Human Stem Cells in Disease Modelling and Treatment: Bridging the Gap Between Bench and Bedside
Abstract
1. Introduction
2. From Animal Models to Human-Relevant Systems
3. Highlights from the Special Issue
- Ovarian Stem Cells in InfertilityGrettka et al. (2024) examined ovarian stem cells (OSCs) as a potential therapeutic avenue for women with premature ovarian failure (POF) or cancer treatment-related infertility (CTRI) [7]. Conventional fertility preservation strategies, such as cryopreservation, are not always feasible. OSCs, with the capacity to differentiate into oocyte-like cells (OLCs), present a new horizon in reproductive medicine. The authors discuss challenges in OSC characterization, differentiation efficiency, and ethical considerations while emphasizing the clinical potential of OSCs for patients who currently lack therapeutic alternatives.
- Mesenchymal Stem Cells in Spinocerebellar AtaxiaLee et al. (2024) reviewed the therapeutic potential of mesenchymal stem cells (MSCs) for spinocerebellar ataxia (SCA), a group of progressive neurodegenerative diseases [8]. MSCs exert immunomodulatory and neurotrophic effects, and preclinical studies suggest that they can enhance Purkinje cell survival and motor coordination. Although preliminary clinical data indicate safety and feasibility, the authors underscore the need for randomized controlled trials to determine long-term efficacy and optimize delivery protocols.
- Cardiovascular Organoids for Disease ModelingStougiannou et al. (2024) discussed the utility of pluripotent stem cell-derived cardiovascular organoids to study cardiac development, congenital heart disease, and drug-induced cardiotoxicity [9]. These models provide valuable insight into cardiomyocyte maturation and tissue-level electrophysiology. Despite these advances, the field continues to grapple with limitations in vascularization and structural maturation [10]. Bioengineering strategies, including microfluidic platforms and electrical stimulation, hold promise for improving physiological fidelity [11].
- Kidney Organoids for Polycystic Kidney DiseaseScarlat et al. (2025) explored the application of kidney organoids to model autosomal dominant polycystic kidney disease (ADPKD) [12]. Organoids carrying PKD1 or PKD2 mutations display cyst formation reminiscent of patient pathology, providing a robust system for mechanistic studies and therapeutic screening [13]. This work highlights the importance of organoids as preclinical platforms for diseases with limited therapeutic options.
- Adipose-Derived Stem Cells and Tissue Collection ConditionsPal et al. (2024) investigated how ischemic versus vascularized adipose tissue collection influences the biological properties of adipose-derived stem cells (ADSCs) [14]. They reported that ischemic harvesting reduces adipogenic differentiation and triglyceride storage, thereby impacting ADSC functional potential. This finding underscores the importance of tissue procurement and handling for the quality of stem cell-derived products.
- Human Umbilical Di-Chimeric Cells for ImmunomodulationSiemionow et al. (2024) introduced human umbilical di-chimeric cells (HUDCs) generated via ex vivo fusion of donor umbilical cord blood cells [15]. HUDCs demonstrated engraftment and biodistribution in immunocompromised mice without tumorigenicity, suggesting potential as immunomodulatory therapies for transplantation tolerance and autoimmune disease management.
- Ovarian Cortical-Derived Neural Progenitors for Parkinson’s DiseaseGonzález-Gil et al. (2025) presented evidence for the neural differentiation capacity of ovarian cortical-derived progenitors under the influence of follicle-stimulating hormone (FSH) [16]. Their ability to generate dopaminergic neurons with electrophysiological activity points to unconventional sources for autologous therapies in Parkinson’s disease.
