejková, M.; Tarko, A.; Fabova, Z.; Alrezaki, A.; Alwasel, S.; Harrath, A.H. Effects of Benzene on Gilts Ovarian Cell Functions Alone and in Combination with Buckwheat, Rooibos, and Vitex. Environ. Sci. Pollut. Res. 2021, 28, 3434–3444. [Google Scholar] [CrossRef]
- Chen, L.S.; Wu, H.K.; Chang, W.H.; Wang, W.C.; Bai, C.H. Association between Exposure to Volatile Organic Compounds and Female Infertility: An NHANES Analysis. Taiwan. J. Obstet. Gynecol. 2025, 64, 493–498. [Google Scholar] [CrossRef]
- Canipari, R.; De Santis, L.; Cecconi, S. Female Fertility and Environmental Pollution. Int. J. Environ. Res. Public Health 2020, 17, 8802. [Google Scholar] [CrossRef]
- Yaşar Ismail, T.S.; Özkan, A. A Systematic Literature Review of Cross-Cultural Studies on Interior Perception. PLANARCH—Des. Plan. Res. 2025, 9, 11–20. [Google Scholar] [CrossRef]
- Caporossi, L.; Capanna, S.; Viganò, P.; Alteri, A.; Papaleo, B. From Environmental to Possible Occupational Exposure to Risk Factors: What Role Do They Play in the Etiology of Endometriosis? Int. J. Environ. Res. Public Health 2021, 18, 532. [Google Scholar] [CrossRef]
- Lemogne Robert, A. Effects of Endocrine Disruptors on Polycystic Ovary Syndrome and New Therapeutic Approaches. Master’s Thesis, Instituto Universitário Egas Moniz, Monte de Caparica, Portugal, 2025. [Google Scholar]
- Tranfo, G.; Caporossi, L.; Paci, E.; Aragona, C.; Romanzi, D.; De Carolis, C.; De Rosa, M.; Capanna, S.; Papaleo, B.; Pera, A. Urinary Phthalate Monoesters Concentration in Couples with Infertility Problems. Toxicol. Lett. 2012, 213, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Caporossi, L.; Viganò, P.; Paci, E.; Capanna, S.; Alteri, A.; Campo, G.; Pigini, D.; De Rosa, M.; Tranfo, G.; Papaleo, B. Female Reproductive Health and Exposure to Phthalates and Bisphenol a: A Cross Sectional Study. Toxics 2021, 9, 299. [Google Scholar] [CrossRef]
- Bingru, L.; Ting, C.; Zhe, Z.; Wen, J.; Qianling, Z.; Hailun, Z. Association between Endocrine Disrupting Chemicals and Female Infertility: A Study Based on NHANES Database. Front. Public Heal. 2025, 13, 1608861. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Sánchez, R.; Ubeda, C.; Ríos-Reina, R. Feasibility of Using Volatile Urine Fingerprints for the Differentiation of Sexually Transmitted Infections. Appl. Microbiol. Biotechnol. 2023, 107, 6363–6376. [Google Scholar] [CrossRef]
- Rubio-Sánchez, R.; Ríos-Reina, R.; Ubeda, C. Identification of Volatile Biomarkers of Trichomonas Vaginalis Infection in Vaginal Discharge and Urine. Appl. Microbiol. Biotechnol. 2023, 107, 3057–3069. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, D.; Chen, J. Di-2-Ethylhexyl Phthalate (DEHP) Exposure Increase Female Infertility. Reprod. Toxicol. 2024, 130, 108719. [Google Scholar] [CrossRef]
