The Natural History of Prediabetes and Cardiovascular Disease in the Pediatric Population
Abstract
1. Introduction
2. Methodology
3. Defining and Identifying Risk Factors for Prediabetes in the Pediatric Population
3.1. Defining Prediabetes in Children
- Impaired fasting plasma glucose (IFG): 100–125 mg/dL.
- 2-h plasma glucose during an oral glucose tolerance test: 140–199 mg/dL.
- Hemoglobin A1c (HbA1c): 5.7% to 6.4%.
3.2. Diagnosing Prediabetes in Children
3.3. Risk Factors Predisposing Individuals to Prediabetes in the Pediatric Population
3.3.1. Lifestyle and Obesity
3.3.2. Family History of Type 2 Diabetes as a Non-Modifiable Risk Factor for Prediabetes and Type 2 Diabetes
3.3.3. Gestational Diabetes, Prediabetes and Type 2 Diabetes Mellitus as Independent Risk Factors in the Offspring
3.3.4. Demographics and Ethnic Background
3.3.5. Acanthosis Nigricans as a Prediabetes Risk Factor in Children
3.3.6. Polycystic Ovarian Syndrome
3.3.7. Diet and Risk for Prediabetes
4. Significant Physiological, Metabolic, and Biochemical Features of Prediabetes
4.1. The Continuum from Insulin Resistance to Type 2 Diabetes
4.2. Vascular Features of Prediabetes
4.3. The Kidney in Prediabetes
4.4. The Brain in Prediabetes
4.5. Physiological Features of Prediabetes
4.6. Biochemical Features of Prediabetes
5. Lipolysis, Incretin, Alpha Cell, and Inflammation in Prediabetes
5.1. Lipolysis
5.2. Incretins
5.3. Alpha Cells
5.4. Inflammation and Prediabetes
6. Pediatric CVD as a Complication of Prediabetes
6.1. Pathophysiology of CVD and Underlying Processes Beginning in Childhood
6.2. Biomarkers of CVD in the Pediatric Population
6.3. Modifiable CVD Risk Factors in Children and Adolescents
7. Developing Therapeutic Approached
7.1. Managing Obesity
7.2. Lifestyle Interventions
7.3. Role of Vitamin D in Pre-Diabetes Progression
7.4. Pharmacotherapy for Obesity and Pre-Diabetes
7.4.1. Metformin
7.4.2. GLP-1 Agonists
7.4.3. Other Incretin-Based Therapies
7.4.4. Other Diabetes Therapies
7.4.5. Phentermine
7.4.6. Orlistat
7.4.7. Medications for Genetic Forms of Obesity
7.5. Metabolic and Bariatric Surgery
8. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycaemia. Available online: https://iris.who.int/server/api/core/bitstreams/ef6a81ae-5db3-4c5c-9136-c047bd8f8344/content (accessed on 22 October 2025).
- Diabetes Canada Clinical Practice Guidelines Expert Committee; Punthakee, Z.; Goldenberg, R.; Katz, P. Definition, Classification and Diagnosis of Diabetes, Prediabetes and Metabolic Syndrome. Can. J. Diabetes 2018, 42, S10–S15. [Google Scholar] [CrossRef]
- Cosentino, F.; Grant, P.J.; Aboyans, V.; Bailey, C.J.; Ceriello, A.; Delgado, V.; Federici, M.; Filippatos, G.; Grobbee, D.E.; Hansen, T.B.; et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur. Heart J. 2020, 41, 255–323, Correction in Eur. Heart J. 2020, 41, 4317. [Google Scholar] [CrossRef]
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119, Correction in Diabetes Res. Clin. Pract. 2023, 204, 110945. [Google Scholar] [CrossRef]
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Hilliard, M.E.; Isaacs, D.; Johnson, E.L.; et al. Addendum. 2. Classification and Diagnosis of Diabetes: Standards of Care in Diabetes-2023. Diabetes Care 2023, 46, 1715. [Google Scholar] [CrossRef]
- Echouffo-Tcheugui, J.B.; Perreault, L.; Ji, L.; Dagogo-Jack, S. Diagnosis and Management of Prediabetes: A Review. JAMA 2023, 329, 1206–1216. [Google Scholar] [CrossRef] [PubMed]
- Bergman, M.; Manco, M.; Sesti, G.; Dankner, R.; Pareek, M.; Jagannathan, R.; Chetrit, A.; Abdul-Ghani, M.; Buysschaert, M.; Olsen, M.H.; et al. Petition to replace current OGTT criteria for diagnosing prediabetes with the 1-hour post-load plasma glucose >/= 155 mg/dl (8.6 mmol/L). Diabetes Res. Clin. Pract. 2018, 146, 18–33. [Google Scholar] [CrossRef] [PubMed]
- Cefalu, W.T. “Prediabetes”: Are There Problems With This Label? No, We Need Heightened Awareness of This Condition! Diabetes Care 2016, 39, 1472–1477. [Google Scholar] [CrossRef] [PubMed]
- Hare, M.J.; Magliano, D.J.; Zimmet, P.Z.; Soderberg, S.; Joonas, N.; Pauvaday, V.; Larhubarbe, J.; Tuomilehto, J.; Kowlessur, S.; Alberti, K.G.; et al. Glucose-independent ethnic differences in HbA1c in people without known diabetes. Diabetes Care 2013, 36, 1534–1540. [Google Scholar] [CrossRef]
- Cai, X.; Zhang, Y.; Li, M.; Wu, J.H.; Mai, L.; Li, J.; Yang, Y.; Hu, Y.; Huang, Y. Association between prediabetes and risk of all cause mortality and cardiovascular disease: Updated meta-analysis. BMJ 2020, 370, m2297. [Google Scholar] [CrossRef]
- Echouffo-Tcheugui, J.B.; Selvin, E. Prediabetes and What It Means: The Epidemiological Evidence. Annu. Rev. Public Health 2021, 42, 59–77. [Google Scholar] [CrossRef]
- Wagner, R.; Selvin, E.; Sehgal, R.; Prystupa, K.; Misra, S.; Fritsche, A.; Heni, M. Beyond Glucose-Rethinking Prediabetes for Precision Prevention. Diabetes Care 2025, 48, dci250054. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ferdinand, K.C.; Gazzaruso, C.; Horowitz, J.D.; Ren, M. Association between the cardiometabolic index and all-cause and cardiovascular mortality in diabetes and prediabetes. Cardiovasc. Diagn. Ther. 2025, 15, 635–652. [Google Scholar] [CrossRef]
- Brannick, B.; Dagogo-Jack, S. Prediabetes and Cardiovascular Disease: Pathophysiology and Interventions for Prevention and Risk Reduction. Endocrinol. Metab. Clin. N. Am. 2018, 47, 33–50. [Google Scholar] [CrossRef]
- Chakkalakal, R.J.; Galaviz, K.I.; Thirunavukkarasu, S.; Shah, M.K.; Narayan, K.M.V. Test and Treat for Prediabetes: A Review of the Health Effects of Prediabetes and the Role of Screening and Prevention. Annu. Rev. Public Health 2024, 45, 151–167. [Google Scholar] [CrossRef]
- Fermin-Martinez, C.A.; Bello-Chavolla, O.Y.; Paz-Cabrera, C.D.; Ramirez-Garcia, D.; Perezalonso-Espinosa, J.; Fernandez-Chirino, L.; Vargas-Vazquez, A.; Diaz-Sanchez, J.P.; Mendez-Labra, P.N.; Nunez-Luna, A.; et al. Prediabetes and Risk of All-Cause and Cause-Specific Mortality: A Prospective Study of 114 062 Adults in Mexico City. J. Clin. Endocrinol. Metab. 2025, 110, 3451–3460. [Google Scholar] [CrossRef]
- Hampl, S.E.; Hassink, S.G.; Skinner, A.C.; Armstrong, S.C.; Barlow, S.E.; Bolling, C.F.; Avila Edwards, K.C.; Eneli, I.; Hamre, R.; Joseph, M.M.; et al. Clinical Practice Guideline for the Evaluation and Treatment of Children and Adolescents With Obesity. Pediatrics 2023, 151, e2022060640. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes-2025. Diabetes Care 2025, 48, S27–S49. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 14. Children and Adolescents: Standards of Care in Diabetes-2025. Diabetes Care 2025, 48, S283–S305. [Google Scholar] [CrossRef] [PubMed]
- Wallace, A.S.; Wang, D.; Shin, J.I.; Selvin, E. Screening and Diagnosis of Prediabetes and Diabetes in US Children and Adolescents. Pediatrics 2020, 146, e20200265. [Google Scholar] [CrossRef]
- Magge, S.N.; Silverstein, J.; Elder, D.; Nadeau, K.; Hannon, T.S. Evaluation and Treatment of Prediabetes in Youth. J. Pediatr. 2020, 219, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Arslanian, S.; Bacha, F.; Grey, M.; Marcus, M.D.; White, N.H.; Zeitler, P. Evaluation and Management of Youth-Onset Type 2 Diabetes: A Position Statement by the American Diabetes Association. Diabetes Care 2018, 41, 2648–2668. [Google Scholar] [CrossRef]
- Andes, L.J.; Cheng, Y.J.; Rolka, D.B.; Gregg, E.W.; Imperatore, G. Prevalence of Prediabetes Among Adolescents and Young Adults in the United States, 2005–2016. JAMA Pediatr. 2020, 174, e194498. [Google Scholar] [CrossRef]
- Han, C.; Song, Q.; Ren, Y.; Chen, X.; Jiang, X.; Hu, D. Global prevalence of prediabetes in children and adolescents: A systematic review and meta-analysis. J. Diabetes 2022, 14, 434–441. [Google Scholar] [CrossRef] [PubMed]
- Perng, W.; Conway, R.; Mayer-Davis, E.; Dabelea, D. Youth-Onset Type 2 Diabetes: The Epidemiology of an Awakening Epidemic. Diabetes Care 2023, 46, 490–499. [Google Scholar] [CrossRef]
- Ouyang, A.; Hu, K.; Chen, L. Trends and risk factors of diabetes and prediabetes in US adolescents, 1999–2020. Diabetes Res. Clin. Pract. 2024, 207, 111022. [Google Scholar] [CrossRef] [PubMed]
- Al Hourani, H.; Atoum, M.; Alzoughool, F.; Al-Shami, I. Screening for non-invasive risk factors of type 2 diabetes in overweight and obese schoolchildren. Endocrinol. Diabetes Nutr. 2021, 68, 527–533. [Google Scholar] [CrossRef]
- US Preventive Services Task Force; Mangione, C.M.; Barry, M.J.; Nicholson, W.K.; Cabana, M.; Chelmow, D.; Coker, T.R.; Davidson, K.W.; Davis, E.M.; Donahue, K.E.; et al. Screening for Prediabetes and Type 2 Diabetes in Children and Adolescents: US Preventive Services Task Force Recommendation Statement. JAMA 2022, 328, 963–967. [Google Scholar] [CrossRef] [PubMed]
- Jonas, D.E.; Vander Schaaf, E.B.; Riley, S.; Allison, B.A.; Middleton, J.C.; Baker, C.; Ali, R.; Voisin, C.E.; LeBlanc, E.S. Screening for Prediabetes and Type 2 Diabetes in Children and Adolescents: Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA 2022, 328, 968–979. [Google Scholar] [CrossRef]
- Singh, T.; Ahmed, T.H.; Mohamed, N.; Elhaj, M.S.; Mohammed, Z.; Paulsingh, C.N.; Mohamed, M.B.; Khan, S. Does Insufficient Sleep Increase the Risk of Developing Insulin Resistance: A Systematic Review. Cureus 2022, 14, e23501. [Google Scholar] [CrossRef] [PubMed]
- Souza, J.F.T.; Monico-Neto, M.; Tufik, S.; Antunes, H.K.M. Sleep Debt and Insulin Resistance: What’s Worse, Sleep Deprivation or Sleep Restriction? Sleep Sci. 2024, 17, e272–e280. [Google Scholar] [CrossRef]
- Savoye, M.; Caprio, S.; Dziura, J.; Camp, A.; Germain, G.; Summers, C.; Li, F.; Shaw, M.; Nowicka, P.; Kursawe, R.; et al. Reversal of early abnormalities in glucose metabolism in obese youth: Results of an intensive lifestyle randomized controlled trial. Diabetes Care 2014, 37, 317–324. [Google Scholar] [CrossRef]
- Smith, K.R.; Meeks, H.; Curtis, D.; Brown, B.B.; Kole, K.; Kowaleski-Jones, L. Family history of type 2 diabetes and the risk of type 2 diabetes among young and middle-aged adults. Chronic Dis. Transl. Med. 2025, 11, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Reinehr, T.; Wabitsch, M.; Kleber, M.; de Sousa, G.; Denzer, C.; Toschke, A.M. Parental diabetes, pubertal stage, and extreme obesity are the main risk factors for prediabetes in children and adolescents: A simple risk score to identify children at risk for prediabetes. Pediatr. Diabetes 2009, 10, 395–400. [Google Scholar] [CrossRef]
- Shah, A.S.; Nadeau, K.J.; Dabelea, D.; Redondo, M.J. Spectrum of Phenotypes and Causes of Type 2 Diabetes in Children. Annu. Rev. Med. 2022, 73, 501–515. [Google Scholar] [CrossRef] [PubMed]
- Dagogo-Jack, S.; Kazemi, E.J.; Doherty, L.; Srikanthan, P.; Echouffo-Tcheugui, J.B.; Knowler, W.C.; Kahn, S.E.; Mudaliar, S.; Temprosa, M.; Group, D.P.P.R. Impact of Parental or First-Degree Family History of Diabetes on Diabetes Incidence and Progression During Long-term Follow-up in the Diabetes Prevention Program Outcomes Study. Diabetes Care 2025, 48, 1695–1703. [Google Scholar] [CrossRef]
- Hamman, R.F.; Bell, R.A.; Dabelea, D.; D’Agostino, R.B., Jr.; Dolan, L.; Imperatore, G.; Lawrence, J.M.; Linder, B.; Marcovina, S.M.; Mayer-Davis, E.J.; et al. The SEARCH for Diabetes in Youth study: Rationale, findings, and future directions. Diabetes Care 2014, 37, 3336–3344. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 15. Management of Diabetes in Pregnancy: Standards of Care in Diabetes-2025. Diabetes Care 2025, 48, S306–S320. [Google Scholar] [CrossRef] [PubMed]
- Chung, W.K.; Erion, K.; Florez, J.C.; Hattersley, A.T.; Hivert, M.F.; Lee, C.G.; McCarthy, M.I.; Nolan, J.J.; Norris, J.M.; Pearson, E.R.; et al. Precision Medicine in Diabetes: A Consensus Report From the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2020, 43, 1617–1635. [Google Scholar] [CrossRef]
- Khandelwal, R.; Meshram, R.J.; Patel, A.; Reddy, S.; Manek, Y.B. Maternal Weight and Gestational Diabetes Impacts on Child Health: A Narrative Review. Cureus 2024, 16, e70192. [Google Scholar] [CrossRef]
- Osmulski, M.E.; Yu, Y.; Kuang, A.; Josefson, J.L.; Hivert, M.F.; Scholtens, D.M.; Lowe, W.L., Jr. Subtypes of Gestational Diabetes Mellitus Are Differentially Associated With Newborn and Childhood Metabolic Outcomes. Diabetes Care 2025, 48, 390–399. [Google Scholar] [CrossRef] [PubMed]
- Phaloprakarn, C.; Jenkumwong, P.; Suthasmalee, S.; Chavanisakun, C.; Tangjitgamol, S. Umbilical venous blood flow and its association with placental pathology in pregnancies complicated by gestational diabetes mellitus. Acta Obs. Gynecol. Scand. 2025, 104, 2244–2253. [Google Scholar] [CrossRef]
- Yan, Y.S.; Feng, C.; Yu, D.Q.; Tian, S.; Zhou, Y.; Huang, Y.T.; Cai, Y.T.; Chen, J.; Zhu, M.M.; Jin, M. Long-term outcomes and potential mechanisms of offspring exposed to intrauterine hyperglycemia. Front. Nutr. 2023, 10, 1067282. [Google Scholar] [CrossRef]
- Hivert, M.F.; Backman, H.; Benhalima, K.; Catalano, P.; Desoye, G.; Immanuel, J.; McKinlay, C.J.D.; Meek, C.L.; Nolan, C.J.; Ram, U.; et al. Pathophysiology from preconception, during pregnancy, and beyond. Lancet 2024, 404, 158–174. [Google Scholar] [CrossRef] [PubMed]
- Eletri, L.; Mitanchez, D. How Do the Different Types of Maternal Diabetes during Pregnancy Influence Offspring Outcomes? Nutrients 2022, 14, 3870. [Google Scholar] [CrossRef] [PubMed]
- Clausen, T.D.; Mathiesen, E.R.; Hansen, T.; Pedersen, O.; Jensen, D.M.; Lauenborg, J.; Damm, P. High prevalence of type 2 diabetes and pre-diabetes in adult offspring of women with gestational diabetes mellitus or type 1 diabetes: The role of intrauterine hyperglycemia. Diabetes Care 2008, 31, 340–346. [Google Scholar] [CrossRef]
- Luk, A.; Wild, S.H.; Jones, S.; Anjana, R.M.; Hivert, M.F.; McCaffrey, J.; Gregg, E.W.; Misra, S. Early-onset type 2 diabetes: The next major diabetes transition. Lancet 2025, 405, 2313–2326, Correction in Lancet 2025, 406, 1564. [Google Scholar] [CrossRef]
- Burlina, S.; Dalfra, M.G.; Lapolla, A. Short- and long-term consequences for offspring exposed to maternal diabetes: A review. J. Matern. Fetal Neonatal Med. 2019, 32, 687–694. [Google Scholar] [CrossRef]
- Kelstrup, L.; Damm, P.; Mathiesen, E.R.; Hansen, T.; Vaag, A.A.; Pedersen, O.; Clausen, T.D. Insulin resistance and impaired pancreatic beta-cell function in adult offspring of women with diabetes in pregnancy. J. Clin. Endocrinol. Metab. 2013, 98, 3793–3801. [Google Scholar] [CrossRef] [PubMed]
- Kelstrup, L.; Clausen, T.D.; Mathiesen, E.R.; Hansen, T.; Holst, J.J.; Damm, P. Incretin and glucagon levels in adult offspring exposed to maternal diabetes in pregnancy. J. Clin. Endocrinol. Metab. 2015, 100, 1967–1975. [Google Scholar] [CrossRef]
- Damm, P.; Houshmand-Oeregaard, A.; Kelstrup, L.; Lauenborg, J.; Mathiesen, E.R.; Clausen, T.D. Gestational diabetes mellitus and long-term consequences for mother and offspring: A view from Denmark. Diabetologia 2016, 59, 1396–1399. [Google Scholar] [CrossRef]
- Thornton, J.M.; Shah, N.M.; Lillycrop, K.A.; Cui, W.; Johnson, M.R.; Singh, N. Multigenerational diabetes mellitus. Front. Endocrinol. 2023, 14, 1245899. [Google Scholar] [CrossRef]
