Gut Microbiome-Mediated Genetic and Epigenetic Alterations in Colorectal Cancer: Population-Specific Insights
Abstract
1. Introduction: Reframing Colorectal Cancer Through the Gut Microbiome–Epigenome Axis
- (1)
- Integrated determinants of CRC—the interplay of inherited susceptibility, lifestyle and environmental exposures, and the gut microbiome;
- (2)
- Microbiome–epigenome mechanisms—how dysbiosis, via microRNA-centered and chromatin-mediated pathways, drives tumor initiation, progression, and treatment response;
- (3)
- Population context for Romania—rising incidence and regional disparities interpreted alongside European lifestyle–microbiome evidence, with hypothesis-generating insights from Romanian metabolic cohorts;
- (4)
- Broader oncobacterial contributions and translation—roles of taxa beyond Fusobacterium nucleatum and implications for biomarker development and precision oncology.
2. Colorectal Cancer Etiology: Integrated Genetic, Environmental, and Microbial Determinants
3. Microbiome–Epigenome Interactions in Colorectal Carcinogenesis: A MicroRNA-Centric Framework
3.1. Microbial Taxa Affect miRNA Regulation in Colorectal Tissue
3.2. Microbial Taxa Drive Epigenetic Reprogramming: Remodeling of the Host Epigenome
4. Population-Specific Risk: Situating Romania Within Lifestyle–Microbiome Evidence
4.1. European Evidence on Lifestyle–Microbiome Links and Implications for Romania
4.2. Romania’s Current Evidence Base, with Method Transparency and Hypothesis-Generating Inferences
5. Beyond Fusobacterium nucleatum: Expanding Roles of Other Oncobacteria in Colorectal Cancer
5.1. Peptostreptococcus stomatis: ERBB2–MAPK Activation and Therapeutic Bypass
5.2. Parvimonas micra: Prognostic Significance, Th17 Polarization, and WNT Pathway Engagement
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roshandel, G.; Ghasemi-Kebria, F.; Malekzadeh, R. Colorectal Cancer: Epidemiology, Risk Factors, and Prevention. Cancers 2024, 16, 1530. [Google Scholar] [CrossRef]
- Lichtenstern, C.R.; Ngu, R.K.; Shalapour, S.; Karin, M. Immunotherapy, Inflammation and Colorectal Cancer. Cells 2020, 9, 618. [Google Scholar] [CrossRef]
- Morgan, E.; Arnold, M.; Gini, A.; Lorenzoni, V.; Cabasag, C.J.; Laversanne, M.; Vignat, J.; Ferlay, J.; Murphy, N.; Bray, F. Global Burden of Colorectal Cancer in 2020 and 2040: Incidence and Mortality Estimates from GLOBOCAN. Gut 2023, 72, 338–344. [Google Scholar] [CrossRef] [PubMed]
- OECD. European Observatory on Health Systems and Policies. Romania: Country Cancer Profile 2025. Available online: https://www.oecd.org/content/dam/oecd/en/publications/reports/2025/02/eu-country-cancer-profile-romania-2025_ef833241/8474a271-en.pdf (accessed on 1 August 2025).