- Laws, M.J.; Neff, A.M.; Brehm, E.; Warner, G.R.; Flaws, J.A. Endocrine Disrupting Chemicals and Reproductive Disorders in Women, Men, and Animal Models, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2021; Volume 92, ISBN 9780128234662. [Google Scholar]
- Wang, S.; Xu, K.; Du, W.; Gao, X.; Ma, P.; Yang, X.; Chen, M. Exposure to Environmental Doses of DEHP Causes Phenotypes of Polycystic Ovary Syndrome. Toxicology 2024, 509, 153952. [Google Scholar] [CrossRef]
- Xu, C.; Lin, H.; Zhao, Y.; Zhang, Y. Determination of Serum Levels of Three Phthalate Esters in Patients with Polycystic Ovary Syndrome. Sci. Res. Essays 2011, 6, 1057–1062. [Google Scholar]
- Jin, Y.; Zhang, Q.; Pan, J.X.; Wang, F.F.; Qu, F. The Effects of Di(2-Ethylhexyl) Phthalate Exposure in Women with Polycystic Ovary Syndrome Undergoing in Vitro Fertilization. J. Int. Med. Res. 2019, 47, 6278–6293. [Google Scholar] [CrossRef]
- Vollmar, A.K.R.; Weinberg, C.R.; Baird, D.D.; Wilcox, A.J.; Calafat, A.M.; Deziel, N.C.; Johnson, C.H.; Jukic, A.M.Z. Urinary Phenol Concentrations and Fecundability and Early Pregnancy Loss. Hum. Reprod. 2023, 38, 139–155. [Google Scholar]
- Zhang, Y.; Alzahrani, M.; Dambaeva, S.; Kwak-Kim, J. Dyslipidemia and Female Reproductive Failures: Perspectives on Lipid Metabolism and Endometrial Immune Dysregulation. Semin. Immunopathol. 2025, 47, 18. [Google Scholar] [CrossRef]
- Kopa-Stojak, P.N.; Pawliczak, R. Disposable Electronic Cigarettes–Chemical Composition and Health Effects of Their Use. A Systematic Review. Toxicol. Mech. Methods 2025, 35, 250–261. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.X.; Zhang, X.J.; Huang, J.; Zhou, S.J.; Liu, F.; Jiang, L.L.; Chen, M.; Jian-Bo, W.; Yang, D.Z. UHPLC/Q-TOFMS-Based Plasma Metabolomics of Polycystic Ovary Syndrome Patients with and without Insulin Resistance. J. Pharm. Biomed. Anal. 2016, 121, 141–150. [Google Scholar] [CrossRef]
- Bronkhorst, M. Polyunsaturated Fatty Acid Status in Individuals with Poly Cystic Ovarian Syndrome; Stellenbosch University: Stellenbosch, South Africa, 2018. [Google Scholar]
- Zhao, Y.; Fu, L.; Li, R.; Wang, L.N.; Yang, Y.; Liu, N.N.; Zhang, C.M.; Wang, Y.; Liu, P.; Tu, B.-B.; et al. Metabolic Profiles Characterizing Different Phenotypes of Polycystic Ovary Syndrome: Plasma Metabolomics Analysis. BMC Med. 2012, 10, 153. [Google Scholar] [CrossRef]
- Alawad, Z.M.; Al-Omary, H.L. Analysis of Follicular Fluid Fatty Acids in Iraqi Women Undergoing Intracytoplasmic Sperm Injection. Al-Rafidain J. Med. Sci. 2024, 7, 153–158. [Google Scholar] [CrossRef]