- Bacong, A.M.; Njuguna, V.; Darbinian, J.; Rodriguez, L.A.; Gunderson, E.P.; Greenspan, L.C.; Rajeshuni, N.; Palaniappan, L.; Lo, J.C. High Prevalence of Prediabetes Among Asian and Pacific Islander Adolescents With Overweight or Obesity in a Primary Care Population. Diabetes Care 2025, 48, 1418–1424. [Google Scholar] [CrossRef]
- Zamora-Kapoor, A.; Fyfe-Johnson, A.; Omidpanah, A.; Buchwald, D.; Sinclair, K. Risk factors for pre-diabetes and diabetes in adolescence and their variability by race and ethnicity. Prev. Med. 2018, 115, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Cowie, C.C.; Casagrande, S.S.; Geiss, L.S. Prevalence and Incidence of Type 2 Diabetes and Prediabetes. In Diabetes in America, 3rd ed.; Cowie, C.C., Casagrande, S.S., Menke, A., Cissell, M.A., Eberhardt, M.S., Meigs, J.B., Gregg, E.W., Knowler, W.C., Barrett-Connor, E., Becker, D.J., et al., Eds.; National Institutes of Health: Bethesda, MD, USA, 2018. [Google Scholar]
- Bullock, A.; Sheff, K.; Hora, I.; Burrows, N.R.; Benoit, S.R.; Saydah, S.H.; Hardin, C.L.; Gregg, E.W. Prevalence of diagnosed diabetes in American Indian and Alaska Native adults, 2006–2017. BMJ Open Diabetes Res. Care 2020, 8, e001218. [Google Scholar] [CrossRef] [PubMed]
- Harrison, C.; Peyyety, V.; Rodriguez Gonzalez, A.; Chivate, R.; Qin, X.; Zupa, M.F.; Ragavan, M.I.; Vajravelu, M.E. Prediabetes Prevalence by Adverse Social Determinants of Health in Adolescents. JAMA Netw. Open 2024, 7, e2416088. [Google Scholar] [CrossRef]
- Narayan, K.M.V.; Kanaya, A.M. Why are South Asians prone to type 2 diabetes? A hypothesis based on underexplored pathways. Diabetologia 2020, 63, 1103–1109. [Google Scholar] [CrossRef] [PubMed]
- Elsaid, M.I.; Bridges, J.F.P.; Mumtaz, K.; Li, N.; Sobotka, L.; Rustgi, V.K.; Paskett, E.D. The impact of metabolic syndrome severity on racial and ethnic disparities in Metabolic Dysfunction-Associated Steatotic Liver Disease. PLoS ONE 2024, 19, e0299836. [Google Scholar] [CrossRef]
- Carayol, J.; Hosking, J.; Pinkney, J.; Marquis, J.; Charpagne, A.; Metairon, S.; Jeffery, A.; Hager, J.; Martin, F.P. Genetic Susceptibility Determines beta-Cell Function and Fasting Glycemia Trajectories Throughout Childhood: A 12-Year Cohort Study (EarlyBird 76). Diabetes Care 2020, 43, 653–660. [Google Scholar] [CrossRef]
- Ochoa-Allemant, P.; Marrero, J.A.; Serper, M. Racial and ethnic differences and the role of unfavorable social determinants of health across steatotic liver disease subtypes in the United States. Hepatol. Commun. 2023, 7, e0324. [Google Scholar] [CrossRef]
- O’Brien, M.J.; Kirley, K.A.; Ackermann, R.T. Reducing Health Disparities Through Prevention: Role of the U.S. Preventive Services Task Force. Am. J. Prev. Med. 2020, 58, 724–727. [Google Scholar] [CrossRef]
- Ram, Y.; Xu, Y.; Cheng, A.; Dunn, T.; Ajjan, R.A. Variation in the relationship between fasting glucose and HbA1c: Implications for the diagnosis of diabetes in different age and ethnic groups. BMJ Open Diabetes Res. Care 2024, 12, e003470. [Google Scholar] [CrossRef]
- Bhagyanathan, M.; Dhayanithy, D.; Parambath, V.A.; Bijayraj, R. Acanthosis nigricans: A screening test for insulin resistance—An important risk factor for diabetes mellitus type-2. J. Fam. Med. Prim. Care 2017, 6, 43–46. [Google Scholar] [CrossRef]
- Spurr, S.; Bally, J.; Hill, P.; Gray, K.; Newman, P.; Hutton, A. Exploring the Prevalence of Undiagnosed Prediabetes, Type 2 Diabetes Mellitus, and Risk Factors in Adolescents: A Systematic Review. J. Pediatr. Nurs. 2020, 50, 94–104. [Google Scholar] [CrossRef]
- Hoe, F.M.; Darbinian, J.A.; Greenspan, L.C.; Lo, J.C. Hemoglobin A1c and Type 2 Diabetes Incidence Among Adolescents With Overweight and Obesity. JAMA Netw. Open 2024, 7, e2351322. [Google Scholar] [CrossRef]
- Rafalson, L.; Pham, T.H.; Willi, S.M.; Marcus, M.; Jessup, A.; Baranowski, T. The association between acanthosis nigricans and dysglycemia in an ethnically diverse group of eighth grade students. Obesity 2013, 21, E328–E333. [Google Scholar] [CrossRef] [PubMed]
- Brickman, W.J.; Huang, J.; Silverman, B.L.; Metzger, B.E. Acanthosis nigricans identifies youth at high risk for metabolic abnormalities. J. Pediatr. 2010, 156, 87–92. [Google Scholar] [CrossRef]
- Pollock, S.; Swamy, M.R.; Tremblay, E.S.; Shen, L. Acanthosis nigricans in the pediatric population: A narrative review of the current approach to management in primary care. Pediatr. Med. 2022, 5, 42. [Google Scholar] [CrossRef]
- Maguolo, A.; Maffeis, C. Acanthosis nigricans in childhood: A cutaneous marker that should not be underestimated, especially in obese children. Acta Paediatr. 2020, 109, 481–487. [Google Scholar] [CrossRef]
- Daye, M.; Selver Eklioglu, B.; Atabek, M.E. Relationship of acanthosis nigricans with metabolic syndrome in obese children. J. Pediatr. Endocrinol. Metab. 2020, 33, 1563–1568. [Google Scholar] [CrossRef]
- Prosperi, S.; Chiarelli, F. Insulin resistance, metabolic syndrome and polycystic ovaries: An intriguing conundrum. Front. Endocrinol. 2025, 16, 1669716. [Google Scholar] [CrossRef] [PubMed]
- Cioana, M.; Deng, J.; Nadarajah, A.; Hou, M.; Qiu, Y.; Chen, S.S.J.; Rivas, A.; Banfield, L.; Alfaraidi, H.; Alotaibi, A.; et al. Prevalence of Polycystic Ovary Syndrome in Patients With Pediatric Type 2 Diabetes: A Systematic Review and Meta-analysis. JAMA Netw. Open 2022, 5, e2147454. [Google Scholar] [CrossRef]
- Cree-Green, M.; Cai, N.; Thurston, J.E.; Coe, G.V.; Newnes, L.; Garcia-Reyes, Y.; Baumgartner, A.D.; Pyle, L.; Nadeau, K.J. Using simple clinical measures to predict insulin resistance or hyperglycemia in girls with polycystic ovarian syndrome. Pediatr. Diabetes 2018, 19, 1370–1378. [Google Scholar] [CrossRef]
- Hudnut-Beumler, J.; Kaar, J.L.; Taylor, A.; Kelsey, M.M.; Nadeau, K.J.; Zeitler, P.; Snell-Bergeon, J.; Pyle, L.; Cree-Green, M. Development of type 2 diabetes in adolescent girls with polycystic ovary syndrome and obesity. Pediatr. Diabetes 2021, 22, 699–706. [Google Scholar] [CrossRef] [PubMed]
- Palmert, M.R.; Gordon, C.M.; Kartashov, A.I.; Legro, R.S.; Emans, S.J.; Dunaif, A. Screening for abnormal glucose tolerance in adolescents with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2002, 87, 1017–1023. [Google Scholar] [CrossRef]
- Houston, E.J.; Templeman, N.M. Reappraising the relationship between hyperinsulinemia and insulin resistance in PCOS. J. Endocrinol. 2025, 265, e240269. [Google Scholar] [CrossRef]
- Fauser, B.C.; Tarlatzis, B.C.; Rebar, R.W.; Legro, R.S.; Balen, A.H.; Lobo, R.; Carmina, E.; Chang, J.; Yildiz, B.O.; Laven, J.S.; et al. Consensus on women’s health aspects of polycystic ovary syndrome (PCOS): The Amsterdam ESHRE/ASRM-Sponsored 3rd PCOS Consensus Workshop Group. Fertil. Steril. 2012, 97, 28–38 e25. [Google Scholar] [CrossRef]
- Engmann, L.; Jin, S.; Sun, F.; Legro, R.S.; Polotsky, A.J.; Hansen, K.R.; Coutifaris, C.; Diamond, M.P.; Eisenberg, E.; Zhang, H.; et al. Racial and ethnic differences in the polycystic ovary syndrome metabolic phenotype. Am. J. Obs. Gynecol. 2017, 216, 493.e1–493.e13. [Google Scholar] [CrossRef] [PubMed]
- Saei Ghare Naz, M.; Mousavi, M.; Firouzi, F.; Momenan, A.A.; Azizi, F.; Ramezani Tehrani, F. Association Between Insulin Resistance Indices and Liver Function Parameters Among Women With Polycystic Ovary Syndrome. Endocrinol. Diabetes Metab. 2024, 7, e490. [Google Scholar] [CrossRef] [PubMed]
- Fields, E.L.; Trent, M.E. Treatment Considerations for the Cardiometabolic Signs of Polycystic Ovary Syndrome: A Review of the Literature Since the 2013 Endocrine Society Clinical Practice Guidelines. JAMA Pediatr. 2016, 170, 502–507. [Google Scholar] [CrossRef] [PubMed]
- Geraci, G.; Riccio, C.; Oliva, F.; Gabrielli, D.; Colivicchi, F.; Grimaldi, M.; Facchinetti, F.; Unfer, V. Women with PCOS have a heightened risk of cardiometabolic and cardiovascular diseases: Statement from the Experts Group on Inositol in Basic and Clinical Research and PCOS (EGOI-PCOS) and Italian Association of Hospital Cardiologists (ANMCO). Front. Cardiovasc. Med. 2025, 12, 1520490. [Google Scholar] [CrossRef]
- Gupta, J.; Antal, Z.; Mauer, E.; Gerber, L.M.; An, A.; Censani, M. Dysglycemia screening with oral glucose tolerance test in adolescents with polycystic ovary syndrome and relationship with obesity. BMC Endocr. Disord. 2022, 22, 180. [Google Scholar] [CrossRef]
- Faienza, M.F.; Baima, J.; Cecere, V.; Monteduro, M.; Farella, I.; Vitale, R.; Antoniotti, V.; Urbano, F.; Tini, S.; Lenzi, F.R.; et al. Fructose Intake and Unhealthy Eating Habits Are Associated with MASLD in Pediatric Obesity: A Cross-Sectional Pilot Study. Nutrients 2025, 17, 631. [Google Scholar] [CrossRef]
- Taskinen, M.R.; Packard, C.J.; Boren, J. Dietary Fructose and the Metabolic Syndrome. Nutrients 2019, 11, 1987. [Google Scholar] [CrossRef]
- Giussani, M.; Lieti, G.; Orlando, A.; Parati, G.; Genovesi, S. Fructose Intake, Hypertension and Cardiometabolic Risk Factors in Children and Adolescents: From Pathophysiology to Clinical Aspects. A Narrative Review. Front. Med. 2022, 9, 792949. [Google Scholar] [CrossRef]
- Faienza, M.F.; Cognetti, E.; Farella, I.; Antonioli, A.; Tini, S.; Antoniotti, V.; Prodam, F. Dietary fructose: From uric acid to a metabolic switch in pediatric metabolic dysfunction-associated steatotic liver disease. Crit. Rev. Food Sci. Nutr. 2025, 65, 4583–4598. [Google Scholar] [CrossRef] [PubMed]
- Ruperez, A.I.; Mesana, M.I.; Moreno, L.A. Dietary sugars, metabolic effects and child health. Curr. Opin. Clin. Nutr. Metab. Care 2019, 22, 206–216. [Google Scholar] [CrossRef]
- Sundheim, B.; Hirani, K.; Blaschke, M.; Lemos, J.R.N.; Mittal, R. Pre-Type 1 Diabetes in Adolescents and Teens: Screening, Nutritional Interventions, Beta-Cell Preservation, and Psychosocial Impacts. J. Clin. Med. 2025, 14, 383. [Google Scholar] [CrossRef] [PubMed]
- Van Hulst, A.; Paradis, G.; Harnois-Leblanc, S.; Benedetti, A.; Drapeau, V.; Henderson, M. Lowering Saturated Fat and Increasing Vegetable and Fruit Intake May Increase Insulin Sensitivity 2 Years Later in Children with a Family History of Obesity. J. Nutr. 2018, 148, 1838–1844. [Google Scholar] [CrossRef]
- Noll, C.; Carpentier, A.C. Dietary fatty acid metabolism in prediabetes. Curr. Opin. Lipidol. 2017, 28, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Guess, N.; Perreault, L.; Kerege, A.; Strauss, A.; Bergman, B.C. Dietary Fatty Acids Differentially Associate with Fasting Versus 2-Hour Glucose Homeostasis: Implications for The Management of Subtypes of Prediabetes. PLoS ONE 2016, 11, e0150148. [Google Scholar] [CrossRef]
- Janssen, J. The Causal Role of Ectopic Fat Deposition in the Pathogenesis of Metabolic Syndrome. Int. J. Mol. Sci. 2024, 25, 13238. [Google Scholar] [CrossRef]
- Neyman, A.; Hannon, T.S.; Committee on Nutrition. Low-Carbohydrate Diets in Children and Adolescents With or at Risk for Diabetes. Pediatrics 2023, 152, e2023063755. [Google Scholar] [CrossRef]
- Styne, D.M.; Arslanian, S.A.; Connor, E.L.; Farooqi, I.S.; Murad, M.H.; Silverstein, J.H.; Yanovski, J.A. Pediatric Obesity-Assessment, Treatment, and Prevention: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2017, 102, 709–757. [Google Scholar] [CrossRef]
- Blancas-Sanchez, I.M.; Del Rosal Jurado, M.; Aparicio-Martinez, P.; Quintana Navarro, G.; Vaquero-Abellan, M.; Castro Jimenez, R.A.; Fonseca Pozo, F.J. A Mediterranean-Diet-Based Nutritional Intervention for Children with Prediabetes in a Rural Town: A Pilot Randomized Controlled Trial. Nutrients 2022, 14, 3614. [Google Scholar] [CrossRef]
- Casas, R.; Ruiz-Leon, A.M.; Argente, J.; Alasalvar, C.; Bajoub, A.; Bertomeu, I.; Caroli, M.; Castro-Barquero, S.; Crispi, F.; Delarue, J.; et al. A New Mediterranean Lifestyle Pyramid for Children and Youth: A Critical Lifestyle Tool for Preventing Obesity and Associated Cardiometabolic Diseases in a Sustainable Context. Adv. Nutr. 2025, 16, 100381. [Google Scholar] [CrossRef]
- Lascar, N.; Brown, J.; Pattison, H.; Barnett, A.H.; Bailey, C.J.; Bellary, S. Type 2 diabetes in adolescents and young adults. Lancet Diabetes Endocrinol. 2018, 6, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Gow, M.L.; Garnett, S.P.; Baur, L.A.; Lister, N.B. The Effectiveness of Different Diet Strategies to Reduce Type 2 Diabetes Risk in Youth. Nutrients 2016, 8, 486. [Google Scholar] [CrossRef] [PubMed]
- Calcaterra, V.; Cena, H.; Rossi, V.; Santero, S.; Bianchi, A.; Zuccotti, G. Ultra-Processed Food, Reward System and Childhood Obesity. Children 2023, 10, 804. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee for Diabetes. 14. Children and Adolescents: Standards of Care in Diabetes-2026. Diabetes Care 2026, 49, S297–S320. [Google Scholar] [CrossRef]
- Prakoso, D.A.; Mahendradhata, Y.; Istiono, W. Family Involvement to Stop the Conversion of Prediabetes to Diabetes. Korean J. Fam. Med. 2023, 44, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Wysham, C.; Shubrook, J. Beta-cell failure in type 2 diabetes: Mechanisms, markers, and clinical implications. Postgrad. Med. 2020, 132, 676–686. [Google Scholar] [CrossRef]
- Li, M.C.; Zhang, J.L.; Li, H.G.; Li, Y.; Wang, C.; Zhu, H.L.; Liu, Z.Y. Risk of Incident Diabetes and Cardiovascular Diseases: Prevention Opportunities With the American Heart Association’s Life’s Essential 8 in Individuals With Prediabetes Bearing Different Genetic Predisposition. J. Am. Nutr. Assoc. 2025, 1–10. [Google Scholar] [CrossRef]
- Castorani, V.; Polidori, N.; Giannini, C.; Blasetti, A.; Chiarelli, F. Insulin resistance and type 2 diabetes in children. Ann. Pediatr. Endocrinol. Metab. 2020, 25, 217–226. [Google Scholar] [CrossRef]
- Ng, H.Y.; Chan, L.T.W. Prediabetes in children and adolescents: An updated review. World J. Clin. Pediatr. 2023, 12, 263–272. [Google Scholar] [CrossRef]
- Giri, B.; Dey, S.; Das, T.; Sarkar, M.; Banerjee, J.; Dash, S.K. Chronic hyperglycemia mediated physiological alteration and metabolic distortion leads to organ dysfunction, infection, cancer progression and other pathophysiological consequences: An update on glucose toxicity. Biomed. Pharmacother. 2018, 107, 306–328. [Google Scholar] [CrossRef]
- Khan, R.M.M.; Chua, Z.J.Y.; Tan, J.C.; Yang, Y.; Liao, Z.; Zhao, Y. From Pre-Diabetes to Diabetes: Diagnosis, Treatments and Translational Research. Medicina 2019, 55, 546. [Google Scholar] [CrossRef] [PubMed]
- Beulens, J.; Rutters, F.; Ryden, L.; Schnell, O.; Mellbin, L.; Hart, H.E.; Vos, R.C. Risk and management of pre-diabetes. Eur. J. Prev. Cardiol. 2019, 26, 47–54. [Google Scholar] [CrossRef]
- Pellegrini, V.; La Grotta, R.; Carreras, F.; Giuliani, A.; Sabbatinelli, J.; Olivieri, F.; Berra, C.C.; Ceriello, A.; Prattichizzo, F. Inflammatory Trajectory of Type 2 Diabetes: Novel Opportunities for Early and Late Treatment. Cells 2024, 13, 1662. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Park, S.Y.; Choi, C.S. Insulin Resistance: From Mechanisms to Therapeutic Strategies. Diabetes Metab. J. 2022, 46, 15–37. [Google Scholar] [CrossRef] [PubMed]