4. Lessons from Recent Clinical Case Studies
5. Challenges and Knowledge Gaps
6. Future Directions
7. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
hESCs | Human embryonic stem cells |
iPSCs | Induced pluripotent stem cells |
POF | Premature ovarian failure |
CTRI | Cancer treatment-related infertility |
OLCs | Oocyte-like cells |
MSCs | Mesenchymal stem cells |
SCA | Spinocerebellar ataxia |
ADPKD | Autosomal dominant polycystic kidney disease |
ADSCs | Adipose-derived stem cells |
HUDCs | Human umbilical di-chimeric cells |
FSH | Follicle-stimulating hormone |
RPE | Retinal pigment epithelium |
cGMP | Current good manufacturing practice |
ISSCR | International Society for Stem Cell Research |
AI | Artificial intelligence |
References
- Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell 2007, 131, 861–872. [Google Scholar] [CrossRef] [PubMed]
- Clevers, H. Modeling Development and Disease with Organoids. Cell 2016, 165, 1586–1597. [Google Scholar] [CrossRef]
- Shi, Y.; Inoue, H.; Wu, J.C.; Yamanaka, S. Induced Pluripotent Stem Cell Technology: A Decade of Progress. Nat. Rev. Drug Discov. 2017, 16, 115–130. [Google Scholar] [CrossRef]
- Lancaster, M.A.; Knoblich, J.A. Organogenesis in a Dish: Modeling Development and Disease Using Organoid Technologies. Science 2014, 345, 1247125. [Google Scholar] [CrossRef]
- Revah, O.; Gore, F.; Kelley, K.W.; Andersen, J.; Sakai, N.; Chen, X.; Li, M.Y.; Birey, F.; Yang, X.; Saw, N.L.; et al. Maturation and Circuit Integration of Transplanted Human Cortical Organoids. Nature 2022, 610, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Hsu, P.D.; Lander, E.S.; Zhang, F. Development and Applications of CRISPR-Cas9 for Genome Engineering. Cell 2014, 157, 1262–1278. [Google Scholar] [CrossRef]
- Grettka, K.; Idzik, K.; Lewandowska, K.; Świętek, K.; Palini, S.; Silvestris, F. Ovarian Stem Cells for Women’s Infertility: State of the Art. Biomedicines 2024, 12, 1139. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.B.; Park, S.M.; Jung, U.J.; Kim, S.R. The Potential of Mesenchymal Stem Cells in Treating Spinocerebellar Ataxia: Advances and Future Directions. Biomedicines 2024, 12, 2507. [Google Scholar] [CrossRef]
- Stougiannou, T.M.; Christodoulou, K.C.; Karangelis, D. In Vitro Models of Cardiovascular Disease: Embryoid Bodies, Organoids and Everything in Between. Biomedicines 2024, 12, 2714. [Google Scholar] [CrossRef]
- Ronaldson-Bouchard, K.; Ma, S.P.; Yeager, K.; Chen, T.; Song, L.; Sirabella, D.; Morikawa, K.; Teles, D.; Yazawa, M.; Vunjak-Novakovic, G. Advanced Maturation of Human Cardiac Tissue Grown from Pluripotent Stem Cells. Nature 2018, 556, 239–243. [Google Scholar] [CrossRef]
- Bhatia, S.N.; Ingber, D.E. Microfluidic Organs-on-Chips. Nat. Biotechnol. 2014, 32, 760–772. [Google Scholar] [CrossRef]
- Scarlat, A.; Tomasoni, S.; Trionfini, P. Autosomal Dominant Polycystic Kidney Disease: From Pathogenesis to Organoid Disease Models. Biomedicines 2025, 13, 1766. [Google Scholar] [CrossRef] [PubMed]
- Czerniecki, S.M.; Cruz, N.M.; Harder, J.L.; Menon, R.; Annis, J.; Otto, E.A.; Gulieva, R.E.; Islas, L.V.; Kim, Y.K.; Tran, L.M.; et al. High-Throughput Screening Enhances Kidney Organoid Differentiation from Human Pluripotent Stem Cells and Enables Automated Multidimensional Phenotyping. Cell Stem Cell 2018, 22, 929–940.e4. [Google Scholar] [CrossRef] [PubMed]