- Baddela, V.S.; Sharma, A.; Vanselow, J. Non-Esterified Fatty Acids in the Ovary: Friends or Foes? Reprod. Biol. Endocrinol. 2020, 18, 60. [Google Scholar] [CrossRef] [PubMed]
- Mirabi, P.; Chaichi, M.J.; Esmaeilzadeh, S.; Ali Jorsaraei, S.G.; Bijani, A.; Ehsani, M.; Hashemi Karooee, S.F. The Role of Fatty Acids on ICSI Outcomes: A Prospective Cohort Study. Lipids Health Dis. 2017, 16, 18. [Google Scholar] [CrossRef]
- Luti, S.; Fiaschi, T.; Magherini, F.; Modesti, P.A.; Piomboni, P.; Governini, L.; Luddi, A.; Amoresano, A.; Illiano, A.; Pinto, G.; et al. Relationship between the Metabolic and Lipid Profile in Follicular Fluid of Women Undergoing in Vitro Fertilization. Mol. Reprod. Dev. 2020, 87, 986–997. [Google Scholar] [CrossRef] [PubMed]
- An, N.; Zhang, M.; Zhu, Q.F.; Chen, Y.Y.; Deng, Y.L.; Liu, X.Y.; Zeng, Q.; Feng, Y.Q. Metabolomic Analysis Reveals Association between Decreased Ovarian Reserve and In Vitro Fertilization Outcomes. Metabolites 2024, 14, 143. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, T.; Naganuma, T.; Abe, K.; Nakahara, K.; Ohno, Y.; Kihara, A. Substrate Specificity, Plasma Membrane Localization, and Lipid Modification of the Aldehyde Dehydrogenase ALDH3B1. Biochim. Biophys. Acta—Mol. Cell Biol. Lipids 2013, 1831, 1395–1401. [Google Scholar] [CrossRef] [PubMed]

| FFRP and Categories | Min–Max | Median (Mean ± SD) | n (%) |
|---|---|---|---|
| Age (years) | 19–39 | 35 (34.46 ± 3.68) | - |
| <30 | - | - | 4 (7.4) |
| ≥30 | - | - | 50 (92.6) |
| <35 | - | - | 25 (46.30) |
| ≥35 | - | - | 29 (53.70) |
| <37 | - | - | 35 (64.81) |
| ≥37 | - | - | 19 (35.19) |
| BMI (kg/m2) | 17.0–32.0 | 23.0 (23.41 ± 3.61) | - |
| ≤25 | - | - | 41 (75.93) |
| >25 | - | - | 13 (24.07) |
| Smoking habits | - | - | - |
| Never | - | - | 43 (79.63) |
| Previous | - | - | 6 (11.11) |
| Present | - | - | 5 (9.26) |
| Infertility factor | - | - | - |
| Yes | - | - | 39 (72.22) |
| No | - | - | 15 (27.78) |
| Time trying to conceive (months) | 18–192 | 38.5 (52.74 ± 35.85) | - |
| ≤24 | - | - | 2 (3.70) |
| 25–48 | - | - | 30 (55.56) |
| ≥48 | - | - | 22 (40.74) |
| Time trying to conceive—dichotomized | - | - | - |
| ≤48 | - | - | 33 (61.11) |
| >48 | - | - | 21 (38.89) |
| Total dosage of gonadotropins (IU) | 150–3900 | 2250 (2383.62 ± 783.73) | - |
| <3000 | - | - | 35 (64.81) |
| ≥3000 | - | - | 19 (35.19) |
| Aspirated oocytes | 0–23 | 9 (9.87 ± 5.39) | - |
| ≤10 | - | - | 31 (57.41) |
| >10 | - | - | 23 (42.59) |
| ≤6 | - | - | 10 (18.52) |
| >6 | - | - | 44 (81.48) |
| Transferred embryo quality | - | - | - |
| Excellent | - | - | 14 (25.93) |
| Good | - | - | 16 (29.63) |
| Medium | - | - | 8 (14.81) |