- An, J.; Nichols, G.A.; Qian, L.; Munis, M.A.; Harrison, T.N.; Li, Z.; Wei, R.; Weiss, T.; Rajpathak, S.; Reynolds, K. Prevalence and incidence of microvascular and macrovascular complications over 15 years among patients with incident type 2 diabetes. BMJ Open Diabetes Res. Care 2021, 9, e001847. [Google Scholar] [CrossRef] [PubMed]
- Anson, M.; Henney, A.E.; Edwards, H.; Ibarburu, G.H.; Mordi, I.; Jaffar, S.; Garrib, A.; Lip, G.Y.H.; Wang, D.; Nabrdalik, K.; et al. The rapidly increasing incidence of type 2 diabetes and macrovascular and microvascular complications disproportionately affects younger age groups: A decade of evidence from an international federated database. Diabetes Res. Clin. Pract. 2025, 228, 112431. [Google Scholar] [CrossRef]
- Tommerdahl, K.L.; Shapiro, A.L.B.; Nehus, E.J.; Bjornstad, P. Early microvascular complications in type 1 and type 2 diabetes: Recent developments and updates. Pediatr. Nephrol. 2022, 37, 79–93. [Google Scholar] [CrossRef]
- Zeng, X.; Lian, X.; Wang, Y.; Shang, X.; Yu, H. Association of childhood-adulthood body size trajectories with risk of micro- and macrovascular complications among individuals with type 2 diabetes: A prospective study. Diabetol. Metab. Syndr. 2024, 16, 289. [Google Scholar] [CrossRef]
- Ping, W.X.; Hu, S.; Su, J.Q.; Ouyang, S.Y. Metabolic disorders in prediabetes: From mechanisms to therapeutic management. World J. Diabetes 2024, 15, 361–377. [Google Scholar] [CrossRef]
- Palladino, R.; Tabak, A.G.; Khunti, K.; Valabhji, J.; Majeed, A.; Millett, C.; Vamos, E.P. Association between pre-diabetes and microvascular and macrovascular disease in newly diagnosed type 2 diabetes. BMJ Open Diabetes Res. Care 2020, 8, e001061. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, M.; Sivaprasad, S.; Thompson, P.; Perry, G. Retinal Neurodegeneration in Euglycemic Hyperinsulinemia, Prediabetes, and Diabetes. Ophthalmic Res. 2023, 66, 385–397. [Google Scholar] [CrossRef]
- Kropp, M.; Golubnitschaja, O.; Mazurakova, A.; Koklesova, L.; Sargheini, N.; Vo, T.K.S.; de Clerck, E.; Polivka, J., Jr.; Potuznik, P.; Polivka, J.; et al. Diabetic retinopathy as the leading cause of blindness and early predictor of cascading complications-risks and mitigation. EPMA J. 2023, 14, 21–42. [Google Scholar] [CrossRef] [PubMed]
- Kang, Q.; Yang, C. Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biol. 2020, 37, 101799. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Liu, H.; Liang, Y.; Wu, L.; Zheng, Q.; Wu, J. Association Between Glycated Hemoglobin and Diabetic Retinopathy in Individuals with Diabetes: A Focus on the Modifying Effect of Ambulatory Blood Pressure. Clin. Interv. Aging 2025, 20, 1029–1038. [Google Scholar] [CrossRef]
- Aljehani, E.A.; Alhawiti, A.E.; Mohamad, R.M. Prevalence and Determinants of Diabetic Retinopathy Among Type 2 Diabetic Patients in Saudi Arabia: A Systematic Review. Cureus 2023, 15, e42771. [Google Scholar] [CrossRef] [PubMed]
- Porter, M.; Channa, R.; Wagner, J.; Prichett, L.; Liu, T.Y.A.; Wolf, R.M. Prevalence of diabetic retinopathy in children and adolescents at an urban tertiary eye care center. Pediatr. Diabetes 2020, 21, 856–862. [Google Scholar] [CrossRef]
- Kirthi, V.; Nderitu, P.; Alam, U.; Evans, J.; Nevitt, S.; Malik, R.A.; Jackson, T.L. Prevalence of retinopathy in prediabetes: Protocol for a systematic review and meta-analysis. BMJ Open 2021, 11, e040997. [Google Scholar] [CrossRef] [PubMed]
- White, N.H.; Pan, Q.; Knowler, W.C.; Schroeder, E.B.; Dabelea, D.; Chew, E.Y.; Blodi, B.; Goldberg, R.B.; Pi-Sunyer, X.; Darwin, C.; et al. Risk Factors for the Development of Retinopathy in Prediabetes and Type 2 Diabetes: The Diabetes Prevention Program Experience. Diabetes Care 2022, 45, 2653–2661. [Google Scholar] [CrossRef]
- Ziegler, D.; Herder, C.; Papanas, N. Neuropathy in prediabetes. Diabetes Metab. Res. Rev. 2023, 39, e3693. [Google Scholar] [CrossRef]
- Kazamel, M.; Stino, A.M.; Smith, A.G. Metabolic syndrome and peripheral neuropathy. Muscle Nerve 2021, 63, 285–293. [Google Scholar] [CrossRef]
- Eid, S.A.; Rumora, A.E.; Beirowski, B.; Bennett, D.L.; Hur, J.; Savelieff, M.G.; Feldman, E.L. New perspectives in diabetic neuropathy. Neuron 2023, 111, 2623–2641. [Google Scholar] [CrossRef] [PubMed]
- Okdahl, T.; Wegeberg, A.M.; Jensen, M.M.; Quist, J.S.; Brock, C. Glycaemic control, low levels of high-density lipoprotein, and high cardiovascular risk are associated with cardiovascular autonomic neuropathy. Diabetol. Metab. Syndr. 2025, 17, 313. [Google Scholar] [CrossRef] [PubMed]
- Papanas, N.; Vinik, A.I.; Ziegler, D. Neuropathy in prediabetes: Does the clock start ticking early? Nat. Rev. Endocrinol. 2011, 7, 682–690. [Google Scholar] [CrossRef]
- Kirthi, V.; Perumbalath, A.; Brown, E.; Nevitt, S.; Petropoulos, I.N.; Burgess, J.; Roylance, R.; Cuthbertson, D.J.; Jackson, T.L.; Malik, R.A.; et al. Prevalence of peripheral neuropathy in pre-diabetes: A systematic review. BMJ Open Diabetes Res. Care 2021, 9, e002040. [Google Scholar] [CrossRef]
- Jaiswal, M.; Divers, J.; Urbina, E.M.; Dabelea, D.; Bell, R.A.; Pettitt, D.J.; Imperatore, G.; Pihoker, C.; Dolan, L.M.; Liese, A.D.; et al. Cardiovascular autonomic neuropathy in adolescents and young adults with type 1 and type 2 diabetes: The SEARCH for Diabetes in Youth Cohort Study. Pediatr. Diabetes 2018, 19, 680–689. [Google Scholar] [CrossRef]
- Khan, M.M.; Roberson, S.; Reid, K.; Jordan, M.; Odoi, A. Prevalence and predictors of stroke among individuals with prediabetes and diabetes in Florida. BMC Public Health 2022, 22, 243. [Google Scholar] [CrossRef] [PubMed]
- Welsh, C.; Welsh, P.; Celis-Morales, C.A.; Mark, P.B.; Mackay, D.; Ghouri, N.; Ho, F.K.; Ferguson, L.D.; Brown, R.; Lewsey, J.; et al. Glycated Hemoglobin, Prediabetes, and the Links to Cardiovascular Disease: Data From UK Biobank. Diabetes Care 2020, 43, 440–445. [Google Scholar] [CrossRef] [PubMed]
- Smetanina, N.; Valickas, R.; Vitkauskiene, A.; Albertsson-Wikland, K.; Verkauskiene, R. Prevalence of Metabolic Syndrome and Impaired Glucose Metabolism among 10- to 17-Year-Old Overweight and Obese Lithuanian Children and Adolescents. Obes. Facts 2021, 14, 271–282. [Google Scholar] [CrossRef]
- Neves, J.S.; Correa, S.; Baeta Baptista, R.; Bigotte Vieira, M.; Waikar, S.S.; Mc Causland, F.R. Association of Prediabetes With CKD Progression and Adverse Cardiovascular Outcomes: An Analysis of the CRIC Study. J. Clin. Endocrinol. Metab. 2020, 105, e1772–e1780. [Google Scholar] [CrossRef] [PubMed]
- Rico Fontalvo, J.; Soler, M.J.; Daza Arnedo, R.; Navarro-Blackaller, G.; Medina-Gonzalez, R.; Rodriguez Yanez, T.; Cardona-Blanco, M.; Cabrales-Juan, J.; Uparrela-Gulfo, I.; Chavez-Iniguez, J.S. Prediabetes and CKD: Does a causal relationship exist. Nefrología 2024, 44, 628–638. [Google Scholar] [CrossRef] [PubMed]
- Manouchehri, M.; Cea-Soriano, L.; Franch-Nadal, J.; Ruiz, A.; Goday, A.; Villanueva, R.; Diez-Espino, J.; Mata-Cases, M.; Giraldez-Garcia, C.; Regidor, E.; et al. Heterogeneity in the association between prediabetes categories and reduction on glomerular filtration rate in a 5-year follow-up. Sci. Rep. 2022, 12, 7373. [Google Scholar] [CrossRef]
- Kim, G.S.; Oh, H.H.; Kim, S.H.; Kim, B.O.; Byun, Y.S. Association between prediabetes (defined by HbA1(C), fasting plasma glucose, and impaired glucose tolerance) and the development of chronic kidney disease: A 9-year prospective cohort study. BMC Nephrol. 2019, 20, 130. [Google Scholar] [CrossRef]
- Chen, C.; Liu, G.; Yu, X.; Yu, Y.; Liu, G. Association between Prediabetes and Renal Dysfunction from a Community-based Prospective Study. Int. J. Med. Sci. 2020, 17, 1515–1521. [Google Scholar] [CrossRef]
- Sebastian, M.J.; Khan, S.K.; Pappachan, J.M.; Jeeyavudeen, M.S. Diabetes and cognitive function: An evidence-based current perspective. World J. Diabetes 2023, 14, 92–109. [Google Scholar] [CrossRef]
- Pal, K.; Mukadam, N.; Petersen, I.; Cooper, C. Mild cognitive impairment and progression to dementia in people with diabetes, prediabetes and metabolic syndrome: A systematic review and meta-analysis. Soc. Psychiatry Psychiatr. Epidemiol. 2018, 53, 1149–1160. [Google Scholar] [CrossRef]
- Romera, I.C.; Redondo-Anton, J.; Rubio-de Santos, M.; Diaz-Cerezo, S.; Artime, E.; Rafels-Ybern, A.; Ortega, E.; Conget, I. The Association Between HbA1c Levels and the Risk of Myocardial Infarction and Stroke in People with Type 2 Diabetes: A Post Hoc Analysis of the REPRESENT Study. Diabetes Ther. 2025, 16, 1229–1239. [Google Scholar] [CrossRef]
- Mitsios, J.P.; Ekinci, E.I.; Mitsios, G.P.; Churilov, L.; Thijs, V. Relationship Between Glycated Hemoglobin and Stroke Risk: A Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2018, 7, e007858. [Google Scholar] [CrossRef] [PubMed]
- Grosu, S.; Lorbeer, R.; Hartmann, F.; Rospleszcz, S.; Bamberg, F.; Schlett, C.L.; Galie, F.; Selder, S.; Auweter, S.; Heier, M.; et al. White matter hyperintensity volume in pre-diabetes, diabetes and normoglycemia. BMJ Open Diabetes Res. Care 2021, 9, e002050. [Google Scholar] [CrossRef]
- Zhou, J.B.; Tang, X.Y.; Han, Y.P.; Luo, F.Q.; Cardoso, M.A.; Qi, L. Prediabetes and structural brain abnormalities: Evidence from observational studies. Diabetes Metab. Res. Rev. 2020, 36, e3261. [Google Scholar] [CrossRef] [PubMed]
- Jing, J.; Zhou, Y.; Pan, Y.; Cai, X.; Zhu, W.; Zhang, Z.; Li, Z.; Liu, C.; Meng, X.; Cheng, J.; et al. Reduced white matter microstructural integrity in prediabetes and diabetes: A population-based study. EBioMedicine 2022, 82, 104144. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, Z.; Chen, Y.; Dang, M.; Chen, K.; Sang, F.; Fang, H.; Zhang, Z. Cerebellar gray matter and white matter damage among older adults with prediabetes. Diabetes Res. Clin. Pract. 2024, 213, 111731. [Google Scholar] [CrossRef]
- Makino, K.; Lee, S.; Bae, S.; Chiba, I.; Harada, K.; Katayama, O.; Shinkai, Y.; Makizako, H.; Shimada, H. Diabetes and Prediabetes Inhibit Reversion from Mild Cognitive Impairment to Normal Cognition. J. Am. Med. Dir. Assoc. 2021, 22, 1912–1918.e2. [Google Scholar] [CrossRef]
- Dybjer, E.; Nilsson, P.M.; Engstrom, G.; Helmer, C.; Nagga, K. Pre-diabetes and diabetes are independently associated with adverse cognitive test results: A cross-sectional, population-based study. BMC Endocr. Disord. 2018, 18, 91. [Google Scholar] [CrossRef]
- Sundermann, E.E.; Thomas, K.R.; Bangen, K.J.; Weigand, A.J.; Eppig, J.S.; Edmonds, E.C.; Wong, C.G.; Bondi, M.W.; Delano-Wood, L. Prediabetes Is Associated With Brain Hypometabolism and Cognitive Decline in a Sex-Dependent Manner: A Longitudinal Study of Nondemented Older Adults. Front. Neurol. 2021, 12, 551975. [Google Scholar] [CrossRef]
- Yu, J.; Lee, K.N.; Kim, H.S.; Han, K.; Lee, S.H. Cumulative effect of impaired fasting glucose on the risk of dementia in middle-aged and elderly people: A nationwide cohort study. Sci. Rep. 2023, 13, 20600. [Google Scholar] [CrossRef] [PubMed]
- Petersen, M.C.; Vatner, D.F.; Shulman, G.I. Regulation of hepatic glucose metabolism in health and disease. Nat. Rev. Endocrinol. 2017, 13, 572–587. [Google Scholar] [CrossRef] [PubMed]
- Perreault, L.; Bergman, B.C.; Playdon, M.C.; Dalla Man, C.; Cobelli, C.; Eckel, R.H. Impaired fasting glucose with or without impaired glucose tolerance: Progressive or parallel states of prediabetes? Am. J. Physiol. Endocrinol. Metab. 2008, 295, E428–E435. [Google Scholar] [CrossRef]
- Merz, K.E.; Thurmond, D.C. Role of Skeletal Muscle in Insulin Resistance and Glucose Uptake. Compr. Physiol. 2020, 10, 785–809. [Google Scholar] [CrossRef]
- Faerch, K.; Borch-Johnsen, K.; Holst, J.J.; Vaag, A. Pathophysiology and aetiology of impaired fasting glycaemia and impaired glucose tolerance: Does it matter for prevention and treatment of type 2 diabetes? Diabetologia 2009, 52, 1714–1723. [Google Scholar] [CrossRef]
- Chang, L.; Liu, Y.; Gu, Y.; Yan, S.; Ding, L.; Liu, M.; He, Q. Inadequate Glucagon Suppression During OGTT in Prediabetes: A Systematic Review and Meta-analysis. J. Clin. Endocrinol. Metab. 2024, 109, 2673–2680. [Google Scholar] [CrossRef] [PubMed]
- Ahritculesei, R.V.; Boldeanu, L.; Dijmarescu, A.L.; Assani, M.Z.; Boldeanu, M.V.; Silosi, I.; Vere, C.C. Neurotransmitter Alterations in Prediabetes and Type 2 Diabetes Mellitus: A Narrative Review. Int. J. Mol. Sci. 2025, 26, 7847. [Google Scholar] [CrossRef] [PubMed]
- Skelin Klemen, M.; Kopecky, J.; Dolensek, J.; Stozer, A. Human Beta Cell Functional Adaptation and Dysfunction in Insulin Resistance and Its Reversibility. Nephron 2024, 148, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Sun, Q.; Zhang, J.; Zhang, R.; Liu, S.; Zhao, X.; Ma, J.; Li, X. Intrapancreatic adipocytes and beta cell dedifferentiation in human type 2 diabetes. Diabetologia 2025, 68, 1242–1260. [Google Scholar] [CrossRef]
- Hu, X.; Guo, L.; Pilar Toledo, M.; Sandoval Sanchez, P.; Xie, G.; Liu, C.; Naji, A.; Irianto, J.; Roper, M.G.; Wang, Y.J. Molecular Mechanisms of Human Pancreatic Islet Dysfunction Under Overnutrition Metabolic Stress. Diabetes 2025, 74, 1825–1838. [Google Scholar] [CrossRef]
- Mori, T.; Zaharia, O.P.; Strassburger, K.; Dennis, J.M.; Mai, K.; Kabisch, S.; Bornstein, S.; Szendroedi, J.; Bluher, M.; Meyhofer, S.; et al. Recognising, quantifying and accounting for classification uncertainty in type 2 diabetes subtypes. Diabetologia 2025, 68, 2139–2150. [Google Scholar] [CrossRef] [PubMed]
- Pixner, T.; Chaikouskaya, T.; Lauth, W.; Zimmermann, G.; Morwald, K.; Lischka, J.; Furthner, D.; Awender, E.; Geiersberger, S.; Maruszczak, K.; et al. Rise in fasting and dynamic glucagon levels in children and adolescents with obesity is moderate in subjects with impaired fasting glucose but accentuated in subjects with impaired glucose tolerance or type 2 diabetes. Front. Endocrinol. 2024, 15, 1368570. [Google Scholar] [CrossRef] [PubMed]
- Gray, S.M.; Goonatilleke, E.; Emrick, M.A.; Becker, J.O.; Hoofnagle, A.N.; Stefanovski, D.; He, W.; Zhang, G.; Tong, J.; Campbell, J.; et al. High Doses of Exogenous Glucagon Stimulate Insulin Secretion and Reduce Insulin Clearance in Healthy Humans. Diabetes 2024, 73, 412–425. [Google Scholar] [CrossRef]
- Giannini, C.; Pietropaoli, N.; Polidori, N.; Chiarelli, F.; Marcovecchio, M.L.; Mohn, A. Increased GLP-1 response to oral glucose in pre-pubertal obese children. J. Pediatr. Endocrinol. Metab. 2016, 29, 901–906. [Google Scholar] [CrossRef] [PubMed]
- Smushkin, G.; Sathananthan, A.; Man, C.D.; Zinsmeister, A.R.; Camilleri, M.; Cobelli, C.; Rizza, R.A.; Vella, A. Defects in GLP-1 response to an oral challenge do not play a significant role in the pathogenesis of prediabetes. J. Clin. Endocrinol. Metab. 2012, 97, 589–598. [Google Scholar] [CrossRef]
- Holst, J.J. From the Incretin Concept and the Discovery of GLP-1 to Today’s Diabetes Therapy. Front. Endocrinol. 2019, 10, 260. [Google Scholar] [CrossRef] [PubMed]
- Faerch, K.; Torekov, S.S.; Vistisen, D.; Johansen, N.B.; Witte, D.R.; Jonsson, A.; Pedersen, O.; Hansen, T.; Lauritzen, T.; Sandbaek, A.; et al. GLP-1 Response to Oral Glucose Is Reduced in Prediabetes, Screen-Detected Type 2 Diabetes, and Obesity and Influenced by Sex: The ADDITION-PRO Study. Diabetes 2015, 64, 2513–2525. [Google Scholar] [CrossRef]
- Zhou, Q.X.; Wang, Z.Y.; Zhao, H.F.; Wang, S. The effects of GLP-1 analogues on pre-diabetes of the children. Exp. Ther. Med. 2017, 13, 1426–1430. [Google Scholar] [CrossRef]