- Pal, P.; Medina, A.; Chowdhury, S.; Cates, C.A.; Bollavarapu, R.; Person, J.M.; McIntyre, B.; Speed, J.S.; Janorkar, A.V. Influence of the Tissue Collection Procedure on the Adipogenic Differentiation of Human Stem Cells: Ischemic versus Well-Vascularized Adipose Tissue. Biomedicines 2024, 12, 997. [Google Scholar] [CrossRef]
- Siemionow, M.; Chambily, L.; Brodowska, S. Efficacy of Engraftment and Safety of Human Umbilical Di-Chimeric Cell (HUDC) Therapy after Systemic Intraosseous Administration in an Experimental Model. Biomedicines 2024, 12, 1064. [Google Scholar] [CrossRef]
- González-Gil, A.; Rojo, C.; Ramírez, E.; Martín, R.; Suárez-Pinilla, A.S.; Ovalle, S.; Ramos-Ruiz, R.; Picazo, R.A. Proneurogenic Actions of FSH During Directed Differentiation of Neural Stem and Progenitor Cells from Ovarian Cortical Cells Towards the Dopaminergic Pathway. Biomedicines 2025, 13, 1560. [Google Scholar] [CrossRef]
- Schwartz, S.D.; Hubschman, J.-P.; Heilwell, G.; Franco-Cardenas, V.; Pan, C.K.; Ostrick, R.M.; Mickunas, E.; Gay, R.; Klimanskaya, I.; Lanza, R. Embryonic Stem Cell Trials for Macular Degeneration: A Preliminary Report. Lancet 2012, 379, 713–720. [Google Scholar] [CrossRef]
- Kashani, A.H.; Lebkowski, J.S.; Rahhal, F.M.; Avery, R.L.; Salehi-Had, H.; Dang, W.; Lin, C.-M.; Mitra, D.; Zhu, D.; Thomas, B.B.; et al. A Bioengineered Retinal Pigment Epithelial Monolayer for Advanced, Dry Age-Related Macular Degeneration. Sci. Transl. Med. 2018, 10, eaao4097. [Google Scholar] [CrossRef]
- Tabar, V.; Sarva, H.; Lozano, A.M.; Fasano, A.; Kalia, S.K.; Yu, K.K.H.; Brennan, C.; Ma, Y.; Peng, S.; Eidelberg, D.; et al. Phase I Trial of HES Cell-Derived Dopaminergic Neurons for Parkinson’s Disease. Nature 2025, 641, 978–983. [Google Scholar] [CrossRef] [PubMed]
- Volpato, V.; Webber, C. Addressing Variability in IPSC-Derived Models of Human Disease: Guidelines to Promote Reproducibility. Dis. Model Mech. 2020, 13, dmm042317. [Google Scholar] [CrossRef]
- Zhao, C.; Plaza Reyes, A.; Schell, J.P.; Weltner, J.; Ortega, N.M.; Zheng, Y.; Björklund, Å.K.; Baqué-Vidal, L.; Sokka, J.; Torokovic, R.; et al. A Comprehensive Human Embryo Reference Tool Using Single-Cell RNA-Sequencing Data. Nat. Methods 2025, 22, 193–206. [Google Scholar] [CrossRef] [PubMed]
- Papamichail, L.; Koch, L.S.; Veerman, D.; Broersen, K.; van der Meer, A.D. Organoids-on-a-Chip: Microfluidic Technology Enables Culture of Organoids with Enhanced Tissue Function and Potential for Disease Modeling. Front Bioeng. Biotechnol. 2025, 13, 1515340. [Google Scholar] [CrossRef] [PubMed]
- Abyzov, A.; Tomasini, L.; Zhou, B.; Vasmatzis, N.; Coppola, G.; Amenduni, M.; Pattni, R.; Wilson, M.; Gerstein, M.; Weissman, S.; et al. One Thousand Somatic SNVs per Skin Fibroblast Cell Set Baseline of Mosaic Mutational Load with Patterns That Suggest Proliferative Origin. Genome Res. 2017, 27, 512–523. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Zhang, Z.-N.; Rong, Z.; Xu, Y. Immunogenicity of Induced Pluripotent Stem Cells. Nature 2011, 474, 212–215. [Google Scholar] [CrossRef]