| Bad | - | - | 0 (0) |
| No transfer | - | - | 16 (29.63) |
| Total embryo quality | - | - | - |
| Good | - | - | 35 (67.31) |
| Bad | - | - | 17 (32.69) |
| β-hCG outcome | - | - | - |
| Positive | - | - | 11 (20.37) |
| Negative | - | - | 26 (48.15) |
| No transfer | - | - | 17 (31.48) |
| Country of birth | - | - | - |
| Portugal | - | - | 43 (79.63) |
| France | - | - | 5 (9.26) |
| Germany | - | - | 2 (3.70) |
| Brazil | - | - | 1 (1.85) |
| Uruguay | - | - | 1 (1.85) |
| Netherlands | - | - | 1 (1.85) |
| Belgium | - | - | 1 (1.85) |
| Number of previous pregnancies | - | - | |
| 0 | - | - | 39 (72.22) |
| 1 | - | - | 12 (22.22) |
| 2 | - | - | 2 (3.70) |
| 3 | - | - | 1 (1.85) |
| Benzene | Benzene-2-ethyl-1-4-dimethyl | Benzenedicarboxylic Acid | Cholesterol | Cyclohexadecane | Cyclopentasiloxane-decamethyl | Cyclotetradeca | Decane | Decane-2-4-6-trimethyl | Dihydro-methyl-jasmonate | Diisooctylphthalate | Dodecane-4-6-dimethyl | 1-dodecanol | Eicosamethylcyclodecasiloxane | Eicosane | Ethanol-2-dodecyloxy | Ethylhexyl-salicylate | Hexadecanal | Hexadecanoic acid trimethylsilylester | Isopropyl-myristate | Myristic Acid | Nonadecane | Nonadecanone | Octadecan-1-ol trimethylsilyl Ether | Octadecanoic Acid | Octadecanoic Acid Butyl Ester | Octadecanoic Acid Methyl Ester | Octadecyloxy-1-1-2-2 -tetradeuteroethanol | Octane-1-1-oxybis | Oleamide | Oxirane-hexadecyl | Palmitic Acid Methyl Ester | Palmitic Acid | Pentadecane | Phenol | 2-propenenitrile-3-3-diphenyl | Propenoic acid 3-4-methoxyphenyl- 2-ethylhexyl-ester | Stearyl Alcohol | Tetradecamethylcycloheptasiloxane | Tetradecane | Tetradecanoic Acid Trimethylsilyl Ester | Tetramethylbenzene | Tetratriacontane | Trimethylsiloxyhexadecane | Undecane-4-8-dimethyl | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Age 35 | X | ||||||||||||||||||||||||||||||||||||||||||||
| Age 37 | X | X | X | ||||||||||||||||||||||||||||||||||||||||||
| BMI | X | X | X | X | X | ||||||||||||||||||||||||||||||||||||||||
| SH | X | X | X | ||||||||||||||||||||||||||||||||||||||||||
| IF | X | X | X | X | X | ||||||||||||||||||||||||||||||||||||||||
| TDG | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | |||||||||||||||||||||||||||
| AO | X | ||||||||||||||||||||||||||||||||||||||||||||
| TEQ | X | X | X | ||||||||||||||||||||||||||||||||||||||||||
| β-hCG | X | X | X | ||||||||||||||||||||||||||||||||||||||||||
| CB | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | |||||||||||||||||||||||||||||
| PPH | X | X | X | X | X | X | X | X | X | X | X | X |
| Compound | Age | |||||
|---|---|---|---|---|---|---|
| ≥35 (n = 29) | Overall (54) | ≥37 (n = 19) | Overall (54) | |||