- Nguyen-Tu, M.S.; Harris, J.; Martinez-Sanchez, A.; Chabosseau, P.; Hu, M.; Georgiadou, E.; Pollard, A.; Otero, P.; Lopez-Noriega, L.; Leclerc, I.; et al. Opposing effects on regulated insulin secretion of acute vs chronic stimulation of AMP-activated protein kinase. Diabetologia 2022, 65, 997–1011. [Google Scholar] [CrossRef] [PubMed]
- Eguchi, N.; Vaziri, N.D.; Dafoe, D.C.; Ichii, H. The Role of Oxidative Stress in Pancreatic beta Cell Dysfunction in Diabetes. Int. J. Mol. Sci. 2021, 22, 1509. [Google Scholar] [CrossRef] [PubMed]
- Lupachyk, S.; Watcho, P.; Obrosov, A.A.; Stavniichuk, R.; Obrosova, I.G. Endoplasmic reticulum stress contributes to prediabetic peripheral neuropathy. Exp. Neurol. 2013, 247, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Diane, A.; Allouch, A.; Mu, U.M.R.B.A.; Al-Siddiqi, H.H. Endoplasmic reticulum stress in pancreatic beta-cell dysfunctionality and diabetes mellitus: A promising target for generation of functional hPSC-derived beta-cells in vitro. Front. Endocrinol. 2024, 15, 1386471. [Google Scholar] [CrossRef]
- Shrestha, N.; De Franco, E.; Arvan, P.; Cnop, M. Pathological beta-Cell Endoplasmic Reticulum Stress in Type 2 Diabetes: Current Evidence. Front. Endocrinol. 2021, 12, 650158. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Wiederkehr, A.; Wollheim, C.B.; Park, K.S. Regulation of autophagy by perilysosomal calcium: A new player in beta-cell lipotoxicity. Exp. Mol. Med. 2024, 56, 273–288, Correction in Exp. Mol. Med. 2024, 56, 1474. [Google Scholar] [CrossRef] [PubMed]
- Guillen, C.; Benito, M. mTORC1 Overactivation as a Key Aging Factor in the Progression to Type 2 Diabetes Mellitus. Front. Endocrinol. 2018, 9, 621. [Google Scholar] [CrossRef]
- Ardestani, A.; Lupse, B.; Kido, Y.; Leibowitz, G.; Maedler, K. mTORC1 Signaling: A Double-Edged Sword in Diabetic beta Cells. Cell Metab. 2018, 27, 314–331. [Google Scholar] [CrossRef]
- Pedicelli, S.; Fintini, D.; Rava, L.; Inzaghi, E.; Deodati, A.; Spreghini, M.R.; Bizzarri, C.; Mariani, M.; Cianfarani, S.; Cappa, M.; et al. Prevalence of prediabetes in children and adolescents by class of obesity. Pediatr. Obes. 2022, 17, e12900. [Google Scholar] [CrossRef]
- Brannick, B.; Wynn, A.; Dagogo-Jack, S. Prediabetes as a toxic environment for the initiation of microvascular and macrovascular complications. Exp. Biol. Med. 2016, 241, 1323–1331. [Google Scholar] [CrossRef] [PubMed]
- Lawal, Y.; Bello, F.; Kaoje, Y.S. Prediabetes Deserves More Attention: A Review. Clin. Diabetes 2020, 38, 328–338. [Google Scholar] [CrossRef]
- Garaulet, M.; Hernandez-Morante, J.J.; Lujan, J.; Tebar, F.J.; Zamora, S. Relationship between fat cell size and number and fatty acid composition in adipose tissue from different fat depots in overweight/obese humans. Int. J. Obes. 2006, 30, 899–905. [Google Scholar] [CrossRef]
- Bermudez-Cardona, J.; Velasquez-Rodriguez, C. Profile of Free Fatty Acids and Fractions of Phospholipids, Cholesterol Esters and Triglycerides in Serum of Obese Youth with and without Metabolic Syndrome. Nutrients 2016, 8, 54. [Google Scholar] [CrossRef] [PubMed]
- Aragon-Vela, J.; Alcala-Bejarano Carrillo, J.; Moreno-Racero, A.; Plaza-Diaz, J. The Role of Molecular and Hormonal Factors in Obesity and the Effects of Physical Activity in Children. Int. J. Mol. Sci. 2022, 23, 15413. [Google Scholar] [CrossRef] [PubMed]
- Michaliszyn, S.F.; Bonadonna, R.C.; Sjaarda, L.A.; Lee, S.; Farchoukh, L.; Arslanian, S.A. beta-Cell lipotoxicity in response to free fatty acid elevation in prepubertal youth: African American versus Caucasian contrast. Diabetes 2013, 62, 2917–2922. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Nasr, A.; Tfayli, H.; Bacha, F.; Michaliszyn, S.F.; Arslanian, S. Increased Lipolysis, Diminished Adipose Tissue Insulin Sensitivity, and Impaired beta-Cell Function Relative to Adipose Tissue Insulin Sensitivity in Obese Youth With Impaired Glucose Tolerance. Diabetes 2017, 66, 3085–3090. [Google Scholar] [CrossRef] [PubMed]
- Holst, J.J.; Gasbjerg, L.S.; Rosenkilde, M.M. The Role of Incretins on Insulin Function and Glucose Homeostasis. Endocrinology 2021, 162, bqab065. [Google Scholar] [CrossRef] [PubMed]
- Sakornyutthadej, N.; Mahachoklertwattana, P.; Chanprasertyothin, S.; Pongratanakul, S.; Khlairit, P.; Poomthavorn, P. Beta cell function, incretin hormones, and incretin effect in obese children and adolescents with prediabetes. Pediatr. Diabetes 2022, 23, 203–211. [Google Scholar] [CrossRef]
- Nauck, M.A.; Meier, J.J. Incretin hormones: Their role in health and disease. Diabetes Obes. Metab. 2018, 20, 5–21. [Google Scholar] [CrossRef]
- Di Giuseppe, G.; Gliozzo, G.; Ciccarelli, G.; Carciero, L.; Brunetti, M.; Soldovieri, L.; Quero, G.; Cinti, F.; Nista, E.C.; De Lucia, S.S.; et al. Altered GIP/GLP-1 Secretion Ratio is Associated With Impaired beta Cell Function in Humans. J. Clin. Endocrinol. Metab. 2025, 111, e240–e246. [Google Scholar] [CrossRef]
- Irwin, N.; Flatt, P.R. New perspectives on exploitation of incretin peptides for the treatment of diabetes and related disorders. World J. Diabetes 2015, 6, 1285–1295. [Google Scholar] [CrossRef] [PubMed]
- Ahmadieh, H.; Azar, S.T. The role of incretin-based therapies in prediabetes: A review. Prim. Care Diabetes 2014, 8, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Apovian, C.M. Prediabetes: A new indication for GLP-1s? Int. J. Obes. 2025; online ahead of print. [Google Scholar] [CrossRef]
- Laakso, M.; Zilinskaite, J.; Hansen, T.; Boesgaard, T.W.; Vanttinen, M.; Stancakova, A.; Jansson, P.A.; Pellme, F.; Holst, J.J.; Kuulasmaa, T.; et al. Insulin sensitivity, insulin release and glucagon-like peptide-1 levels in persons with impaired fasting glucose and/or impaired glucose tolerance in the EUGENE2 study. Diabetologia 2008, 51, 502–511. [Google Scholar] [CrossRef]
- Bock, G.; Dalla Man, C.; Campioni, M.; Chittilapilly, E.; Basu, R.; Toffolo, G.; Cobelli, C.; Rizza, R. Pathogenesis of pre-diabetes: Mechanisms of fasting and postprandial hyperglycemia in people with impaired fasting glucose and/or impaired glucose tolerance. Diabetes 2006, 55, 3536–3549. [Google Scholar] [CrossRef] [PubMed]
- Drucker, D.J. Efficacy and Safety of GLP-1 Medicines for Type 2 Diabetes and Obesity. Diabetes Care 2024, 47, 1873–1888. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.S.; Won, K.C. Pancreatic alpha-Cell Dysfunction in Type 2 Diabetes: Old Kids on the Block. Diabetes Metab. J. 2015, 39, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Quesada, I. Pancreatic alpha-Cells and Insulin-Deficient Diabetes. Endocrinology 2016, 157, 446–448. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Moede, T.; Leibiger, I.B.; Berggren, P.O. Alpha cell regulation of beta cell function. Diabetologia 2020, 63, 2064–2075. [Google Scholar] [CrossRef]
- Rahman, M.S.; Hossain, K.S.; Das, S.; Kundu, S.; Adegoke, E.O.; Rahman, M.A.; Hannan, M.A.; Uddin, M.J.; Pang, M.G. Role of Insulin in Health and Disease: An Update. Int. J. Mol. Sci. 2021, 22, 6403. [Google Scholar] [CrossRef] [PubMed]
- Ruud, J.; Steculorum, S.M.; Bruning, J.C. Neuronal control of peripheral insulin sensitivity and glucose metabolism. Nat. Commun. 2017, 8, 15259. [Google Scholar] [CrossRef]
- D’Alessio, D. The role of dysregulated glucagon secretion in type 2 diabetes. Diabetes Obes. Metab. 2011, 13, 126–132. [Google Scholar] [CrossRef]
- Godoy-Matos, A.F. The role of glucagon on type 2 diabetes at a glance. Diabetol. Metab. Syndr. 2014, 6, 91. [Google Scholar] [CrossRef]
- Roncero-Ramos, I.; Jimenez-Lucena, R.; Alcala-Diaz, J.F.; Vals-Delgado, C.; Arenas-Larriva, A.P.; Rangel-Zuniga, O.A.; Leon-Acuna, A.; Malagon, M.M.; Delgado-Lista, J.; Perez-Martinez, P.; et al. Alpha cell function interacts with diet to modulate prediabetes and Type 2 diabetes. J. Nutr. Biochem. 2018, 62, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Lista, J.; Alcala-Diaz, J.F.; Torres-Pena, J.D.; Quintana-Navarro, G.M.; Fuentes, F.; Garcia-Rios, A.; Ortiz-Morales, A.M.; Gonzalez-Requero, A.I.; Perez-Caballero, A.I.; Yubero-Serrano, E.M.; et al. Long-term secondary prevention of cardiovascular disease with a Mediterranean diet and a low-fat diet (CORDIOPREV): A randomised controlled trial. Lancet 2022, 399, 1876–1885. [Google Scholar] [CrossRef] [PubMed]
- Stinson, S.E.; Fernandez de Retana Alzola, I.; Brunner Hovendal, E.D.; Lund, M.A.V.; Fonvig, C.E.; Holm, L.A.; Jonsson, A.E.; Frithioff-Bojsoe, C.; Christiansen, M.; Pedersen, O.; et al. Altered Glucagon and GLP-1 Responses to Oral Glucose in Children and Adolescents With Obesity and Insulin Resistance. J. Clin. Endocrinol. Metab. 2024, 109, 1590–1600. [Google Scholar] [CrossRef] [PubMed]
- Klempel, N.; Thomas, K.; Conlon, J.M.; Flatt, P.R.; Irwin, N. Alpha-cells and therapy of diabetes: Inhibition, antagonism or death? Peptides 2022, 157, 170877. [Google Scholar] [CrossRef]
- Martinez, M.S.; Manzano, A.; Olivar, L.C.; Nava, M.; Salazar, J.; D’Marco, L.; Ortiz, R.; Chacin, M.; Guerrero-Wyss, M.; Cabrera de Bravo, M.; et al. The Role of the alpha Cell in the Pathogenesis of Diabetes: A World beyond the Mirror. Int. J. Mol. Sci. 2021, 22, 9504. [Google Scholar] [CrossRef]
- Son, J.W.; le Roux, C.W.; Bluher, M.; Nauck, M.A.; Lim, S. Novel GLP-1-Based Medications for Type 2 Diabetes and Obesity. Endocr. Rev. 2025, bnaf036. [Google Scholar] [CrossRef]
- Halden, T.A.; Egeland, E.J.; Asberg, A.; Hartmann, A.; Midtvedt, K.; Khiabani, H.Z.; Holst, J.J.; Knop, F.K.; Hornum, M.; Feldt-Rasmussen, B.; et al. GLP-1 Restores Altered Insulin and Glucagon Secretion in Posttransplantation Diabetes. Diabetes Care 2016, 39, 617–624. [Google Scholar] [CrossRef]
- Lotosky, J.; Jean, X.; Altankhuyag, A.; Khan, S.; Bernotas, A.; Sharafshah, A.; Blum, K.; Posner, A.; Thanos, P.K. GLP-1 and Its Role in Glycogen Production: A Narrative Review. Biomedicines 2025, 13, 1610. [Google Scholar] [CrossRef]
- Tsalamandris, S.; Antonopoulos, A.S.; Oikonomou, E.; Papamikroulis, G.A.; Vogiatzi, G.; Papaioannou, S.; Deftereos, S.; Tousoulis, D. The Role of Inflammation in Diabetes: Current Concepts and Future Perspectives. Eur. Cardiol. 2019, 14, 50–59. [Google Scholar] [CrossRef]
- Grossmann, V.; Schmitt, V.H.; Zeller, T.; Panova-Noeva, M.; Schulz, A.; Laubert-Reh, D.; Juenger, C.; Schnabel, R.B.; Abt, T.G.; Laskowski, R.; et al. Profile of the Immune and Inflammatory Response in Individuals With Prediabetes and Type 2 Diabetes. Diabetes Care 2015, 38, 1356–1364. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.H.; Kim, H.N.; Choi, W.S. The association between subclinical inflammation and abnormal glucose and lipid metabolisms in normal-weight Korean individuals. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 1106–1113. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, J.; Ai, K.; Bu, Z.; Niu, W.; Li, M. Trends in Children’s Dietary Inflammatory Index and association with prediabetes in U.S. adolescents. Nutr. Diabetes 2024, 14, 94. [Google Scholar] [CrossRef]
- Khan, S.; Wirth, M.D.; Ortaglia, A.; Alvarado, C.R.; Shivappa, N.; Hurley, T.G.; Hebert, J.R. Design, Development and Construct Validation of the Children’s Dietary Inflammatory Index. Nutrients 2018, 10, 993. [Google Scholar] [CrossRef]
- Sakers, A.; De Siqueira, M.K.; Seale, P.; Villanueva, C.J. Adipose-tissue plasticity in health and disease. Cell 2022, 185, 419–446. [Google Scholar] [CrossRef]
- Xu, H.; Barnes, G.T.; Yang, Q.; Tan, G.; Yang, D.; Chou, C.J.; Sole, J.; Nichols, A.; Ross, J.S.; Tartaglia, L.A.; et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Investig. 2003, 112, 1821–1830. [Google Scholar] [CrossRef]
- Burhans, M.S.; Hagman, D.K.; Kuzma, J.N.; Schmidt, K.A.; Kratz, M. Contribution of Adipose Tissue Inflammation to the Development of Type 2 Diabetes Mellitus. Compr. Physiol. 2018, 9, 1–58. [Google Scholar] [CrossRef] [PubMed]
- Perrone, A.; Giovino, A.; Benny, J.; Martinelli, F. Advanced Glycation End Products (AGEs): Biochemistry, Signaling, Analytical Methods, and Epigenetic Effects. Oxid. Med. Cell Longev. 2020, 2020, 3818196. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Rai, V.; Agrawal, D.K. Discerning the promising binding sites of S100/calgranulins and their therapeutic potential in atherosclerosis. Expert. Opin. Ther. Pat. 2021, 31, 1045–1057. [Google Scholar] [CrossRef]
- Brahimaj, A.; Ligthart, S.; Ghanbari, M.; Ikram, M.A.; Hofman, A.; Franco, O.H.; Kavousi, M.; Dehghan, A. Novel inflammatory markers for incident pre-diabetes and type 2 diabetes: The Rotterdam Study. Eur. J. Epidemiol. 2017, 32, 217–226. [Google Scholar] [CrossRef]
- Begum, M.; Choubey, M.; Tirumalasetty, M.B.; Arbee, S.; Mohib, M.M.; Wahiduzzaman, M.; Mamun, M.A.; Uddin, M.B.; Mohiuddin, M.S. Adiponectin: A Promising Target for the Treatment of Diabetes and Its Complications. Life 2023, 13, 2213. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, M.M.I. Therapeutic potential of adiponectin in prediabetes: Strategies, challenges, and future directions. Ther. Adv. Endocrinol. Metab. 2024, 15, 20420188231222371. [Google Scholar] [CrossRef]
- Zatterale, F.; Longo, M.; Naderi, J.; Raciti, G.A.; Desiderio, A.; Miele, C.; Beguinot, F. Chronic Adipose Tissue Inflammation Linking Obesity to Insulin Resistance and Type 2 Diabetes. Front. Physiol. 2019, 10, 1607. [Google Scholar] [CrossRef]
- Hur, K.Y. Is GDF15 a Novel Biomarker to Predict the Development of Prediabetes or Diabetes? Diabetes Metab. J. 2014, 38, 437–438. [Google Scholar] [CrossRef][Green Version]
- Luc, K.; Schramm-Luc, A.; Guzik, T.J.; Mikolajczyk, T.P. Oxidative stress and inflammatory markers in prediabetes and diabetes. J. Physiol. Pharmacol. 2019, 70, 70. [Google Scholar] [CrossRef]
- Joseph, P.; Lanas, F.; Roth, G.; Lopez-Jaramillo, P.; Lonn, E.; Miller, V.; Mente, A.; Leong, D.; Schwalm, J.D.; Yusuf, S. Cardiovascular disease in the Americas: The epidemiology of cardiovascular disease and its risk factors. Lancet Reg. Health Am. 2025, 42, 100960. [Google Scholar] [CrossRef]
- Collaborators, G.B.D.C.o.D. Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2024, 403, 2100–2132, Correction in Lancet 2024, 403, 10440. [Google Scholar] [CrossRef] [PubMed]
- Ademi, Z.; Rodda, S.E.; Vivoda, K.; Hennessy, S.; Fenton, O.; Ware, J.S.; Global Heart Hub Manifesto. Highlights from the Manifesto on the Health Economics of Cardiovascular Disease Prevention. Pharmacoeconomics 2025, 43, 1281–1292. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.M.D.; Gomes, I.C.; Pinho, J.F.; Neves-Alves, C.M.; Magalhaes, G.S.; Campagnole-Santos, M.J.; da Gloria Rodrigues-Machado, M. Predictors and reference equations for augmentation index, an arterial stiffness marker, in healthy children and adolescents. Clinics 2021, 76, e2350. [Google Scholar] [CrossRef]
- Brar, P.C. Can Surrogate Markers Help Define Cardiovascular Disease in Youth? Curr. Atheroscler. Rep. 2023, 25, 275–298. [Google Scholar] [CrossRef] [PubMed]
- Gaul, A.K.; Holm, L.A.; Hansen, T.; Holm, J.C.; Fonvig, C.E. Assessing prediabetes and cardiometabolic risk in Danish youth with obesity. J. Pediatr. Endocrinol. Metab. 2025, 38, 725–734. [Google Scholar] [CrossRef] [PubMed]