- Ionescu, E.M.; Tieranu, C.G.; Maftei, D.; Grivei, A.; Olteanu, A.O.; Arbanas, T.; Calu, V.; Musat, S.; Mihaescu-Pintia, C.; Cucu, I.C. Colorectal Cancer Trends of 2018 in Romania—An Important Geographical Variation between Northern and Southern Lands and High Mortality versus European Averages. J. Gastrointest. Cancer 2021, 52, 222–228. [Google Scholar] [CrossRef]
- Cavestro, G.M.; Mannucci, A.; Zuppardo, R.A.; Di Leo, M.; Stoffel, E.; Tonon, G. Early Onset Sporadic Colorectal Cancer: Worrisome Trends and Oncogenic Features. Dig. Liver Dis. 2018, 50, 521–532. [Google Scholar] [CrossRef] [PubMed]
- Hofseth, L.J.; Hebert, J.R.; Chanda, A.; Chen, H.; Love, B.L.; Pena, M.M.; Murphy, E.A.; Sajish, M.; Sheth, A.; Buckhaults, P.J.; et al. Early-Onset Colorectal Cancer: Initial Clues and Current Views. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 352–364. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Li, X.; Montazeri, Z.; Little, J.; Farrington, S.M.; Ioannidis, J.P.; Dunlop, M.G.; Campbell, H.; Timofeeva, M.; Theodoratou, E. Gene—Environment Interactions and Colorectal Cancer Risk: An Umbrella Review of Systematic Reviews and Meta-Analyses of Observational Studies. Int. J. Cancer 2019, 145, 2315–2329. [Google Scholar] [CrossRef]
- Rustgi, A.K. The Genetics of Hereditary Colon Cancer. Genes Dev. 2007, 21, 2525–2538. [Google Scholar] [CrossRef]
- Lynch, H.T.; Smyrk, T.C.; Watson, P.; Lanspa, S.J.; Lynch, J.F.; Lynch, P.M.; Cavalieri, R.J.; Boland, C.R. Genetics, Natural History, Tumor Spectrum, and Pathology of Hereditary Nonpolyposis Colorectal Cancer: An Updated Review. Gastroenterology 1993, 104, 1535–1549. [Google Scholar] [CrossRef]
- National Cancer Institute. Genetics of Colorectal Cancer (PDQ®)—Health Professional Version. Available online: https://www.cancer.gov/types/colorectal/hp/colorectal-genetics-pdq (accessed on 10 July 2025).
- Yamamoto, H.; Watanabe, Y.; Arai, H.; Umemoto, K.; Tateishi, K.; Sunakawa, Y. Microsatellite Instability: A 2024 Update. Cancer Sci. 2024, 115, 1738–1748. [Google Scholar] [CrossRef]
- Rattray, N.J.W.; Charkoftaki, G.; Rattray, Z.; Hansen, J.E.; Vasiliou, V.; Johnson, C.H. Environmental Influences in the Etiology of Colorectal Cancer: The Premise of Metabolomics. Curr. Pharmacol. Rep. 2017, 3, 114–125. [Google Scholar] [CrossRef] [PubMed]
- Carethers, J.M.; Jung, B.H. Genetics and Genetic Biomarkers in Sporadic Colorectal Cancer. Gastroenterology 2015, 149, 1177–1190.e3. [Google Scholar] [CrossRef] [PubMed]
- Herlo, L.F.; Dumache, R.; Duta, C.; Vita, O.; Mercioni, A.M.; Stelea, L.; Sirli, R.; Iurciuc, S. Colorectal Cancer Risk Prediction Using the rs4939827 Polymorphism of the SMAD7 Gene in the Romanian Population. Diagnostics 2024, 14, 220. [Google Scholar] [CrossRef]
- Tan, J.; Chen, Y.X. Dietary and Lifestyle Factors Associated with Colorectal Cancer Risk and Interactions with Microbiota: Fiber, Red or Processed Meat and Alcoholic Drinks. Gastrointest. Tumors 2016, 3, 17–24. [Google Scholar] [CrossRef]
- Gavrilaș, L.I.; Ionescu, C.O.; Bălăcescu, O.V.; Revnic, C.; Ciobârcă, D.; Filip, L.; Boboia, A.; Miere, D. Foods and Food Groups Associated with Colorectal Cancer: A Case-Control Study. Farmacia 2018, 66, 846–852. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, Y.; Pan, M.; Yang, F.; Yu, Y.; Qian, Z. Role of the Gut Microbiota in Tumorigenesis and Treatment. Theranostics 2024, 14, 2304–2328. [Google Scholar] [CrossRef]