| Cyclotetradecane | 5 | 17.2% | 9.3% | - | - | - |
| Undecane-4,8-dimethyl | - | - | - | 2 | 10.5% | 3.7% |
| Decane-2,4,6-trimethyl | - | - | - | 2 | 10.5% | 3.7% |
| Tetradecane | - | - | - | 2 | 10.5% | 3.7% |
| Compound | BMI | |||||
|---|---|---|---|---|---|---|
| ≤25 (n = 41) | Overall (54) | >25 (n = 13) | Overall (54) | |||
| Tetradecamethylcycloheptasiloxane | 30 | 73.2% | 55.6% | 5 | 38.5% | 9.3% |
| Benzene-2-ethyl-1,4-dimethyl | - | - | - | 2 | 15.4% | 3.7% |
| Tetramethylbenzene | 1 | 2.4% | 1.9% | 3 | 23.1% | 5.6% |
| Eicosamethylcyclodecasiloxane | 2 | 4.9% | 3.7% | 3 | 23.1% | 5.6% |
| Octadecan-1-ol trimethylsilyl ether | 2 | 4.9% | 3.7% | 3 | 23.1% | 5.6% |
| Compound | Smoking Habits | |||||||
|---|---|---|---|---|---|---|---|---|
| Never (n = 43) | Overall (54) | Previous (n = 6) | Overall (54) | Active (n = 5) | Overall (54) | |||
| 2-Nonadecanone | - | - | - | 1 | 16.7% | 1.9% | - | - |
| Tetratriacontane | - | - | - | 1 | 16.7% | 1.9% | - | - |
| Stearyl alcohol | 4 | 9.3% | 7.4% | 3 | 50% | 5.6% | 1 | 20% |
| Compound | Infertility Factor | |||||
|---|---|---|---|---|---|---|
| Yes (n = 39) | Overall (54) | No (n = 15) | Overall (54) | |||
| Hexadecanal | 5 | 12.8% | 9.3% | 6 | 40.0% | 11.11% |
| Oxirane-hexadecyl | 3 | 7.7% | 5.6% | 5 | 33.3% | 9.3% |
| Hexadecanoic acid trimethylsilylester | 9 | 23.1% | 16.7% | - | - | - |
| Cyclopentasiloxane-decamethyl | - | - | - | 2 | 13.3% | 3.70% |
| Decane | - | - | - | 2 | 13.3% | 3.70% |
| Compound | Total Dosage of Gonadotropins 3000 | |||||
|---|---|---|---|---|---|---|
| <3000 (n = 35) | Overall (54) | ≥3000 (n = 19) | Overall (54) | |||
| Palmitic acid | 3 | 8.6% | 5.6% | 8 | 42.1% | 14.8% |
| Phenol | 1 | 2.9% | 1.9% | 4 | 21.1% | 7.4% |
| Palmitic acid–methyl ester | 2 | 5.7% | 3.7% | 5 | 26.3% | 9.3% |
| Isopropyl myristate | 1 | 2.9% | 1.9% | 4 | 21.1% | 7.4% |
| Stearyl alcohol | 2 | 5.7% | 3.7% | 6 | 31.6% | 11.1% |
| Octadecanoic acid | - | - | - | 5 | 26.3% | 9.3% |
| Trimethylsiloxyhexadecane | - | - | - | 2 | 10.5% | 3.7% |
| Cyclotetradecane | - | - | - | 5 | 26.3% | 9.3% |
| Octadecanoic acid methyl ester | - | - | - | 4 | 21.1% | 7.4% |
| Pentadecane | - | - | - | 2 | 10.5% | 3.7% |
| Octadecyloxy-1-1-2-2-tetradeuteroethanol | 3 | 15.8% | 5.6% | |||
| 1-Dodecanol | - | - | - | 2 | 10.5% | 3.7% |
| Dihydro-methyl-jasmonate | - | - | - | 2 | 10.5% | 3.7% |
| Octane-1,1-oxybis | - | - | - | 2 | 10.5% | 3.7% |
| Ethylhexyl salicylate | - | - | - | 2 | 10.5% | 3.7% |
| Nonadecane | - | - | - | 2 | 10.5% | 3.7% |
| 2-Propenoic acid 3-(4-methoxyphenyl)-2-ethylhexyl ester | - | - | - | 2 | 10.5% | 3.7% |
| Oleamide | - | - | - | 3 | 15.8% | 5.6% |
| Compound | Aspirated Oocytes g10 | |||||