- Casagrande, S.S.; Menke, A.; Linder, B.; Osganian, S.K.; Cowie, C.C. Cardiovascular risk factors in adolescents with prediabetes. Diabet. Med. 2018, 35, 1202–1209. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, L.; Zhu, X.; Wang, Y.; Zhang, B.; Ma, C.; Gao, L.; Yu, J. Can the triglyceride-glucose index identify prediabetes in children and adolescents with obesity? a cross-sectional study. Front. Endocrinol. 2025, 16, 1657912. [Google Scholar] [CrossRef]
- Kuriel, V.; Betik, A.C.; Connor, T.; Hamley, S.; Ang, T.; Kloosterman, D.; Mason, S.A.; Morales-Scholz, M.G.; Howlett, K.F.; Dao, G.M.; et al. A Snapshot of Cardiometabolic Health in Young Adults without Obesity Reveals High Rates of Dysglycemia. Diabetes Metab. J. 2025, 49, 1334–1337. [Google Scholar] [CrossRef]
- Berenson, G.S.; Bogalusa Heart Study, I. Bogalusa Heart Study: A long-term community study of a rural biracial (Black/White) population. Am. J. Med. Sci. 2001, 322, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Munte, E.; Zhang, X.; Khurana, A.; Hartmann, P. Prevalence of Extremely Severe Obesity and Metabolic Dysfunction Among US Children and Adolescents. JAMA Netw. Open 2025, 8, e2521170. [Google Scholar] [CrossRef]
- Mascarenhas, P.; Furtado, J.M.; Almeida, S.M.; Ferraz, M.E.; Ferraz, F.P.; Oliveira, P. Pediatric Overweight, Fatness and Risk for Dyslipidemia Are Related to Diet: A Cross-Sectional Study in 9-year-old Children. Nutrients 2023, 15, 329. [Google Scholar] [CrossRef]
- Olson, M.; Chambers, M.; Shaibi, G. Pediatric Markers of Adult Cardiovascular Disease. Curr. Pediatr. Rev. 2017, 13, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.T.; Katz, L.E.L.; Stettler-Davis, N.; Shults, J.; Sherman, A.; Ha, J.; Stefanovski, D.; Boston, R.C.; Rader, D.J.; Magge, S.N. The Relationship Between Lipoproteins and Insulin Sensitivity in Youth with Obesity and Abnormal Glucose Tolerance. J. Clin. Endocrinol. Metab. 2022, 107, 1541–1551. [Google Scholar] [CrossRef]
- Mainieri, F.; La Bella, S.; Chiarelli, F. Hyperlipidemia and Cardiovascular Risk in Children and Adolescents. Biomedicines 2023, 11, 809. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.; Kit, B.; Carroll, M. Abnormal Cholesterol Among Children and Adolescents in the United States, 2011–2014. NCHS Data Brief 2015, 228, 1–8. [Google Scholar]
- Poznyak, A.V.; Yakovlev, A.A.; Popov Mcapital, A.C.; Zhigmitova, E.B.; Sukhorukov, V.N.; Orekhov, A.N. Atherosclerosis originating from childhood: Specific features. J. Biomed. Res. 2024, 38, 233–240. [Google Scholar] [CrossRef]
- Zaman, S.; Wasfy, J.H.; Kapil, V.; Ziaeian, B.; Parsonage, W.A.; Sriswasdi, S.; Chico, T.J.A.; Capodanno, D.; Colleran, R.; Sutton, N.R.; et al. The Lancet Commission on rethinking coronary artery disease: Moving from ischaemia to atheroma. Lancet 2025, 405, 1264–1312. [Google Scholar] [CrossRef]
- Ando, J.; Yamamoto, K. Hemodynamic Forces, Endothelial Mechanotransduction, and Vascular Diseases. Magn. Reson. Med. Sci. 2022, 21, 258–266. [Google Scholar] [CrossRef]
- Libby, P. Inflammation and the pathogenesis of atherosclerosis. Vasc. Pharmacol. 2024, 154, 107255. [Google Scholar] [CrossRef]
- Khoury, M.; Ware, A.L.; McCrindle, B.W. The prevention of adult cardiovascular disease must begin in childhood: Evidence and imperative. Nat. Rev. Cardiol. 2025; online ahead of print. [Google Scholar] [CrossRef]
- Cote, A.T.; Harris, K.C.; Panagiotopoulos, C.; Sandor, G.G.; Devlin, A.M. Childhood obesity and cardiovascular dysfunction. J. Am. Coll. Cardiol. 2013, 62, 1309–1319. [Google Scholar] [CrossRef] [PubMed]
- Bordeianu, G.; Mitu, I.; Stanescu, R.S.; Ciobanu, C.P.; Petrescu-Danila, E.; Marculescu, A.D.; Dimitriu, D.C. Circulating Biomarkers for Laboratory Diagnostics of Atherosclerosis-Literature Review. Diagnostics 2022, 12, 3141. [Google Scholar] [CrossRef] [PubMed]
- Zanetti, D.; Gustafsson, S.; Assimes, T.L.; Ingelsson, E. Comprehensive Investigation of Circulating Biomarkers and Their Causal Role in Atherosclerosis-Related Risk Factors and Clinical Events. Circ. Genom. Precis. Med. 2020, 13, e002996. [Google Scholar] [CrossRef] [PubMed]
- Kartiosuo, N.; Raitakari, O.T.; Juonala, M.; Viikari, J.S.A.; Sinaiko, A.R.; Venn, A.J.; Jacobs, D.R., Jr.; Urbina, E.M.; Woo, J.G.; Steinberger, J.; et al. Cardiovascular Risk Factors in Childhood and Adulthood and Cardiovascular Disease in Middle Age. JAMA Netw. Open 2024, 7, e2418148. [Google Scholar] [CrossRef]
- McCormack, S.E.; Shaham, O.; McCarthy, M.A.; Deik, A.A.; Wang, T.J.; Gerszten, R.E.; Clish, C.B.; Mootha, V.K.; Grinspoon, S.K.; Fleischman, A. Circulating branched-chain amino acid concentrations are associated with obesity and future insulin resistance in children and adolescents. Pediatr. Obes. 2013, 8, 52–61. [Google Scholar] [CrossRef]
- Wang, T.J.; Larson, M.G.; Vasan, R.S.; Cheng, S.; Rhee, E.P.; McCabe, E.; Lewis, G.D.; Fox, C.S.; Jacques, P.F.; Fernandez, C.; et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 2011, 17, 448–453. [Google Scholar] [CrossRef]
- Tobias, D.K.; Lawler, P.R.; Harada, P.H.; Demler, O.V.; Ridker, P.M.; Manson, J.E.; Cheng, S.; Mora, S. Circulating Branched-Chain Amino Acids and Incident Cardiovascular Disease in a Prospective Cohort of US Women. Circ. Genom. Precis. Med. 2018, 11, e002157. [Google Scholar] [CrossRef]
- McGarrah, R.W.; White, P.J. Branched-chain amino acids in cardiovascular disease. Nat. Rev. Cardiol. 2023, 20, 77–89. [Google Scholar] [CrossRef]
- Anand, S.K.; Governale, T.A.; Zhang, X.; Razani, B.; Yurdagul, A., Jr.; Pattillo, C.B.; Rom, O. Amino Acid Metabolism and Atherosclerotic Cardiovascular Disease. Am. J. Pathol. 2024, 194, 510–524. [Google Scholar] [CrossRef]
- Wurtz, P.; Havulinna, A.S.; Soininen, P.; Tynkkynen, T.; Prieto-Merino, D.; Tillin, T.; Ghorbani, A.; Artati, A.; Wang, Q.; Tiainen, M.; et al. Metabolite profiling and cardiovascular event risk: A prospective study of 3 population-based cohorts. Circulation 2015, 131, 774–785. [Google Scholar] [CrossRef] [PubMed]
- Ojanen, X.; Cheng, R.; Tormakangas, T.; Rappaport, N.; Wilmanski, T.; Wu, N.; Fung, E.; Nedelec, R.; Sebert, S.; Vlachopoulos, D.; et al. Towards early risk biomarkers: Serum metabolic signature in childhood predicts cardio-metabolic risk in adulthood. EBioMedicine 2021, 72, 103611. [Google Scholar] [CrossRef] [PubMed]
- Jebari-Benslaiman, S.; Uribe, K.B.; Benito-Vicente, A.; Galicia-Garcia, U.; Larrea-Sebal, A.; Alloza, I.; Vandenbroeck, K.; Ostolaza, H.; Martin, C. Cholesterol Efflux Efficiency of Reconstituted HDL Is Affected by Nanoparticle Lipid Composition. Biomedicines 2020, 8, 373. [Google Scholar] [CrossRef]
- Gall, J.; Frisdal, E.; Bittar, R.; Le Goff, W.; Bruckert, E.; Lesnik, P.; Guerin, M.; Giral, P. Association of Cholesterol Efflux Capacity With Clinical Features of Metabolic Syndrome: Relevance to Atherosclerosis. J. Am. Heart Assoc. 2016, 5, 12. [Google Scholar] [CrossRef] [PubMed]
- Anita Sherly, A.; Rukmini, M.S.; Guruprasad, K.P.; Rohatgi, A.; Hegde, A.; Sindhu, H.; Arun, S. HDL Functionality in Metabolic Syndrome: Insights From Cholesterol Efflux Capacity and NMR Spectroscopy. Health Sci. Rep. 2025, 8, e70866. [Google Scholar] [CrossRef]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef]
- Behbodikhah, J.; Ahmed, S.; Elyasi, A.; Kasselman, L.J.; De Leon, J.; Glass, A.D.; Reiss, A.B. Apolipoprotein B and Cardiovascular Disease: Biomarker and Potential Therapeutic Target. Metabolites 2021, 11, 690. [Google Scholar] [CrossRef]
- Yaseen, R.I.; El-Leboudy, M.H.; El-Deeb, H.M. The relation between ApoB/ApoA-1 ratio and the severity of coronary artery disease in patients with acute coronary syndrome. Egypt. Heart J. 2021, 73, 24. [Google Scholar] [CrossRef]
- Adorni, M.P.; Ronda, N.; Bernini, F.; Zimetti, F. High Density Lipoprotein Cholesterol Efflux Capacity and Atherosclerosis in Cardiovascular Disease: Pathophysiological Aspects and Pharmacological Perspectives. Cells 2021, 10, 574. [Google Scholar] [CrossRef] [PubMed]
- Juonala, M.; Viikari, J.S.; Kahonen, M.; Solakivi, T.; Helenius, H.; Jula, A.; Marniemi, J.; Taittonen, L.; Laitinen, T.; Nikkari, T.; et al. Childhood levels of serum apolipoproteins B and A-I predict carotid intima-media thickness and brachial endothelial function in adulthood: The cardiovascular risk in young Finns study. J. Am. Coll. Cardiol. 2008, 52, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, S.R.; Berenson, G.S. Serum apolipoproteins A-I and B as markers of coronary artery disease risk in early life: The Bogalusa Heart Study. Clin. Chem. 1995, 41, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Dinpanah, K.; Kazemi, T.; Shetty, S.; Bizhaem, S.K.; Fanoodi, A.; Riahi, S.M. The association of the apolipoprotein B/A1 ratio and the metabolic syndrome in children and adolescents: A systematic review and meta-analysis. J. Diabetes Metab. Disord. 2024, 23, 1–10. [Google Scholar] [CrossRef]
- Robinson, G.A.; Waddington, K.E.; Coelewij, L.; Peng, J.; Naja, M.; Wincup, C.; Radziszewska, A.; Peckham, H.; Isenberg, D.A.; Ioannou, Y.; et al. Increased apolipoprotein-B:A1 ratio predicts cardiometabolic risk in patients with juvenile onset SLE. EBioMedicine 2021, 65, 103243. [Google Scholar] [CrossRef]
- Roy, P.; Orecchioni, M.; Ley, K. How the immune system shapes atherosclerosis: Roles of innate and adaptive immunity. Nat. Rev. Immunol. 2022, 22, 251–265. [Google Scholar] [CrossRef]
- Engelen, S.E.; Robinson, A.J.B.; Zurke, Y.X.; Monaco, C. Therapeutic strategies targeting inflammation and immunity in atherosclerosis: How to proceed? Nat. Rev. Cardiol. 2022, 19, 522–542. [Google Scholar] [CrossRef]
- Kasher, M.; Freidin, M.B.; Williams, F.M.K.; Cherny, S.S.; Ashkenazi, S.; Livshits, G. Glycoprotein Acetyls Is a Novel Biomarker Predicting Cardiovascular Complications in Rheumatoid Arthritis. Int. J. Mol. Sci. 2024, 25, 5981. [Google Scholar] [CrossRef]
- Otvos, J.D.; Shalaurova, I.; Wolak-Dinsmore, J.; Connelly, M.A.; Mackey, R.H.; Stein, J.H.; Tracy, R.P. GlycA: A Composite Nuclear Magnetic Resonance Biomarker of Systemic Inflammation. Clin. Chem. 2015, 61, 714–723. [Google Scholar] [CrossRef] [PubMed]
- Chiesa, S.T.; Charakida, M.; Georgiopoulos, G.; Roberts, J.D.; Stafford, S.J.; Park, C.; Mykkanen, J.; Kahonen, M.; Lehtimaki, T.; Ala-Korpela, M.; et al. Glycoprotein Acetyls: A Novel Inflammatory Biomarker of Early Cardiovascular Risk in the Young. J. Am. Heart Assoc. 2022, 11, e024380. [Google Scholar] [CrossRef]
- Hajar, R. Risk Factors for Coronary Artery Disease: Historical Perspectives. Heart Views 2017, 18, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Joseph, P.; Leong, D.; McKee, M.; Anand, S.S.; Schwalm, J.D.; Teo, K.; Mente, A.; Yusuf, S. Reducing the Global Burden of Cardiovascular Disease, Part 1: The Epidemiology and Risk Factors. Circ. Res. 2017, 121, 677–694. [Google Scholar] [CrossRef]
- Xie, E.; Cai, H.; Ye, Z.; Yang, M.; Feng, L.; Zhu, C.; Li, J.; Dou, K. Association of prediabetes and insulin resistance on prognosis of patients with moderate-to-severe coronary artery calcification: A prospective cohort study. Cardiovasc. Diabetol. 2025, 24, 262. [Google Scholar] [CrossRef] [PubMed]
- Valaiyapathi, B.; Gower, B.; Ashraf, A.P. Pathophysiology of Type 2 Diabetes in Children and Adolescents. Curr. Diabetes Rev. 2020, 16, 220–229. [Google Scholar] [CrossRef]
- Rodriquez, I.M.; O’Sullivan, K.L. Youth-Onset Type 2 Diabetes: Burden of Complications and Socioeconomic Cost. Curr. Diabetes Rep. 2023, 23, 59–67. [Google Scholar] [CrossRef]
- Zakir, M.; Ahuja, N.; Surksha, M.A.; Sachdev, R.; Kalariya, Y.; Nasir, M.; Kashif, M.; Shahzeen, F.; Tayyab, A.; Khan, M.S.M.; et al. Cardiovascular Complications of Diabetes: From Microvascular to Macrovascular Pathways. Cureus 2023, 15, e45835. [Google Scholar] [CrossRef]
- Barrett, T.; Jalaludin, M.Y.; Turan, S.; Hafez, M.; Shehadeh, N.; Novo Nordisk Pediatric Type 2 Diabetes Global Expert Panel. Rapid progression of type 2 diabetes and related complications in children and young people-A literature review. Pediatr. Diabetes 2020, 21, 158–172. [Google Scholar] [CrossRef]
- Zhang, T.; Fan, B.; Li, S.; Wang, X.; Kong, Y.; Bazzano, L.; He, J.; Chen, W.; Yan, Y. Long-Term Adiposity and Midlife Carotid Intima-Media Thickness Are Linked Partly Through Intermediate Risk Factors. Hypertension 2023, 80, 160–168. [Google Scholar] [CrossRef]
- Zand, A.; Ibrahim, K.; Patham, B. Prediabetes: Why Should We Care? Methodist Debakey Cardiovasc. J. 2018, 14, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Faienza, M.F.; Urbano, F.; Lassandro, G.; Valente, F.; D’Amato, G.; Portincasa, P.; Giordano, P. The Cardiovascular Disease (CVD) Risk Continuum from Prenatal Life to Adulthood: A Literature Review. Int. J. Environ. Res. Public Health 2022, 19, 8282. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, D.R., Jr.; Woo, J.G.; Sinaiko, A.R.; Daniels, S.R.; Ikonen, J.; Juonala, M.; Kartiosuo, N.; Lehtimaki, T.; Magnussen, C.G.; Viikari, J.S.A.; et al. Childhood Cardiovascular Risk Factors and Adult Cardiovascular Events. N. Engl. J. Med. 2022, 386, 1877–1888. [Google Scholar] [CrossRef]
- Luca, A.C.; David, S.G.; David, A.G.; Tarca, V.; Paduret, I.A.; Mindru, D.E.; Rosu, S.T.; Rosu, E.V.; Adumitrachioaiei, H.; Bernic, J.; et al. Atherosclerosis from Newborn to Adult-Epidemiology, Pathological Aspects, and Risk Factors. Life 2023, 13, 2056. [Google Scholar] [CrossRef] [PubMed]
- Raitakari, O.; Pahkala, K.; Magnussen, C.G. Prevention of atherosclerosis from childhood. Nat. Rev. Cardiol. 2022, 19, 543–554. [Google Scholar] [CrossRef]
- Vigne, J.; Thackeray, J.; Essers, J.; Makowski, M.; Varasteh, Z.; Curaj, A.; Karlas, A.; Canet-Soulas, E.; Mulder, W.; Kiessling, F.; et al. Current and Emerging Preclinical Approaches for Imaging-Based Characterization of Atherosclerosis. Mol. Imaging Biol. 2018, 20, 869–887. [Google Scholar] [CrossRef]
- Poredos, P.; Cifkova, R.; Marie Maier, J.A.; Nemcsik, J.; Sabovic, M.; Jug, B.; Jezovnik, M.K.; Schernthaner, G.H.; Antignani, P.L.; Catalano, M.; et al. Preclinical atherosclerosis and cardiovascular events: Do we have a consensus about the role of preclinical atherosclerosis in the prediction of cardiovascular events? Atherosclerosis 2022, 348, 25–35. [Google Scholar] [CrossRef]
- Verma, K.P.; Inouye, M.; Meikle, P.J.; Nicholls, S.J.; Carrington, M.J.; Marwick, T.H. New Cardiovascular Risk Assessment Techniques for Primary Prevention: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2022, 80, 373–387. [Google Scholar] [CrossRef]
- Nielsen, R.V.; Fuster, V.; Bundgaard, H.; Fuster, J.J.; Johri, A.M.; Kofoed, K.F.; Douglas, P.S.; Diederichsen, A.; Shapiro, M.D.; Nicholls, S.J.; et al. Personalized Intervention Based on Early Detection of Atherosclerosis: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2024, 83, 2112–2127. [Google Scholar] [CrossRef]
- Atwa, H.; Gad, K.; Hagrasy, H.; Elkelany, A.; Azzam, M.; Bayoumi, N.; Gobarah, A.; Shora, H. Is subclinical atherosclerosis associated with visceral fat and fatty liver in adolescents with type 1 diabetes? Arch. Med. Sci. 2018, 14, 1355–1360. [Google Scholar] [CrossRef]