- Kumari, S.; Srilatha, M.; Nagaraju, G.P. Effect of Gut Dysbiosis on Onset of GI Cancers. Cancers 2025, 17, 90. [Google Scholar] [CrossRef] [PubMed]
- Lopez, L.R.; Bleich, R.M.; Arthur, J.C. Microbiota Effects on Carcinogenesis: Initiation, Promotion, and Progression. Annu. Rev. Med. 2021, 72, 243–261. [Google Scholar] [CrossRef]
- Kamble, N.S.; Bera, S.; Bhedase, S.A.; Gaur, V.; Chowdhury, D. Review on Applied Applications of Microbiome on Human Lives. Bacteria 2024, 3, 141–159. [Google Scholar] [CrossRef]
- Malmuthuge, N.; Guan, L.L. Noncoding RNAs: Regulatory Molecules of Host-Microbiome Crosstalk. Trends Microbiol. 2021, 29, 713–724. [Google Scholar] [CrossRef]
- Drago, L.; De La Motte, L.R.; Deflorio, L.; Sansico, D.F.; Salvatici, M.; Micaglio, E.; Biazzo, M.; Giarritiello, F. Systematic review of bidirectional interaction between gut microbiome, miRNAs, and human pathologies. Front. Microbiol. 2025, 16, 1540943. [Google Scholar] [CrossRef]
- De Silva, S.; Tennekoon, K.H.; Karunanayake, E.H. Interaction of Gut Microbiome and Host microRNAs with the Occurrence of Colorectal and Breast Cancer and Their Impact on Patient Immunity. OncoTargets Ther. 2021, 14, 5115–5129. [Google Scholar] [CrossRef]
- Nguyen, H.T.T.; Dalmasso, G.; Müller, S.; Carrière, J.; Seibold, F.; Darfeuille-Michaud, A. Crohn’s disease-associated adherent invasive Escherichia coli modulate levels of microRNAs in intestinal epithelial cells to reduce autophagy. Gastroenterology 2014, 146, 508–519. [Google Scholar] [CrossRef]
- Belkaid, Y.; Hand, T.W. Role of the microbiota in immunity and inflammation. Cell 2014, 157, 121–141. [Google Scholar] [CrossRef] [PubMed]
- Neu, J.; Douglas-Escobar, M.; Lopez, M. Microbes and the developing gastrointestinal tract. Nutr. Clin. Pract. 2007, 22, 174–182. [Google Scholar] [CrossRef]
- Münger, E.; Montiel-Castro, A.J.; Langhans, W.; Pacheco-López, G. Reciprocal interactions between gut microbiota and host social behavior. Front. Integr. Neurosci. 2018, 12, 21. [Google Scholar] [CrossRef]
- Dikeocha, I.J.; Al-Kabsi, A.M.; Chiu, H.T.; Alshawsh, M.A. Faecalibacterium prausnitzii ameliorates colorectal tumorigenesis and suppresses proliferation of HCT116 colorectal cancer cells. Biomedicines 2022, 10, 1128. [Google Scholar] [CrossRef] [PubMed]
- Gubernatorova, E.O.; Gorshkova, E.A.; Bondareva, M.A.; Podosokorskaya, O.A.; Sheynova, A.D.; Yakovleva, A.S.; Bonch-Osmolovskaya, E.A.; Nedospasov, S.A.; Kruglov, A.A.; Drutskaya, M.S. Akkermansia muciniphila—Friend or foe in colorectal cancer? Front. Immunol. 2023, 14, 1303795. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Li, Q.; Fu, X. Fusobacterium nucleatum contributes to the carcinogenesis of colorectal cancer by inducing inflammation and suppressing host immunity. Transl. Oncol. 2019, 12, 846–851. [Google Scholar] [CrossRef]
- Rubinstein, M.R.; Wang, X.; Liu, W.; Hao, Y.; Cai, G.; Han, Y.W. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe 2013, 14, 195–206. [Google Scholar] [CrossRef]
- Nakagaki, H.; Sekine, S.; Terao, Y.; Nakajima, S.; Ohta, M.; Konishi, K. Fusobacterium nucleatum envelope protein FomA is immunogenic and binds to the salivary statherin-derived peptide. Infect. Immun. 2010, 78, 1185–1192. [Google Scholar] [CrossRef]