|---|---|---|---|---|---|---|
| ≤10 (n = 31) | Overall (54) | >10 (n = 23) | Overall (54) | |||
| Benzenedicarboxylic acid | 13 | 41.9% | 24.1% | 16 | 69.6% | 29.6% |
| Cyclohexadecane | - | - | - | 3 | 13.0% | 5.6% |
| Compound | Total Embryo Quality | ||
|---|---|---|---|
| Bad Embryo Quality (n = 17) | Overall (54) | ||
| Benzene | 2 | 11.8% | 3.8% |
| Tetradecanoic acid trimethylsilyl ester | 2 | 11.8% | 3.8% |
| Cholesterol | 2 | 11.8% | 3.8% |
| Compound | β-hCG | |||||
|---|---|---|---|---|---|---|
| Never (n = 11) | Overall (54) | No Transfer (n = 17) | Overall (54) | |||
| 2-Propenenitrile-3,3-diphenyl | 2 | 18.2% | 3.7% | - | - | - |
| Cyclohexadecane | - | - | - | 3 | 17.6% | 5.6% |
| Decane | 2 | 18.2% | 3.7% | - | - | - |
| Compound | Country of Birth | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Portugal (n = 43) | Overall (54) | France (n = 5) | Overall (54) | Germany (n = 2) | Overall (54) | Netherlands (n = 1) | Overall (54) | Brazil (n = 1) | Overall (54) | ||||||
| Phenol | 3 | 7.0% | 5.6% | - | - | - | - | - | - | 1 | 100% | 1.9% | 1 | 100% | 1.9% |
| Palmitic acid methyl ester | 5 | 11.6% | 9.3% | - | - | - | - | - | - | 1 | 100% | 1.9% | 1 | 100% | 1.9% |
| Myristic acid | 3 | 7.0% | 5.6% | - | - | - | - | - | - | - | - | - | 1 | 100% | 1.9% |
| Isopropyl myristate | 3 | 7.0% | 5.6% | - | - | - | - | - | - | 1 | 100% | 1.9% | 1 | 100% | 1.9% |
| Hexadecanoic acid trimethylsilylester | 5 | 11.6% | 9.3% | 3 | 60.0% | 5.6% | - | - | - | - | - | - | 1 | 100% | 1.9% |
| 1-dodecanol | 1 | 2.3% | 1.9% | - | - | - | - | - | - | - | 1 | 100% | 1.9% | ||
| Dihydro-methyl-jasmonate | 1 | 2.3% | 1.9% | - | - | - | - | - | - | - | - | - | 1 | 100% | 1.9% |
| Octane-1,1-oxybis | 1 | 2.3% | 1.9% | - | - | - | - | - | - | - | - | - | 1 | 100% | 1.9% |
| Ethylhexyl salicylate | 1 | 2.3% | 1.9% | - | - | - | - | - | - | - | - | - | 1 | 100% | 1.9% |
| Tetradecanoic acid trimethylsilylester | 1 | 2.3% | 1.9% | - | - | - | - | - | - | - | - | - | 1 | 100% | 1.9% |
| Nonadecane | 1 | 2.3% | 1.9% | - | - | - | - | - | - | - | - | - | 1 | 100% | 1.9% |
| Propenoic acid 3,4-methoxyphenyl-2-ethylhexyl ester | 1 | 2.3% | 1.9% | - | - | - | - | - | - | - | - | - | 1 | 100% | - |
| Oleamide | 2 | 4.7% | 3.7% | - | - | - | - | - | - | - | - | - | 1 | 100% | - |
| Ethanol-2-dodecyloxy | 1 | 2.3% | 1.9% | - | - | - | 1 | 50.0% | 1.9% | - | - | - | - | - | - |
| Decane | 1 | 2.3% | 1.9% | - | - | - | - | - | - | 1 | 100% | 1.9% | - | - | - |
| Dodecane-4,6-dimethyl | 1 | 2.3% | 1.9% | - | - | - | 1 | 50.0% | 1.9% | - | - | - | - | - | - |