- Yang, C.W.; Guo, Y.C.; Li, C.I.; Liu, C.S.; Lin, C.H.; Liu, C.H.; Wang, M.C.; Yang, S.Y.; Li, T.C.; Lin, C.C. Subclinical Atherosclerosis Markers of Carotid Intima-Media Thickness, Carotid Plaques, Carotid Stenosis, and Mortality in Community-Dwelling Adults. Int. J. Environ. Res. Public Health 2020, 17, 4745. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Chen, W.; Srinivasan, S.R.; Bond, M.G.; Tang, R.; Urbina, E.M.; Berenson, G.S. Childhood cardiovascular risk factors and carotid vascular changes in adulthood: The Bogalusa Heart Study. JAMA 2003, 290, 2271–2276. [Google Scholar] [CrossRef]
- Raitakari, O.T.; Juonala, M.; Kahonen, M.; Taittonen, L.; Laitinen, T.; Maki-Torkko, N.; Jarvisalo, M.J.; Uhari, M.; Jokinen, E.; Ronnemaa, T.; et al. Cardiovascular risk factors in childhood and carotid artery intima-media thickness in adulthood: The Cardiovascular Risk in Young Finns Study. JAMA 2003, 290, 2277–2283. [Google Scholar] [CrossRef]
- Chung, S.T.; Krenek, A.; Magge, S.N. Childhood Obesity and Cardiovascular Disease Risk. Curr. Atheroscler. Rep. 2023, 25, 405–415. [Google Scholar] [CrossRef]
- Woo, J.G.; Zhang, N.; Fenchel, M.; Jacobs, D.R., Jr.; Hu, T.; Urbina, E.M.; Burns, T.L.; Raitakari, O.; Steinberger, J.; Bazzano, L.; et al. Prediction of adult class II/III obesity from childhood BMI: The i3C consortium. Int. J. Obes. 2020, 44, 1164–1172. [Google Scholar] [CrossRef]
- Hu, T.; Jacobs, D.R., Jr.; Sinaiko, A.R.; Bazzano, L.A.; Burns, T.L.; Daniels, S.R.; Dwyer, T.; Hutri-Kahonen, N.; Juonala, M.; Murdy, K.A.; et al. Childhood BMI and Fasting Glucose and Insulin Predict Adult Type 2 Diabetes: The International Childhood Cardiovascular Cohort (i3C) Consortium. Diabetes Care 2020, 43, 2821–2829. [Google Scholar] [CrossRef] [PubMed]
- Magge, S.N.; Goodman, E.; Armstrong, S.C.; Committee on Nutrition; Section on Endocrinology; Section on Obesity; Daniels, S.; Corkins, M.; de Ferranti, S.; Golden, N.H.; et al. The Metabolic Syndrome in Children and Adolescents: Shifting the Focus to Cardiometabolic Risk Factor Clustering. Pediatrics 2017, 140, e20171603. [Google Scholar] [CrossRef]
- Goossens, G.H. The Metabolic Phenotype in Obesity: Fat Mass, Body Fat Distribution, and Adipose Tissue Function. Obes. Facts 2017, 10, 207–215. [Google Scholar] [CrossRef]
- Magge, S.N.; Zemel, B.S.; Pipan, M.E.; Gidding, S.S.; Kelly, A. Cardiometabolic Risk and Body Composition in Youth With Down Syndrome. Pediatrics 2019, 144, e20190137. [Google Scholar] [CrossRef]
- Hao, H.; Su, Y.; Feng, M. Association Between Metabolic and Obesity Phenotypes and Diabetes Risk in Children and Adolescents. Diabetes Metab. Syndr. Obes. 2024, 17, 4479–4487. [Google Scholar] [CrossRef] [PubMed]
- Cusi, K.; Abdelmalek, M.F.; Apovian, C.M.; Balapattabi, K.; Bannuru, R.R.; Barb, D.; Bardsley, J.K.; Beverly, E.A.; Corbin, K.D.; ElSayed, N.A.; et al. Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) in People With Diabetes: The Need for Screening and Early Intervention. A Consensus Report of the American Diabetes Association. Diabetes Care 2025, 48, 1057–1082. [Google Scholar] [CrossRef] [PubMed]
- Anderer, S. Severe Pediatric Obesity Is Growing, Tied to Higher Metabolic Risks. JAMA 2025, 334, 849. [Google Scholar] [CrossRef]
- Reisinger, C.; Nkeh-Chungag, B.N.; Fredriksen, P.M.; Goswami, N. The prevalence of pediatric metabolic syndrome-a critical look on the discrepancies between definitions and its clinical importance. Int. J. Obes 2021, 45, 12–24. [Google Scholar] [CrossRef]
- Shah, A.S.; Dolan, L.M.; Kimball, T.R.; Gao, Z.; Khoury, P.R.; Daniels, S.R.; Urbina, E.M. Influence of duration of diabetes, glycemic control, and traditional cardiovascular risk factors on early atherosclerotic vascular changes in adolescents and young adults with type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 2009, 94, 3740–3745. [Google Scholar] [CrossRef]
- Islam, M.S.; Wei, P.; Suzauddula, M.; Nime, I.; Feroz, F.; Acharjee, M.; Pan, F. The interplay of factors in metabolic syndrome: Understanding its roots and complexity. Mol. Med. 2024, 30, 279. [Google Scholar] [CrossRef] [PubMed]
- Group, T.S.; Shah, A.S.; El Ghormli, L.; Gidding, S.S.; Hughan, K.S.; Levitt Katz, L.E.; Koren, D.; Tryggestad, J.B.; Bacha, F.; Braffett, B.H.; et al. Longitudinal changes in vascular stiffness and heart rate variability among young adults with youth-onset type 2 diabetes: Results from the follow-up observational treatment options for type 2 diabetes in adolescents and youth (TODAY) study. Acta Diabetol. 2022, 59, 197–205. [Google Scholar] [CrossRef]
- Iafusco, D.; Franceschi, R.; Maguolo, A.; Guercio Nuzio, S.; Crino, A.; Delvecchio, M.; Iughetti, L.; Maffeis, C.; Calcaterra, V.; Manco, M. From Metabolic Syndrome to Type 2 Diabetes in Youth. Children 2023, 10, 516. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.B. What is the disease burden from childhood and adolescent obesity? A narrative review. J. Yeungnam Med. Sci. 2024, 41, 150–157. [Google Scholar] [CrossRef]
- McPhee, P.G.; Singh, S.; Morrison, K.M. Childhood Obesity and Cardiovascular Disease Risk: Working Toward Solutions. Can. J. Cardiol. 2020, 36, 1352–1361. [Google Scholar] [CrossRef]
- Guzzetti, C.; Ibba, A.; Casula, L.; Pilia, S.; Casano, S.; Loche, S. Cardiovascular Risk Factors in Children and Adolescents With Obesity: Sex-Related Differences and Effect of Puberty. Front. Endocrinol. 2019, 10, 591. [Google Scholar] [CrossRef]
- Valerio, G.; Di Bonito, P.; Calcaterra, V.; Cherubini, V.; Corica, D.; De Sanctis, L.; Di Sessa, A.; Faienza, M.F.; Fornari, E.; Iughetti, L.; et al. Cardiometabolic risk in children and adolescents with obesity: A position paper of the Italian Society for Pediatric Endocrinology and Diabetology. Ital. J. Pediatr. 2024, 50, 205. [Google Scholar] [CrossRef]
- Wang, R.; Liu, J.; Fang, G.; Shi, J.; Zhang, C.; Huang, Y. Association between visceral adiposity index and cardiovascular disease: A systematic review and meta-analysis. Nutr. Metab. Cardiovasc. Dis. 2025, 35, 104216. [Google Scholar] [CrossRef]
- Battineni, G.; Sagaro, G.G.; Chintalapudi, N.; Amenta, F.; Tomassoni, D.; Tayebati, S.K. Impact of Obesity-Induced Inflammation on Cardiovascular Diseases (CVD). Int. J. Mol. Sci. 2021, 22, 4798. [Google Scholar] [CrossRef]
- Reinisch, I.; Ghosh, A.; Noe, F.; Sun, W.; Dong, H.; Leary, P.; Dietrich, A.; Hoffmann, A.; Bluher, M.; Wolfrum, C. Unveiling adipose populations linked to metabolic health in obesity. Cell Metab. 2025, 37, 640–655 e644. [Google Scholar] [CrossRef]
- Makri, A.; Cheung, A.; Sinaii, N.; Remaley, A.T.; Sampson, M.; Keil, M.; Belyavskaya, E.; Lyssikatos, C.; De La Luz Sierra, M.; Stratakis, C.A.; et al. Lipoprotein particles in patients with pediatric Cushing disease and possible cardiovascular risks. Pediatr. Res. 2019, 86, 375–381. [Google Scholar] [CrossRef]
- Wu, A.J.; Aris, I.M.; Rifas-Shiman, S.L.; Oken, E.; Taveras, E.M.; Chavarro, J.E.; Hivert, M.F. Associations of midchildhood to early adolescence central adiposity gain with cardiometabolic health in early adolescence. Obesity 2021, 29, 1882–1891. [Google Scholar] [CrossRef] [PubMed]
- Bland, V.L.; Kindler, J.M.; Blew, R.M.; Morrill, K.E.; Roe, D.J.; Going, S.B. Visceral adipose tissue and cardiometabolic risk factors in young Hispanic and non-Hispanic girls. Front. Pediatr. 2022, 10, 892206. [Google Scholar] [CrossRef]
- Group, T.S.; Shah, R.D.; Braffett, B.H.; Tryggestad, J.B.; Hughan, K.S.; Dhaliwal, R.; Nadeau, K.J.; Levitt Katz, L.E.; Gidding, S.S. Cardiovascular risk factor progression in adolescents and young adults with youth-onset type 2 diabetes. J. Diabetes Complicat. 2022, 36, 108123. [Google Scholar] [CrossRef]
- Libby, P.; Buring, J.E.; Badimon, L.; Hansson, G.K.; Deanfield, J.; Bittencourt, M.S.; Tokgozoglu, L.; Lewis, E.F. Atherosclerosis. Nat. Rev. Dis. Primers 2019, 5, 56. [Google Scholar] [CrossRef] [PubMed]
- Ryder, J.R.; Northrop, E.; Rudser, K.D.; Kelly, A.S.; Gao, Z.; Khoury, P.R.; Kimball, T.R.; Dolan, L.M.; Urbina, E.M. Accelerated Early Vascular Aging Among Adolescents With Obesity and/or Type 2 Diabetes Mellitus. J. Am. Heart Assoc. 2020, 9, e014891. [Google Scholar] [CrossRef] [PubMed]
- Diamantopoulos, E.J.; Andreadis, E.A.; Tsourous, G.I.; Ifanti, G.K.; Katsanou, P.M.; Georgiopoulos, D.X.; Vassilopoulos, C.V.; Dimitriadis, G.; Raptis, S.A. Metabolic syndrome and prediabetes identify overlapping but not identical populations. Exp. Clin. Endocrinol. Diabetes 2006, 114, 377–383. [Google Scholar] [CrossRef]
- Watanabe, S.; Okura, T.; Kitami, Y.; Hiwada, K. Carotid hemodynamic alterations in hypertensive patients with insulin resistance. Am. J. Hypertens. 2002, 15, 851–856. [Google Scholar] [CrossRef]
- Bulut, A.; Avci, B. Carotid intima-media thickness values are significantly higher in patients with prediabetes compared to normal glucose metabolism. Medicine 2019, 98, e17805. [Google Scholar] [CrossRef]
- Di Pino, A.; Scicali, R.; Marchisello, S.; Zanoli, L.; Ferrara, V.; Urbano, F.; Filippello, A.; Di Mauro, S.; Scamporrino, A.; Piro, S.; et al. High glomerular filtration rate is associated with impaired arterial stiffness and subendocardial viability ratio in prediabetic subjects. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 3393–3400. [Google Scholar] [CrossRef]
- Scott, D.A.; Ponir, C.; Shapiro, M.D.; Chevli, P.A. Associations between insulin resistance indices and subclinical atherosclerosis: A contemporary review. Am. J. Prev. Cardiol. 2024, 18, 100676. [Google Scholar] [CrossRef]
- Tupai-Firestone, R.; Cheng, S.; Corbin, M.; Lerwill, N.; Pulu, T.; Latu, L.; Dunn, H.; Pulu, V.; Firestone, J.; Fuge, K.; et al. A feasibility study investigating the risk of prediabetes among children in New Zealand. Sci. Rep. 2025, 15, 31360. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.J.; Perfetti, T.A.; Hayes, A.W.; Berry, S.C. Obesity as a Source of Endogenous Compounds Associated With Chronic Disease: A Review. Toxicol. Sci. 2020, 175, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Litwin, S.E. Childhood obesity and adulthood cardiovascular disease: Quantifying the lifetime cumulative burden of cardiovascular risk factors. J. Am. Coll. Cardiol. 2014, 64, 1588–1590. [Google Scholar] [CrossRef] [PubMed]
- Salama, M.; Balagopal, B.; Fennoy, I.; Kumar, S. Childhood Obesity, Diabetes. and Cardiovascular Disease Risk. J. Clin. Endocrinol. Metab. 2023, 108, 3051–3066, Correction in J. Clin. Endocrinol. Metab. 2024, 109, e1422. [Google Scholar] [CrossRef]
- Rivera-Suazo, Y.; Alberto-Melendez, J.; Alfaro-Bolanos, J.E.; Alvarez-Chavez, F.J.; Ayala-German, A.G.; Galaviz-Ballesteros, M.J.; Higuera-Carillo, M.; Taquez-Castro, C.L.; Villa-Gomez, A.L.; Villaroel-Ibarra, B.N.; et al. Consensus on the diagnosis, treatment, and follow-up in children and adolescents with overweight and obesity of the Latin American Society for Pediatric Gastroenterology, Hepatology and Nutrition (LASPGHAN). Rev. Gastroenterol. México 2025, 90, 428–450. [Google Scholar] [CrossRef]
- Emmons, K.M.; Rollnick, S. Motivational interviewing in health care settings. Opportunities and limitations. Am. J. Prev. Med. 2001, 20, 68–74. [Google Scholar] [CrossRef]
- Aychiluhm, S.B.; Mondal, U.K.; Isaac, V.; Ross, A.G.; Ahmed, K.Y. Interventions for Childhood Central Obesity: A Systematic Review and Meta-Analysis. JAMA Netw. Open 2025, 8, e254331. [Google Scholar] [CrossRef]
- Kao, T.A.; Ling, J.; Hawn, R.; Vu, C. The effects of motivational interviewing on children’s body mass index and fat distributions: A systematic review and meta-analysis. Obes. Rev. 2021, 22, e13308. [Google Scholar] [CrossRef] [PubMed]
- Resnicow, K.; McMaster, F.; Bocian, A.; Harris, D.; Zhou, Y.; Snetselaar, L.; Schwartz, R.; Myers, E.; Gotlieb, J.; Foster, J.; et al. Motivational interviewing and dietary counseling for obesity in primary care: An RCT. Pediatrics 2015, 135, 649–657. [Google Scholar] [CrossRef]
- Resnicow, K.; Delacroix, E.; Sonneville, K.R.; Considine, S.; Grundmeier, R.W.; Shu, D.; Faerber, J.A.; Fiks, A.G.; Steffes, J.; Harris, D.; et al. Outcome of BMI2+: Motivational Interviewing to Reduce BMI Through Primary Care AAP PROS Practices. Pediatrics 2024, 153, e2023062462. [Google Scholar] [CrossRef] [PubMed]
- Styne, D.M.; Arslanian, S.A.; Connor, E.L.; Farooqi, I.S.; Murad, M.H.; Silverstein, J.H.; Yanovski, J.A. Response to Letter: “Pediatric Obesity-Assessment, Treatment, and Prevention: An Endocrine Society Clinical Practice Guideline”. J. Clin. Endocrinol. Metab. 2017, 102, 2123–2124. [Google Scholar] [CrossRef]
- Pfeiffle, S.; Pellegrino, F.; Kruseman, M.; Pijollet, C.; Volery, M.; Soguel, L.; Torre, S.B.D. Current Recommendations for Nutritional Management of Overweight and Obesity in Children and Adolescents: A Structured Framework. Nutrients 2019, 11, 362. [Google Scholar] [CrossRef] [PubMed]
- Force, U.S.P.S.T.; Nicholson, W.K.; Silverstein, M.; Wong, J.B.; Chelmow, D.; Coker, T.R.; Davis, E.M.; Donahue, K.E.; Jaen, C.R.; Krousel-Wood, M.; et al. Interventions for High Body Mass Index in Children and Adolescents: US Preventive Services Task Force Recommendation Statement. JAMA 2024, 332, 226–232. [Google Scholar] [CrossRef]
- Skinner, A.C.; Staiano, A.E.; Armstrong, S.C.; Barkin, S.L.; Hassink, S.G.; Moore, J.E.; Savage, J.S.; Vilme, H.; Weedn, A.E.; Liebhart, J.; et al. Appraisal of Clinical Care Practices for Child Obesity Treatment. Part I: Interventions. Pediatrics 2023, 151, e2022060642. [Google Scholar] [CrossRef]
- O’Connor, E.A.; Evans, C.V.; Burda, B.U.; Walsh, E.S.; Eder, M.; Lozano, P. Screening for Obesity and Intervention for Weight Management in Children and Adolescents: Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA 2017, 317, 2427–2444. [Google Scholar] [CrossRef]
- Wilfley, D.E.; Staiano, A.E.; Altman, M.; Lindros, J.; Lima, A.; Hassink, S.G.; Dietz, W.H.; Cook, S.; Improving, A.; Systems of Care for Evidence-Based Childhood Obesity Treatment Conference, W. Improving access and systems of care for evidence-based childhood obesity treatment: Conference key findings and next steps. Obesity 2017, 25, 16–29. [Google Scholar] [CrossRef] [PubMed]
- Aloi, M.; Rania, M.; Carbone, E.A.; de Filippis, R.; D’Onofrio, E.; Rotella, L.; Quirino, D.; Simpson, S.; Segura-Garcia, C. Early Maladaptive Schemas as Core Therapeutic Targets in Eating Disorders and Obesity: A Schema Therapy-Informed Network Analysis. Clin. Psychol. Psychother. 2025, 32, e70153. [Google Scholar] [CrossRef] [PubMed]
- Williams, L. Is heart-healthy eating achievable in youth? J. Clin. Lipidol. 2025, 19, 43–47. [Google Scholar] [CrossRef]
- Robbins, L.B.; Ng, T.J.; Sender, J.; Pageau, L.M.; Varpaei, H.; Smalley, M.; VanDeRiet, S.; Ling, J. Effects of parental-involved physical activity and nutrition interventions for young adolescents aged 10–13 years: A meta-analysis. Arch. Public Health 2025, 83, 213. [Google Scholar] [CrossRef]
- Struckmeyer, N.; Biester, T.; Weiner, C.; Sadeghian, E.; Guntermann, C.; Galuschka, L.; von Stuelpnagel, K.; Weiskorn, J.; Kapitzke, K.; Lange, K.; et al. Evaluating the long-term effectiveness of a structured telehealth obesity program in children and adolescents: A retrospective matched-control study. Obes. Pillars 2025, 16, 100206. [Google Scholar] [CrossRef]