- Abed, J.; Emgård, J.E.; Zamir, G.; Faroja, M.; Almogy, G.; Grenov, A.; Sol, A.; Naor, R.; Pikarsky, E.; Atlan, K.A.; et al. Fap2 mediates Fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed Gal-GalNAc. Cell Host Microbe 2016, 20, 215–225. [Google Scholar] [CrossRef]
- Yang, Y.; Weng, W.; Peng, J.; Hong, L.; Yang, L.; Toiyama, Y.; Gao, R.; Liu, M.; Yin, M.; Pan, C.; et al. Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating Toll-like receptor 4 signaling to nuclear factor-κB, and up-regulating expression of microRNA-21. Gastroenterology 2017, 152, 851–866. [Google Scholar] [CrossRef]
- Tang, B.; Lu, X.; Tong, Y.; Feng, Y.; Mao, Y.; Dun, G.; Li, J.; Xu, Q.; Tang, J.; Zhang, T.; et al. MicroRNA-31 Induced by Fusobacterium nucleatum Infection Promotes Colorectal Cancer Tumorigenesis. IScience 2023, 26, 106770. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Guo, F.; Yu, Y.; Sun, T.; Ma, D.; Han, J.; Qian, Y.; Kryczek, I.; Sun, D.; Nagarsheth, N.; et al. Fusobacterium nucleatum Promotes Chemoresistance to Colorectal Cancer by Modulating Autophagy. Cell 2017, 170, 548–563. [Google Scholar] [CrossRef]
- Xu, C.; Fan, L.; Lin, Y.; Shen, W.; Qi, Y.; Zhang, Y.; Chen, Z.; Wang, L.; Long, Y.; Hou, T.; et al. Fusobacterium nucleatum Promotes Colorectal Cancer Metastasis through miR-1322/CCL20 Axis and M2 Polarization. Gut Microbes 2021, 13, 1980347. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Tang, J.; Qian, Y.; Sun, T.; Chen, H.; Chen, Z.; Sun, D.; Zhong, M.; Chen, H.; Hong, J.; et al. Long Noncoding RNA BFAL1 Mediates Enterotoxigenic Bacteroides fragilis-Related Carcinogenesis in Colorectal Cancer via the RHEB/mTOR Pathway. Cell Death Dis. 2019, 10, 675. [Google Scholar] [CrossRef] [PubMed]
- Dadgar-Zankbar, L.; Shariati, A.; Bostanghadiri, N.; Elahi, Z.; Mirkalantari, S.; Razavi, S.; Kamali, F.; Darban-Sarokhalil, D. Evaluation of Enterotoxigenic Bacteroides fragilis Correlation with the Expression of Cellular Signaling Pathway Genes in Iranian Patients with Colorectal Cancer. Infect. Agents Cancer 2023, 18, 48. [Google Scholar] [CrossRef]
- van der Hee, B.; Wells, J.M. Microbial Regulation of Host Physiology by Short-Chain Fatty Acids. Trends Microbiol. 2021, 29, 700–712. [Google Scholar] [CrossRef]
- Robert, T.; Vanoli, F.; Chiolo, I.; Shubassi, G.; Bernstein, K.A.; Rothstein, R.; Botrugno, O.A.; Parazzoli, D.; Oldani, A.; Minucci, S.; et al. HDACs Link the DNA Damage Response, Processing of Double-Strand Breaks and Autophagy. Nature 2011, 471, 74–79. [Google Scholar] [CrossRef]
- Hinnebusch, B.F.; Meng, S.; Wu, J.T.; Archer, S.Y.; Hodin, R.A. The Effects of Short-Chain Fatty Acids on Human Colon Cancer Cell Phenotype Are Associated with Histone Hyperacetylation. J. Nutr. 2002, 132, 1012–1017. [Google Scholar] [CrossRef]
- Luu, M.; Riester, Z.; Baldrich, A.; Reichardt, N.; Yuille, S.; Busetti, A.; Klein, M.; Wempe, A.; Leister, H.; Raifer, H.; et al. Microbial Short-Chain Fatty Acids Modulate CD8⁺ T Cell Responses and Improve Adoptive Immunotherapy for Cancer. Nat. Commun. 2021, 12, 4077. [Google Scholar] [CrossRef]
- Ding, T.; Wu, M.; Zhao, L.; Liu, H.; Cao, X.; Guo, J.; Zhu, X.; Zhao, L.; Zhang, H.; Gao, Y.; et al. Fusobacterium nucleatum Downregulated MLH1 Expression in Colorectal Cancer by Activating the Autophagy–Lysosome Pathway. Front. Immunol. 2025, 16, 1586146. [Google Scholar] [CrossRef]
- Koi, M.; Okita, Y.; Carethers, J.M. Fusobacterium nucleatum Infection in Colorectal Cancer: Linking Inflammation, DNA Mismatch Repair and Genetic and Epigenetic Alterations. J. Anus Rectum Colon 2018, 2, 37–46. [Google Scholar] [CrossRef]