| Compound | Nº of Previous Pregnancies | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 (n = 39) | Overall (54) | 1 (n = 12) | Overall (54) | 2 (n = 2) | Overall (54) | 3 (n = 1) | Overall (54) | |||||
| Palmitic acid methyl ester | 4 | 10.3% | 7,4% | 1 | 8.3% | 1.9% | 1 | 50.0% | 1.9% | 1 | 100.0% | 1.9% |
| Diisooctylphthalate | 3 | 7.7% | 5.6% | 2 | 16.7% | 3.7% | - | - | - | 1 | 100.0% | 1.9% |
| Benzene-2-ethyl-1,4-dimethyl | 1 | 2.6% | 1.9% | - | - | - | 1 | 50.0% | 1.9% | - | - | - |
| Cyclohexadecane | 2 | 5.1% | 3.7% | - | - | - | - | - | - | 1 | 100.0% | 1.9% |
| Cyclotetradecane | 2 | 5.1% | 3.7% | 2 | 16.7% | 3.7% | - | - | - | 1 | 100.0% | 1.9% |
| Octadecanoic acid methyl ester | 2 | 5.1% | 3.7% | 1 | 8.3% | 1.9% | - | - | - | 1 | 100.0% | 1.9% |
| Octadecanoic acid butyl ester | 1 | 2.6% | 1.9% | 2 | 16.7% | 3.7% | - | - | - | 1 | 100.0% | 1.9% |
| Undecane-4,8-dimethyl | 1 | 2.6% | 1.9% | - | - | - | 1 | 50.0% | 1.9% | - | - | - |
| Decane-2,4,6-trimethyl | 1 | 2.6% | 1.9% | - | - | - | 1 | 50.0% | 1.9% | - | - | - |
| Eicosane | 1 | 2.6% | 1.9% | - | - | - | 1 | 50.0% | 1.9% | - | - | - |
| Decane | 1 | 2.6% | 1.9% | - | - | - | 1 | 50.0% | 1.9% | - | - | - |
| Dodecane-4,6-dimethyl | 1 | 2.3% | 1.9% | - | - | - | 1 | 50.0% | 1.9% | 1 | 100.0% | 1.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Brinca, A.T.; Alves, M.M.C.; Peiró, A.M.; Evangelio, P.M.; Buendicho, I.E.; Oliani, A.H.; Silva, V.; Torgal, A.; Vicente, L.F.; Ramalhinho, A.C.; et al. The Potential of Volatilomics as Female Fertilization Biomarkers in Assisted Reproductive Techniques. Biomedicines 2026, 14, 264. https://doi.org/10.3390/biomedicines14020264
Brinca AT, Alves MMC, Peiró AM, Evangelio PM, Buendicho IE, Oliani AH, Silva V, Torgal A, Vicente LF, Ramalhinho AC, et al. The Potential of Volatilomics as Female Fertilization Biomarkers in Assisted Reproductive Techniques. Biomedicines. 2026; 14(2):264. https://doi.org/10.3390/biomedicines14020264
Chicago/Turabian StyleBrinca, Ana Teresa, Maria Manuel Casteleiro Alves, Ana M. Peiró, Pilar Matallín Evangelio, Irene Eleno Buendicho, Antonio Helio Oliani, Vladimiro Silva, Ana Torgal, Luís F. Vicente, Ana Cristina Ramalhinho, and et al. 2026. "The Potential of Volatilomics as Female Fertilization Biomarkers in Assisted Reproductive Techniques" Biomedicines 14, no. 2: 264. https://doi.org/10.3390/biomedicines14020264
APA StyleBrinca, A. T., Alves, M. M. C., Peiró, A. M., Evangelio, P. M., Buendicho, I. E., Oliani, A. H., Silva, V., Torgal, A., Vicente, L. F., Ramalhinho, A. C., & Gallardo, E. (2026). The Potential of Volatilomics as Female Fertilization Biomarkers in Assisted Reproductive Techniques. Biomedicines, 14(2), 264. https://doi.org/10.3390/biomedicines14020264