- Ramalho, S.M.; Saint-Maurice, P.F.; Silva, D.; Mansilha, H.F.; Conceicao, E. Feasibility and Effectiveness of a Social Network-Based Intervention for Adolescents Undergoing Weight Loss Treatment: A Randomized Controlled Trial. Nutrients 2025, 17, 2586. [Google Scholar] [CrossRef] [PubMed]
- Palacios, C.; Hernandez, J.; Ajmal, A.; Rodriguez, A.J.; Hassan, A.Y.I.; Metzendorf, M.I.; Ramella-Roman, J.C. Digital health, technology-driven or technology-assisted interventions for the management of obesity in children and adolescents. Cochrane Database Syst. Rev. 2025, 7, CD015968. [Google Scholar] [CrossRef]
- Hagman, E.; Lindberg, L.; Putri, R.R.; Drangel, A.; Marcus, C.; Danielsson, P. Long-term results of a digital treatment tool as an add-on to pediatric obesity lifestyle treatment: A 3-year pragmatic clinical trial. Int. J. Obes. 2025, 49, 973–976. [Google Scholar] [CrossRef]
- Woo, K.S.; Chook, P.; Yu, C.W.; Sung, R.Y.; Qiao, M.; Leung, S.S.; Lam, C.W.; Metreweli, C.; Celermajer, D.S. Effects of diet and exercise on obesity-related vascular dysfunction in children. Circulation 2004, 109, 1981–1986. [Google Scholar] [CrossRef]
- Donghui, T.; Shuang, B.; Xulong, L.; Meng, Y.; Yujing, G.; Yujie, H.; Juan, L.; Dongsheng, Y. Improvement of microvascular endothelial dysfunction induced by exercise and diet is associated with microRNA-126 in obese adolescents. Microvasc. Res. 2019, 123, 86–91. [Google Scholar] [CrossRef]
- Genoni, G.; Menegon, V.; Monzani, A.; Archero, F.; Tagliaferri, F.; Mancioppi, V.; Peri, C.; Bellone, S.; Prodam, F. Healthy Lifestyle Intervention and Weight Loss Improve Cardiovascular Dysfunction in Children with Obesity. Nutrients 2021, 13, 1301. [Google Scholar] [CrossRef]
- Danielsson, P.; Kowalski, J.; Ekblom, O.; Marcus, C. Response of severely obese children and adolescents to behavioral treatment. Arch. Pediatr. Adolesc. Med. 2012, 166, 1103–1108. [Google Scholar] [CrossRef]
- Chung, Y.L.; Rhie, Y.J. Severe Obesity in Children and Adolescents: Metabolic Effects, Assessment, and Treatment. J. Obes. Metab. Syndr. 2021, 30, 326–335. [Google Scholar] [CrossRef]
- Pittas, A.G.; Kawahara, T.; Jorde, R.; Dawson-Hughes, B.; Vickery, E.M.; Angellotti, E.; Nelson, J.; Trikalinos, T.A.; Balk, E.M. Vitamin D and Risk for Type 2 Diabetes in People With Prediabetes: A Systematic Review and Meta-analysis of Individual Participant Data From 3 Randomized Clinical Trials. Ann. Intern. Med. 2023, 176, 355–363. [Google Scholar] [CrossRef]
- Angellotti, E.; D’Alessio, D.; Dawson-Hughes, B.; Chu, Y.; Nelson, J.; Hu, P.; Cohen, R.M.; Pittas, A.G. Effect of vitamin D supplementation on cardiovascular risk in type 2 diabetes. Clin. Nutr. 2019, 38, 2449–2453. [Google Scholar] [CrossRef]
- Rasouli, N.; Brodsky, I.G.; Chatterjee, R.; Kim, S.H.; Pratley, R.E.; Staten, M.A.; Pittas, A.G.; Group, D.d.R. Effects of Vitamin D Supplementation on Insulin Sensitivity and Secretion in Prediabetes. J. Clin. Endocrinol. Metab. 2022, 107, 230–240. [Google Scholar] [CrossRef] [PubMed]
- Pittas, A.G.; Jorde, R.; Kawahara, T.; Dawson-Hughes, B. Vitamin D Supplementation for Prevention of Type 2 Diabetes Mellitus: To D or Not to D? J. Clin. Endocrinol. Metab. 2020, 105, 3721–3733. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Shao, X. Mediating role of inflammatory markers (NLR, PLR, SII, SIRI) in the association between 25(OH)D deficiency and obesity in children and adolescents. J. Health Popul. Nutr. 2025, 44, 215. [Google Scholar] [CrossRef]
- Niemela, J.; Laitinen, T.T.; Nuotio, J.; Pahkala, K.; Rovio, S.; Viikari, J.; Kahonen, M.; Lehtimaki, T.; Loo, B.M.; Laitinen, T.P.; et al. Childhood 25-OH-vitamin D Levels Predict Early Cardiovascular Outcomes in Adulthood: The Cardiovascular Risk in Young Finns Study. Eur. J. Prev. Cardiol. 2025; online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Park, C.Y.; Shin, S.; Han, S.N. Multifaceted Roles of Vitamin D for Diabetes: From Immunomodulatory Functions to Metabolic Regulations. Nutrients 2024, 16, 3185. [Google Scholar] [CrossRef]
- Corsello, A.; Macchi, M.; D’Oria, V.; Pigazzi, C.; Alberti, I.; Treglia, G.; De Cosmi, V.; Mazzocchi, A.; Agostoni, C.; Milani, G.P. Effects of vitamin D supplementation in obese and overweight children and adolescents: A systematic review and meta-analysis. Pharmacol. Res. 2023, 192, 106793. [Google Scholar] [CrossRef]
- Gou, H.; Wang, Y.; Liu, Y.; Peng, C.; He, W.; Sun, X. Efficacy of vitamin D supplementation on child and adolescent overweight/obesity: A systematic review and meta-analysis of randomized controlled trials. Eur. J. Pediatr. 2023, 182, 255–264. [Google Scholar] [CrossRef]
- Bruna-Mejias, A.; Valdivia-Arroyo, R.; Becerra-Rodriguez, E.S.; Clasing-Cardenas, I.; Castano-Gallego, Y.T.; Granite, G.; Orellana-Donoso, M.; Oyanedel-Amaro, G.; Nova-Baeza, P.; Cifuentes-Suazo, G.; et al. Effectiveness of Vitamin D Supplementation on Biochemical, Clinical, and Inflammatory Parameters in Patients with Different Types of Diabetes: A Systematic Review and Meta-Analysis. Nutrients 2025, 17, 2991. [Google Scholar] [CrossRef]
- Foretz, M.; Guigas, B.; Viollet, B. Metformin: Update on mechanisms of action and repurposing potential. Nat. Rev. Endocrinol. 2023, 19, 460–476. [Google Scholar] [CrossRef]
- Alfaraidi, H.; Samaan, M.C. Metformin therapy in pediatric type 2 diabetes mellitus and its comorbidities: A review. Front. Endocrinol. 2022, 13, 1072879. [Google Scholar] [CrossRef] [PubMed]
- Adeyemo, M.A.; McDuffie, J.R.; Kozlosky, M.; Krakoff, J.; Calis, K.A.; Brady, S.M.; Yanovski, J.A. Effects of metformin on energy intake and satiety in obese children. Diabetes Obes. Metab. 2015, 17, 363–370. [Google Scholar] [CrossRef]
- Sadeghi, A.; Mousavi, S.M.; Mokhtari, T.; Parohan, M.; Milajerdi, A. Metformin Therapy Reduces Obesity Indices in Children and Adolescents: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Child. Obes. 2020, 16, 174–191. [Google Scholar] [CrossRef]
- Raman, V.; Gupta, A.; Ashraf, A.P.; Breidbart, E.; Gourgari, E.; Kamboj, M.; Kohn, B.; Krishnan, S.; Lahoti, A.; Matlock, K.; et al. Pharmacologic Weight Management in the Era of Adolescent Obesity. J. Clin. Endocrinol. Metab. 2022, 107, 2716–2728, Correction in J. Clin. Endocrinol. Metab. 2023, 108, e15. [Google Scholar] [CrossRef]
- Bee, Y.M.; Awasthi, N.; Gandhi, M.; Lam, A.Y.R.; Julianty, S.; Tan, G.C.S.; Ho, E.T.L.; Goh, S.Y.; Tan, G.S.W.; Shum, E.J.W.; et al. Effectiveness of an Incentives-Enhanced Stepped Care Intervention Program in Diabetes Prevention in a Multiethnic Asian Prediabetes Cohort: Results From the Pre-DICTED Randomized Controlled Trial. Diabetes Care 2025, 48, 1951–1959. [Google Scholar] [CrossRef] [PubMed]
- Drucker, D.J. Mechanisms of Action and Therapeutic Application of Glucagon-like Peptide-1. Cell Metab. 2018, 27, 740–756. [Google Scholar] [CrossRef] [PubMed]
- Drucker, D.J. GLP-1 physiology informs the pharmacotherapy of obesity. Mol. Metab. 2022, 57, 101351. [Google Scholar] [CrossRef]
- Kelly, A.S.; Armstrong, S.C.; Michalsky, M.P.; Fox, C.K. Obesity in Adolescents: A Review. JAMA 2024, 332, 738–748. [Google Scholar] [CrossRef]
- Weghuber, D.; Barrett, T.; Barrientos-Perez, M.; Gies, I.; Hesse, D.; Jeppesen, O.K.; Kelly, A.S.; Mastrandrea, L.D.; Sorrig, R.; Arslanian, S.; et al. Once-Weekly Semaglutide in Adolescents with Obesity. N. Engl. J. Med. 2022, 387, 2245–2257. [Google Scholar] [CrossRef]
- Romariz, L.M.; de Melo, A.A.C.; Finnegan, E.; Mesquita, Y.; Janovsky, C. GLP-1 receptor agonists for the treatment of obesity in children and adolescents: A meta-analysis of randomized controlled trials. Pediatr. Res. 2025; online ahead of print. [Google Scholar] [CrossRef]
- Wadden, T.A.; Hollander, P.; Klein, S.; Niswender, K.; Woo, V.; Hale, P.M.; Aronne, L. Weight maintenance and additional weight loss with liraglutide after low-calorie-diet-induced weight loss: The SCALE Maintenance randomized study. Int. J. Obes. 2013, 37, 1443–1451, Correction in Int. J. Obes. 2013, 37, 1514; Correction in Int. J. Obes. 2015, 39, 187. [Google Scholar]
- Liu, L.; Shi, H.; Shi, Y.; Wang, A.; Guo, N.; Tao, H.; Nahata, M.C. Comparative Efficacy and Safety of Glucagon-like Peptide-1 Receptor Agonists in Children and Adolescents with Obesity or Overweight: A Systematic Review and Network Meta-Analysis. Pharmaceuticals 2024, 17, 828. [Google Scholar] [CrossRef]
- Cornejo-Estrada, A.; Nieto-Rodriguez, C.; Leon-Figueroa, D.A.; Moreno-Ramos, E.; Cabanillas-Ramirez, C.; Barboza, J.J. Efficacy of Liraglutide in Obesity in Children and Adolescents: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Children 2023, 10, 208. [Google Scholar] [CrossRef] [PubMed]
- Apperley, L.; Parkinson, J.; Senniappan, S. Liraglutide Treatment Improves Glycaemic Dysregulation, Body Composition, Cardiometabolic Variables and Uncontrolled Eating Behaviour in Adolescents with Severe Obesity. J. Clin. Res. Pediatr. Endocrinol. 2025, 17, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Ruiz Pons, M.; Gutierrez Vilar, M.; Garcia Zurita, C.; Fuentes Ferrer, M.E.; Perez Rodriguez, A.; Rosado Alonso, C. Effectiveness of liraglutide in the treatment of adolescent obesity. An. Pediatría 2025, 103, 503856. [Google Scholar] [CrossRef]
- Fox, C.K.; Barrientos-Perez, M.; Bomberg, E.M.; Dcruz, J.; Gies, I.; Harder-Lauridsen, N.M.; Jalaludin, M.Y.; Sahu, K.; Weimers, P.; Zueger, T.; et al. Liraglutide for Children 6 to <12 Years of Age with Obesity—A Randomized Trial. N. Engl. J. Med. 2025, 392, 555–565. [Google Scholar] [CrossRef]
- Kotecha, P.; Huang, W.; Yeh, Y.Y.; Narvaez, V.M.; Adirika, D.; Tang, H.; Bernier, A.V.; Westen, S.C.; Smith, S.M.; Bian, J.; et al. Efficacy and Safety of GLP-1 RAs in Children and Adolescents With Obesity or Type 2 Diabetes: A Systematic Review and Meta-Analysis. JAMA Pediatr. 2025, 179, 1308. [Google Scholar] [CrossRef]
- Lee, J.M.; Sharifi, M.; Oshman, L.; Griauzde, D.H.; Chua, K.P. Dispensing of Glucagon-like Peptide-1 Receptor Agonists to Adolescents and Young Adults, 2020–2023. JAMA 2024, 331, 2041–2043. [Google Scholar] [CrossRef] [PubMed]
- Stefater-Richards, M.A.; Jhe, G.; Zhang, Y.J. GLP-1 Receptor Agonists in Pediatric and Adolescent Obesity. Pediatrics 2025, 155, e2024068119. [Google Scholar] [CrossRef]
- Pasternak, B.; Wintzell, V.; Hviid, A.; Eliasson, B.; Gudbjornsdottir, S.; Jonasson, C.; Hveem, K.; Svanstrom, H.; Melbye, M.; Ueda, P. Glucagon-like peptide 1 receptor agonist use and risk of thyroid cancer: Scandinavian cohort study. BMJ 2024, 385, e078225. [Google Scholar] [CrossRef] [PubMed]
- Gatto, A.; Liu, K.; Milan, N.; Wong, S. The Effects of GLP-1 Agonists on Musculoskeletal Health and Orthopedic Care. Curr. Rev. Musculoskelet. Med. 2025, 18, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Badve, S.V.; Bilal, A.; Lee, M.M.Y.; Sattar, N.; Gerstein, H.C.; Ruff, C.T.; McMurray, J.J.V.; Rossing, P.; Bakris, G.; Mahaffey, K.W.; et al. Effects of GLP-1 receptor agonists on kidney and cardiovascular disease outcomes: A meta-analysis of randomised controlled trials. Lancet Diabetes Endocrinol. 2025, 13, 15–28. [Google Scholar] [CrossRef]
- Lu, T.T.; Liu, B.; Ge, L.; Liu, Y.L.; Lu, Y. Association of long-term weight management pharmacotherapy with multiple health outcomes: An umbrella review and evidence map. Int. J. Obes. 2025, 49, 464–477. [Google Scholar] [CrossRef]
- Wahi, G.; St-Pierre, J.; Johnston, B.C.; Fitzpatrick-Lewis, D.; Usman, A.; Sherifali, D.; Merdad, R.; Esmaeilinezhad, Z.; Birken, C.S.; Hamilton, J.; et al. Effectiveness of pharmacological interventions for managing obesity in children and adolescents: A systematic review and meta-analysis framed using minimal important difference estimates based on GRADE guidance to inform a clinical practice guideline. Pediatr. Obes. 2024, 19, e13169. [Google Scholar] [CrossRef]
- Verma, S.; Leiter, L.A.; Mazer, C.D.; Bain, S.C.; Buse, J.; Marso, S.; Nauck, M.; Zinman, B.; Bosch-Traberg, H.; Rasmussen, S.; et al. Liraglutide Reduces Cardiovascular Events and Mortality in Type 2 Diabetes Mellitus Independently of Baseline Low-Density Lipoprotein Cholesterol Levels and Statin Use. Circulation 2018, 138, 1605–1607. [Google Scholar] [CrossRef]
- Bacha, Z.; Javed, J.; Sheraz, M.; Sikandar, M.; Zakir, M.; Ali, M.A.; Khan, M.; Iqbal, A.; Rehman, A.; Alam, U.; et al. Efficacy and Safety of Semaglutide on Cardiovascular Outcomes in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Cardiol. Rev. 2025; online ahead of print. [Google Scholar] [CrossRef]
- Ford, A.L.; Hunt, L.P.; Cooper, A.; Shield, J.P. What reduction in BMI SDS is required in obese adolescents to improve body composition and cardiometabolic health? Arch. Dis. Child. 2010, 95, 256–261. [Google Scholar] [CrossRef]
- Adriaenssens, A.E.; Biggs, E.K.; Darwish, T.; Tadross, J.; Sukthankar, T.; Girish, M.; Polex-Wolf, J.; Lam, B.Y.; Zvetkova, I.; Pan, W.; et al. Glucose-Dependent Insulinotropic Polypeptide Receptor-Expressing Cells in the Hypothalamus Regulate Food Intake. Cell Metab. 2019, 30, 987–996 e986. [Google Scholar] [CrossRef]
- Jastreboff, A.M.; le Roux, C.W.; Stefanski, A.; Aronne, L.J.; Halpern, B.; Wharton, S.; Wilding, J.P.H.; Perreault, L.; Zhang, S.; Battula, R.; et al. Tirzepatide for Obesity Treatment and Diabetes Prevention. N. Engl. J. Med. 2025, 392, 958–971. [Google Scholar] [CrossRef]
- De Block, C.; Peleshok, J.; Wilding, J.P.H.; Kwan, A.Y.M.; Rasouli, N.; Maldonado, J.M.; Wysham, C.; Liu, M.; Aleppo, G.; Benneyworth, B.D. Post Hoc Analysis of SURPASS-1 to -5: Efficacy and Safety of Tirzepatide in Adults with Type 2 Diabetes are Independent of Baseline Characteristics. Diabetes Ther. 2025, 16, 43–71. [Google Scholar] [CrossRef]
- Hannon, T.S.; Chao, L.C.; Barrientos-Perez, M.; Pamidipati, K.C.; Lando, L.F.; Lee, C.J.; Patel, H.; Bergman, B.K. Efficacy and safety of tirzepatide in children and adolescents with type 2 diabetes (SURPASS-PEDS): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2025, 406, 1484–1496, Correction in Lancet 2025, 406, 1472. [Google Scholar] [CrossRef]
- Jastreboff, A.M.; Kaplan, L.M.; Frias, J.P.; Wu, Q.; Du, Y.; Gurbuz, S.; Coskun, T.; Haupt, A.; Milicevic, Z.; Hartman, M.L.; et al. Triple-Hormone-Receptor Agonist Retatrutide for Obesity—A Phase 2 Trial. N. Engl. J. Med. 2023, 389, 514–526. [Google Scholar] [CrossRef] [PubMed]
- Katsi, V.; Koutsopoulos, G.; Fragoulis, C.; Dimitriadis, K.; Tsioufis, K. Retatrutide-A Game Changer in Obesity Pharmacotherapy. Biomolecules 2025, 15, 796. [Google Scholar] [CrossRef] [PubMed]
- Cooper, D.M.; Rothstein, M.A.; Amin, A.; Hirsch, J.D.; Cooper, E. Unintended consequences of glucagon-like peptide-1 receptor agonists medications in children and adolescents: A call to action. J. Clin. Transl. Sci. 2023, 7, e184. [Google Scholar] [CrossRef] [PubMed]
- Ceasovschih, A.; Asaftei, A.; Lupo, M.G.; Kotlyarov, S.; Bartuskova, H.; Balta, A.; Sorodoc, V.; Sorodoc, L.; Banach, M. Glucagon-like peptide-1 receptor agonists and muscle mass effects. Pharmacol. Res. 2025, 220, 107927. [Google Scholar] [CrossRef]