- Phipps, A.I.; Hill, C.M.; Lin, G.; Malen, R.C.; Reedy, A.M.; Kahsai, O.; Ammar, H.; Curtis, K.; Ma, N.; Randolph, T.W.; et al. Fusobacterium nucleatum Enrichment in Colorectal Tumor Tissue: Associations with Tumor Characteristics and Survival Outcomes. Gastro Hep Adv. 2025, 4, 100644. [Google Scholar] [CrossRef]
- Xu, Q.; Lu, X.; Li, J.; Feng, Y.; Tang, J.; Zhang, T.; Mao, Y.; Lan, Y.; Luo, H.; Zeng, L.; et al. Fusobacterium nucleatum Induces Methyltransferase-Like 3–Mediated MicroRNA-4717-3p Maturation to Promote Colorectal Cancer Cell Proliferation. Cancer Sci. 2022, 113, 3787–3800. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Sun, D. The Synthesis of the Novel Escherichia coli Toxin Colibactin and Its Mechanisms of Tumorigenesis of Colorectal Cancer. Front. Microbiol. 2024, 15, 1501973. [Google Scholar] [CrossRef] [PubMed]
- Aleksandrova, K.; Pischon, T.; Jenab, M.; Bueno-de-Mesquita, H.B.; Fedirko, V.; Norat, T.; Romaguera, D.; Knüppel, S.; Boutron-Ruault, M.C.; Dossus, L.; et al. Combined Impact of Healthy Lifestyle Factors on Colorectal Cancer: A Large European Cohort Study. BMC Med. 2014, 12, 168. [Google Scholar] [CrossRef] [PubMed]
- Rolić, T.; Lukic, I.; Mandic, S.; Tomaš, I.; Banjari, I. Variable Role of Diet-Related Risk Factors for Colorectal Cancer—A Cross-Sectional Analysis of Regional Differences. Rom. Med. J. 2024, 71, 12–16. [Google Scholar] [CrossRef]
- Tito, R.Y.; Verbandt, S.; Aguirre Vazquez, M.; Lahti, L.; Verspecht, C.; Lloréns-Rico, V.; Vieira-Silva, S.; Arts, J.; Falony, G.; Dekker, E.; et al. Microbiome Confounders and Quantitative Profiling Challenge Predicted Microbial Targets in Colorectal Cancer Development. Nat. Med. 2024, 30, 1339–1348. [Google Scholar] [CrossRef]
- Zeller, G.; Tap, J.; Voigt, A.Y.; Sunagawa, S.; Kultima, J.R.; Costea, P.I.; Amiot, A.; Böhm, J.; Brunetti, F.; Habermann, N.; et al. Potential of Fecal Microbiota for Early-Stage Detection of Colorectal Cancer. Mol. Syst. Biol. 2014, 10, 766. [Google Scholar] [CrossRef] [PubMed]
- Grădișteanu Pircalabioru, G.; Chifiriuc, M.-C.; Picu, A.; Petcu, L.M.; Trandafir, M.; Savu, O. Snapshot into the Type-2-Diabetes-Associated Microbiome of a Romanian Cohort. Int. J. Mol. Sci. 2022, 23, 15023. [Google Scholar] [CrossRef] [PubMed]
- Gradisteanu Pircalabioru, G.; Ilie, I.; Oprea, L.; Picu, A.; Petcu, L.M.; Burlibașa, L.; Chifiriuc, M.C.; Musat, M. Microbiome, Mycobiome and Related Metabolites Alterations in Patients with Metabolic Syndrome—A Pilot Study. Metabolites 2022, 12, 218. [Google Scholar] [CrossRef]
- Huang, P.; Ji, F.; Cheung, A.H.K.; Fu, K.; Zhou, Q.; Ding, X.; Chen, D.; Lin, Y.; Wang, L.; Jiao, Y.; et al. Peptostreptococcus stomatis Promotes Colonic Tumorigenesis and Receptor Tyrosine Kinase Inhibitor Resistance by Activating ERBB2-MAPK. Cell Host Microbe 2024, 32, 1365–1379. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, X.; Zhou, Y.; Fu, K.; Lau, H.C.H.; Chun, T.W.Y.; Cheung, A.H.K.; Coker, O.O.; Wei, H.; Wu, W.K.K.; et al. Parvimonas micra Promotes Colorectal Tumorigenesis and Is Associated with Prognosis of Colorectal Cancer Patients. Oncogene 2022, 41, 4200–4210. [Google Scholar] [CrossRef] [PubMed]
Country/Study Context | Cohort | Assay | Gut Microbial Signature |
---|---|---|---|