- Galipeau, J.; Sensébé, L. Mesenchymal Stromal Cells: Clinical Challenges and Therapeutic Opportunities. Cell Stem Cell 2018, 22, 824–833. [Google Scholar] [CrossRef]
- Plaza Reyes, A.; Petrus-Reurer, S.; Padrell Sánchez, S.; Kumar, P.; Douagi, I.; Bartuma, H.; Aronsson, M.; Westman, S.; Lardner, E.; André, H.; et al. Identification of Cell Surface Markers and Establishment of Monolayer Differentiation to Retinal Pigment Epithelial Cells. Nat. Commun. 2020, 11, 1609. [Google Scholar] [CrossRef]
- Ludlow, K. Genetic Identity Concerns in the Regulation of Novel Reproductive Technologies. J. Law Biosci. 2020, 7, lsaa004. [Google Scholar] [CrossRef]
- Lovell-Badge, R.; Anthony, E.; Barker, R.A.; Bubela, T.; Brivanlou, A.H.; Carpenter, M.; Charo, R.A.; Clark, A.; Clayton, E.; Cong, Y.; et al. ISSCR Guidelines for Stem Cell Research and Clinical Translation: The 2021 Update. Stem Cell Rep. 2021, 16, 1398–1408. [Google Scholar] [CrossRef]
- Komor, A.C.; Kim, Y.B.; Packer, M.S.; Zuris, J.A.; Liu, D.R. Programmable Editing of a Target Base in Genomic DNA without Double-Stranded DNA Cleavage. Nature 2016, 533, 420–424. [Google Scholar] [CrossRef] [PubMed]
- Anzalone, A.V.; Randolph, P.B.; Davis, J.R.; Sousa, A.A.; Koblan, L.W.; Levy, J.M.; Chen, P.J.; Wilson, C.; Newby, G.A.; Raguram, A.; et al. Search-and-Replace Genome Editing without Double-Strand Breaks or Donor DNA. Nature 2019, 576, 149–157. [Google Scholar] [CrossRef]
- Huh, D.; Matthews, B.D.; Mammoto, A.; Montoya-Zavala, M.; Hsin, H.Y.; Ingber, D.E. Reconstituting Organ-Level Lung Functions on a Chip. Science 2010, 328, 1662–1668. [Google Scholar] [CrossRef] [PubMed]
- Barberis, M.; Xie, J. Towards a Unified Framework for Single-cell -omics-based Disease Prediction through AI. Clin. Transl. Med. 2025, 15, e70290. [Google Scholar] [CrossRef] [PubMed]
- Morrison, M. “A Good Collaboration Is Based on Unique Contributions from Each Side”: Assessing the Dynamics of Collaboration in Stem Cell Science. Life Sci. Soc. Policy 2017, 13, 7. [Google Scholar] [CrossRef] [PubMed]
- Loring, J.F.; McDevitt, T.C.; Palecek, S.P.; Schaffer, D.V.; Zandstra, P.W.; Nerem, R.M. A Global Assessment of Stem Cell Engineering. Tissue Eng. Part. A 2014, 20, 2575–2589. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plaza Reyes, A.; Calado, S.M. Human Stem Cells in Disease Modelling and Treatment: Bridging the Gap Between Bench and Bedside. Biomedicines 2025, 13, 2313. https://doi.org/10.3390/biomedicines13092313
Plaza Reyes A, Calado SM. Human Stem Cells in Disease Modelling and Treatment: Bridging the Gap Between Bench and Bedside. Biomedicines. 2025; 13(9):2313. https://doi.org/10.3390/biomedicines13092313
Chicago/Turabian StylePlaza Reyes, Alvaro, and Sofia M. Calado. 2025. "Human Stem Cells in Disease Modelling and Treatment: Bridging the Gap Between Bench and Bedside" Biomedicines 13, no. 9: 2313. https://doi.org/10.3390/biomedicines13092313
APA StylePlaza Reyes, A., & Calado, S. M. (2025). Human Stem Cells in Disease Modelling and Treatment: Bridging the Gap Between Bench and Bedside. Biomedicines, 13(9), 2313. https://doi.org/10.3390/biomedicines13092313