- Jastreboff, A.M.; Ryan, D.H.; Bays, H.E.; Ebeling, P.R.; Mackowski, M.G.; Philipose, N.; Ross, L.; Liu, Y.; Burns, C.E.; Abbasi, S.A.; et al. Once-Monthly Maridebart Cafraglutide for the Treatment of Obesity—A Phase 2 Trial. N. Engl. J. Med. 2025, 393, 843–857. [Google Scholar] [CrossRef] [PubMed]
- Veniant, M.M.; Lu, S.C.; Atangan, L.; Komorowski, R.; Stanislaus, S.; Cheng, Y.; Wu, B.; Falsey, J.R.; Hager, T.; Thomas, V.A.; et al. A GIPR antagonist conjugated to GLP-1 analogues promotes weight loss with improved metabolic parameters in preclinical and phase 1 settings. Nat. Metab. 2024, 6, 290–303. [Google Scholar] [CrossRef]
- Ballesteros-Pomar, M.D.; Breton, I. Adverse effects and other aspects of drugs with incretin effect. Med. Clin. 2025, 165, 107041. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, J.; Wang, M.; Zhang, S.; He, Q.Q. Stratified analysis of the association between anti-obesity medications and digestive adverse events: A real-world study based on the FDA adverse event reporting system database. BMC Pharmacol. Toxicol. 2024, 25, 64. [Google Scholar] [CrossRef]
- Lebovitz, H.E. Incretin-based therapies: Facing the realities of benefits versus side effects. Diabetes Technol. Ther. 2013, 15, 909–913. [Google Scholar] [CrossRef]
- Huang, K.P.; Acosta, A.A.; Ghidewon, M.Y.; McKnight, A.D.; Almeida, M.S.; Nyema, N.T.; Hanchak, N.D.; Patel, N.; Gbenou, Y.S.K.; Adriaenssens, A.E.; et al. Dissociable hindbrain GLP1R circuits for satiety and aversion. Nature 2024, 632, 585–593. [Google Scholar] [CrossRef]
- Wu, S.; He, Y.; Wu, Y.; Ji, Y.; Hou, L.; Liu, X.; Ge, Y.; Yu, Y.; Yu, Y.; Wei, Y.; et al. Comparative efficacy and safety of glucose-lowering drugs in children and adolescents with type 2 diabetes: A systematic review and network meta-analysis. Front. Endocrinol. 2022, 13, 897776. [Google Scholar] [CrossRef]
- Nagendra, L.; Dutta, D.; Girijashankar, H.B.; Khandelwal, D.; Lathia, T.; Sharma, M. Safety and tolerability of sodium-glucose cotransporter-2 inhibitors in children and young adults: A systematic review and meta-analysis. Ann. Pediatr. Endocrinol. Metab. 2024, 29, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos Borges, R.; Conegundes, A.F.; Haikal de Paula, L.; Lara Santos, R.; Alves, S.N.; Machado, R.A.; Bussolaro Viana, I.; Simoes, E.S.A.C. Efficacy and Safety of SGLT2 Inhibitors in Pediatric Patients and Young Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Pediatr. Diabetes 2024, 2024, 6295345. [Google Scholar] [CrossRef] [PubMed]
- Utzschneider, K.M.; Tong, J.; Montgomery, B.; Udayasankar, J.; Gerchman, F.; Marcovina, S.M.; Watson, C.E.; Ligueros-Saylan, M.A.; Foley, J.E.; Holst, J.J.; et al. The dipeptidyl peptidase-4 inhibitor vildagliptin improves beta-cell function and insulin sensitivity in subjects with impaired fasting glucose. Diabetes Care 2008, 31, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Rosenstock, J.; Foley, J.E.; Rendell, M.; Landin-Olsson, M.; Holst, J.J.; Deacon, C.F.; Rochotte, E.; Baron, M.A. Effects of the dipeptidyl peptidase-IV inhibitor vildagliptin on incretin hormones, islet function, and postprandial glycemia in subjects with impaired glucose tolerance. Diabetes Care 2008, 31, 30–35. [Google Scholar] [CrossRef][Green Version]
- Zhang, F.; Han, B.; Jiang, X. Clinical efficacy and safety of vildagliptin in the treatment of patients with impaired glucose tolerance. Asian J. Surg. 2022, 45, 1336–1337. [Google Scholar] [CrossRef] [PubMed]
- Haddad, F.; Dokmak, G.; Bader, M.; Karaman, R. A Comprehensive Review on Weight Loss Associated with Anti-Diabetic Medications. Life 2023, 13, 1012. [Google Scholar] [CrossRef] [PubMed]
- Dhillon, S. Phentermine/Topiramate: Pediatric First Approval. Paediatr. Drugs 2022, 24, 715–720. [Google Scholar] [CrossRef]
- Kelly, A.S.; Bensignor, M.O.; Hsia, D.S.; Shoemaker, A.H.; Shih, W.; Peterson, C.; Varghese, S.T. Phentermine/Topiramate for the Treatment of Adolescent Obesity. NEJM Evid. 2022, 1, 6. [Google Scholar] [CrossRef]
- Mital, S.; Nguyen, H.V. Cost-Effectiveness of Antiobesity Drugs for Adolescents With Severe Obesity. JAMA Netw. Open 2023, 6, e2336400. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.; Nguyen, J.; Babaei, M.; Kim, A.; Geller, D.H.; Vidmar, A.P. A Narrative Review: Phentermine and Topiramate for the Treatment of Pediatric Obesity. Adolesc. Health Med. Ther. 2023, 14, 125–140. [Google Scholar] [CrossRef]
- Woodard, K.; Louque, L.; Hsia, D.S. Medications for the treatment of obesity in adolescents. Ther. Adv. Endocrinol. Metab. 2020, 11, 2042018820918789. [Google Scholar] [CrossRef]
- Nikniaz, Z.; Nikniaz, L.; Farhangi, M.A.; Mehralizadeh, H.; Salekzamani, S. Effect of Orlistat on anthropometrics and metabolic indices in children and adolescents: A systematic review and meta-analysis. BMC Endocr. Disord. 2023, 23, 142. [Google Scholar] [CrossRef]
- Matson, K.L.; Fenn, N.E., 3rd. Obesity management in the pediatric patient. Am. J. Health Syst. Pharm. 2025, 82, 392–402. [Google Scholar] [CrossRef]
- Gkouskou, K.K.; Grammatikopoulou, M.G.; Lazou, E.; Vasilogiannakopoulou, T.; Sanoudou, D.; Eliopoulos, A.G. A genomics perspective of personalized prevention and management of obesity. Hum. Genom. 2024, 18, 4. [Google Scholar] [CrossRef] [PubMed]
- Fansa, S.; Acosta, A. The melanocortin-4 receptor pathway and the emergence of precision medicine in obesity management. Diabetes Obes. Metab. 2024, 26, 46–63. [Google Scholar] [CrossRef] [PubMed]
- Chiurazzi, M.; Cozzolino, M.; Orsini, R.C.; Di Maro, M.; Di Minno, M.N.D.; Colantuoni, A. Impact of Genetic Variations and Epigenetic Mechanisms on the Risk of Obesity. Int. J. Mol. Sci. 2020, 21, 9035. [Google Scholar] [CrossRef] [PubMed]
- Brouwers, B.; de Oliveira, E.M.; Marti-Solano, M.; Monteiro, F.B.F.; Laurin, S.A.; Keogh, J.M.; Henning, E.; Bounds, R.; Daly, C.A.; Houston, S.; et al. Human MC4R variants affect endocytosis, trafficking and dimerization revealing multiple cellular mechanisms involved in weight regulation. Cell Rep. 2021, 34, 108862. [Google Scholar] [CrossRef]
- Chen, K.Y.; Muniyappa, R.; Abel, B.S.; Mullins, K.P.; Staker, P.; Brychta, R.J.; Zhao, X.; Ring, M.; Psota, T.L.; Cone, R.D.; et al. RM-493, a melanocortin-4 receptor (MC4R) agonist, increases resting energy expenditure in obese individuals. J. Clin. Endocrinol. Metab. 2015, 100, 1639–1645. [Google Scholar] [CrossRef] [PubMed]
- Clement, K.; van den Akker, E.; Argente, J.; Bahm, A.; Chung, W.K.; Connors, H.; De Waele, K.; Farooqi, I.S.; Gonneau-Lejeune, J.; Gordon, G.; et al. Efficacy and safety of setmelanotide, an MC4R agonist, in individuals with severe obesity due to LEPR or POMC deficiency: Single-arm, open-label, multicentre, phase 3 trials. Lancet Diabetes Endocrinol. 2020, 8, 960–970. [Google Scholar] [CrossRef]
- Pressley, H.; Cornelio, C.K.; Adams, E.N. Setmelanotide: A Novel Targeted Treatment for Monogenic Obesity. J. Pharm. Technol. 2022, 38, 368–373. [Google Scholar] [CrossRef]
- Pomeroy, J.; Krentz, A.D.; Richardson, J.G.; Berg, R.L.; VanWormer, J.J.; Haws, R.M. Bardet-Biedl syndrome: Weight patterns and genetics in a rare obesity syndrome. Pediatr. Obes. 2021, 16, e12703. [Google Scholar] [CrossRef]
- Ferraz Barbosa, B.; Aquino de Moraes, F.C.; Bordignon Barbosa, C.; Palavicini Santos, P.T.K.; Pereira da Silva, I.; Araujo Alves da Silva, B.; Cristine Marques Barros, J.; Rodriguez Burbano, R.M.; Pereira Carneiro Dos Santos, N.; Rodrigues Fernandes, M. Efficacy and Safety of Setmelanotide, a Melanocortin-4 Receptor Agonist, for Obese Patients: A Systematic Review and Meta-Analysis. J. Pers. Med. 2023, 13, 1460. [Google Scholar] [CrossRef]
- Faccioli, N.; Poitou, C.; Clement, K.; Dubern, B. Current Treatments for Patients with Genetic Obesity. J. Clin. Res. Pediatr. Endocrinol. 2023, 15, 108–119. [Google Scholar] [CrossRef]
- Crino, A.; Grugni, G. Update on Diabetes Mellitus and Glucose Metabolism Alterations in Prader-Willi Syndrome. Curr. Diab Rep. 2020, 20, 7. [Google Scholar] [CrossRef]
- Mahmoud, R.; Kimonis, V.; Butler, M.G. Clinical Trials in Prader-Willi Syndrome: A Review. Int. J. Mol. Sci. 2023, 24, 2150. [Google Scholar] [CrossRef]
- Petersson, M.; Hoybye, C. Is Oxytocin a Contributor to Behavioral and Metabolic Features in Prader-Willi Syndrome? Curr. Issues Mol. Biol. 2024, 46, 8767–8779. [Google Scholar] [CrossRef]
- Tauber, M.; Boulanouar, K.; Diene, G.; Cabal-Berthoumieu, S.; Ehlinger, V.; Fichaux-Bourin, P.; Molinas, C.; Faye, S.; Valette, M.; Pourrinet, J.; et al. The Use of Oxytocin to Improve Feeding and Social Skills in Infants With Prader-Willi Syndrome. Pediatrics 2017, 139, e20162976. [Google Scholar] [CrossRef]
- Valette, M.; Diene, G.; Glattard, M.; Cortadellas, J.; Molinas, C.; Faye, S.; Benvegnu, G.; Boulanouar, K.; Payoux, P.; Salles, J.P.; et al. Early oxytocin treatment in infants with Prader-Willi syndrome is safe and is associated with better endocrine, metabolic and behavioral outcomes. Orphanet J. Rare Dis. 2025, 20, 96. [Google Scholar] [CrossRef]
- Shalma, N.M.; Alsharabasy, M.A.; Taha, A.M.; Alsawareah, A.; Manirambona, E.; Ahmed, S.K.; Mohamed, M.R.; Taha, N.A.; Abd-ElGawad, M. The efficacy of intranasal oxytocin in patients with Prader-Willi syndrome: A systematic review and meta-analysis. Diabetes Metab. Syndr. 2023, 17, 102711. [Google Scholar] [CrossRef] [PubMed]
- Baquero, A.F.; de Solis, A.J.; Lindsley, S.R.; Kirigiti, M.A.; Smith, M.S.; Cowley, M.A.; Zeltser, L.M.; Grove, K.L. Developmental switch of leptin signaling in arcuate nucleus neurons. J. Neurosci. 2014, 34, 9982–9994. [Google Scholar] [CrossRef]
- Kimonis, V.; Surampalli, A.; Wencel, M.; Gold, J.A.; Cowen, N.M. A randomized pilot efficacy and safety trial of diazoxide choline controlled-release in patients with Prader-Willi syndrome. PLoS ONE 2019, 14, e0221615. [Google Scholar] [CrossRef]
- Miller, J.L.; Gevers, E.; Bridges, N.; Yanovski, J.A.; Salehi, P.; Obrynba, K.S.; Felner, E.I.; Bird, L.M.; Shoemaker, A.H.; Angulo, M.; et al. Diazoxide choline extended-release tablet in people with Prader-Willi syndrome: Results from long-term open-label study. Obesity 2024, 32, 252–261. [Google Scholar] [CrossRef] [PubMed]
- Soleno Therapeutics Announces U.S. FDA Approval of VYKAT™ XR to Treat Hyperphagia in Prader-Willi Syndrome. Available online: https://investors.soleno.life/news-releases/news-release-details/soleno-therapeutics-announces-us-fda-approval-vykattm-xr-treat (accessed on 22 October 2025).
- Pratt, J.S.A.; Browne, A.; Browne, N.T.; Bruzoni, M.; Cohen, M.; Desai, A.; Inge, T.; Linden, B.C.; Mattar, S.G.; Michalsky, M.; et al. ASMBS pediatric metabolic and bariatric surgery guidelines, 2018. Surg. Obes. Relat. Dis. 2018, 14, 882–901. [Google Scholar] [CrossRef]
- Burton, E.T.; Mackey, E.R.; Reynolds, K.; Cadieux, A.; Gaffka, B.J.; Shaffer, L.A. Psychopathology and Adolescent Bariatric Surgery: A Topical Review to Support Psychologists in Assessment and Treatment Considerations. J. Clin. Psychol. Med. Settings 2020, 27, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Pelizzo, G.; Destro, F.; Perretta, S.; Paraboschi, I.; Zappa, M.A.; Pierucci, U.M. Endoscopic Sleeve Gastroplasty: A Proposal for a Minimal Invasive Endoscopic Approach to Adolescent Obesity. Obes. Surg. 2025, 35, 3926–3938. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, W.; Jawed, K.; Hussain, K.; Barolia, M.; Mehdi, S.S.; Ahmed, A.; Martins, R.S.; Qureshi, F.G. Outcomes of bariatric surgery in Adolescents: A meta-analysis comparing three surgical techniques. Am. J. Surg. 2025, 245, 116354. [Google Scholar] [CrossRef] [PubMed]
- Vuong, L.; Chang, S.H.; Wan, F.; Wu, N.; Eagon, J.C.; Eckhouse, S.R.; Dimou, F.M. National Trends and Outcomes in Adolescents Undergoing Bariatric Surgery. J. Am. Coll. Surg. 2022, 235, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Zolfaghari, F.; Khorshidi, Y.; Moslehi, N.; Golzarand, M.; Asghari, G. Nutrient Deficiency After Bariatric Surgery in Adolescents: A Systematic Review and Meta-Analysis. Obes. Surg. 2024, 34, 206–217. [Google Scholar] [CrossRef]
- Shacker, M.; Chao, S.D.; Chinn, J.O.; Fell, G.L.; Mueller, C.M.; Pratt, J.S.A. Metabolic and bariatric surgery in adolescents compared to young adults: An MBSAQIP database analysis. Surg. Obes. Relat. Dis. 2025, 21, 1334–1341. [Google Scholar] [CrossRef]



| Risk Factor | Description | References |
| Overweight or obesity | BMI ≥ 85th percentile (overweight) or ≥95th percentile (obesity) | [17,18,26] |
| Family history of type 2 diabetes | First- or second-degree relative with type 2 diabetes | [17,18,22,27] |
| Maternal history of diabetes or gestational diabetes | Diabetes or gestational diabetes mellitus during the child’s gestation | [25] |
| High risk race/ethnicity/ancestry | African American, Hispanic/Latino, Native American, Asian American, Pacific Islander | [22,28,29] |
| Signs of insulin resistance or related conditions | Acanthosis nigricans, hypertension, dyslipidemia, polycystic ovary syndrome, abnormal birth weight, chronic stress, sleep disorders | [18,30,31] |
| Sedentary lifestyle/physical inactivity | Low physical activity contributing to obesity and insulin resistance | [19] |
| Pubertal status | Physiologic insulin resistance of puberty increases risk | [18] |
| Maternal obesity | Maternal obesity during pregnancy independently confers elevated risk | [18] |
| Genetic susceptibility | Specific genetic variants, family history, and ethnic predisposition | [17,19] |
| Category | Risk Factors | References |
|---|---|---|
| Non-modifiable | Age, sex (male), family history of premature atherosclerotic cardiovascular disease, race, and ethnicity (e.g., South Asian ancestry) | [275] |
| Modifiable—Cardiometabolic factors | Hypertension, diabetes, dyslipidemia (high LDL, non-HDL cholesterol), high triglycerides, serum ratio of ApoB/ApoA1 | [275] |
| Modifiable-Lifestyle factors | Physical inactivity, diet, obesity, smoking, sleep pattern, alcohol consumption, depression/psychosocial stress, low socioeconomic status | [276,282] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Accacha, S.; Barillas-Cerritos, J.; Gabriel, L.; Srivastava, A.; Gulkarov, S.; Apsan, J.A.; De Leon, J.; Reiss, A.B. The Natural History of Prediabetes and Cardiovascular Disease in the Pediatric Population. Biomedicines 2026, 14, 198. https://doi.org/10.3390/biomedicines14010198
Accacha S, Barillas-Cerritos J, Gabriel L, Srivastava A, Gulkarov S, Apsan JA, De Leon J, Reiss AB. The Natural History of Prediabetes and Cardiovascular Disease in the Pediatric Population. Biomedicines. 2026; 14(1):198. https://doi.org/10.3390/biomedicines14010198
Chicago/Turabian StyleAccacha, Siham, Julia Barillas-Cerritos, Liana Gabriel, Ankita Srivastava, Shelly Gulkarov, Jennifer A. Apsan, Joshua De Leon, and Allison B. Reiss. 2026. "The Natural History of Prediabetes and Cardiovascular Disease in the Pediatric Population" Biomedicines 14, no. 1: 198. https://doi.org/10.3390/biomedicines14010198
APA StyleAccacha, S., Barillas-Cerritos, J., Gabriel, L., Srivastava, A., Gulkarov, S., Apsan, J. A., De Leon, J., & Reiss, A. B. (2026). The Natural History of Prediabetes and Cardiovascular Disease in the Pediatric Population. Biomedicines, 14(1), 198. https://doi.org/10.3390/biomedicines14010198