Romania/T2D | n = 150 (105 T2D, 45 HC) | RT PCR/16S rRNA gene/SYBR Green primers Fecal samples | ↓ Lactobacilli species, Akkermansia muciniphila, butyrate producers (Faecalibacterium prausnitzii, Butyricicoccus, Subdoligranulum); ↑ Enterobacteriaceae, Fusobacterium, Dialister |
Romania/MetSyn | n = 60 (30 MetSyn, 30 HC) | RT PCR/16S rRNA gene/SYBR Green primers Fecal samples | ↑ Gamma Proteobacteria, Beta Proteobacteria, Enterobacteriaceae, Turicibacter, Clostridium (coccoides/leptum); ↓ Butyricicoccus sp., Akkermansia muciniphila, Faecalibacterium prausnitzii |
Belgium/LCPM | n = 589 (referred for colonoscopy and colonic resections; 3 groups: CTLs; ADE; CRC) validation cohort | QMP Fecal samples | Significant differential abundance across groups: Anaerococcus, Alistipes onderdonkii, Dialister pneumosintes, Fusobacterium nucleatum, Parvimonas micra, Peptostreptococcus anaerobius, Porphyromonas asaccharolytica, Prevotella intermedia. Adjustment for calprotectin (±BMI, stool moisture) abolishes the absolute/relative F. nucleatum—CRC diagnosis association. Bact2 enterotype is overrepresented in colonoscopy patients, regardless of CRC status. |
France/Germany | n= 156 population F(healthy/adenoma/CRC)/France n = 38 population G(CRC)/Germany n = 297 population H(healthy)/Germany; Denmark and Spain from other studies | RT PCR/16S rRNA Metagenomic shotgun sequencing Fecal and tissue samples | 22-species signature: Fusobacterium nucleatum (subsp. vincentii/animalis), Peptostreptococcus stomatis Porphyromonas asaccharolytica, Porphyromonas asaccharolytica, Clostridium hylemonae, Clostridium symbiosum …—all enriched in CRC Early-stage CRC vs. controls: ↑ Fusobacterium spp.; ↑ Peptostreptococcus stomatis (strong enrichment) ↓ Eubacterium rectale, ↓ Eubacterium eligens, ↓ Streptococcus (negative association). |
Austria | n = 156 (57 HC + 6 HC/AMS; 44 AA + 3 AA/AMS; 46 CRC) | Metagenomic shotgun sequencing Fecal samples | ↑ Actinomyces viscosus, Bifidobacterium animalis, Streptococcus thermophilus, Clostridium sp., Streptococcus mutans—HC ↑ Streptococcus thermophilus Bifidobacterium animalis, Actinomyces viscosus, Bacteroides massiliensis, Paraprevotella clara Bacteroides dorei—AA ↑ Fusobacterium, Escherichia coli, Parvimonas, Bacteroides eggerthii, Sutterella wadsworthensis, Veillonella atypica, Bilophila, B.massiliensis,B.dorei,B.vulgates, Parabacteroides merdae, A.finegoldii, B.wadsworthia, Lachnospiraceae bacterium, Alistipes finegoldii, Bacteroides caccae—CRC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turcu, S.; Grama, F.; Gazouli, M. Gut Microbiome-Mediated Genetic and Epigenetic Alterations in Colorectal Cancer: Population-Specific Insights. Biomedicines 2025, 13, 2262. https://doi.org/10.3390/biomedicines13092262
Turcu S, Grama F, Gazouli M. Gut Microbiome-Mediated Genetic and Epigenetic Alterations in Colorectal Cancer: Population-Specific Insights. Biomedicines. 2025; 13(9):2262. https://doi.org/10.3390/biomedicines13092262
Chicago/Turabian StyleTurcu, Simona, Florin Grama, and Maria Gazouli. 2025. "Gut Microbiome-Mediated Genetic and Epigenetic Alterations in Colorectal Cancer: Population-Specific Insights" Biomedicines 13, no. 9: 2262. https://doi.org/10.3390/biomedicines13092262
APA StyleTurcu, S., Grama, F., & Gazouli, M. (2025). Gut Microbiome-Mediated Genetic and Epigenetic Alterations in Colorectal Cancer: Population-Specific Insights. Biomedicines, 13(9), 2262. https://doi.org/10.3390/biomedicines13092262