Magnesium and Zinc in Schizophrenia
Abstract
1. Introduction
1.1. Magnesium
1.2. Zinc
2. The Factors Involved in the Pathogenesis of Schizophrenia
2.1. Dopaminergic System
2.2. Glutamatergic System
2.3. Serotonergic System
2.4. GABAergic System
2.5. Cannabinoid System
2.6. Cholinergic System
2.7. Neuroplasticity
2.8. Neuroinflammation
2.9. Oxidative Stress
2.10. Mitochondria
2.11. Some Active Endogenous Substances
2.11.1. α.Norepinephrine
2.11.2. β.Galanin
2.11.3. γ.NF-kappaB
2.11.4. δ.Substance P (SP)
2.11.5. ε.BDNF
2.11.6. ζ.ACTH and Corticosteroids
2.11.7. η.Oxytocin
2.11.8. θ.Prolactin
3. Some Important Processes Disturbed in Schizophrenia
3.1. Sleep
3.2. Cognition
3.3. Gut Microbiome
3.4. Appetite
4. Genetics
5. Therapeutics
6. Nutrition
7. Conclusions
Funding
Conflicts of Interest
References
- Gatov, E.; Rosella, L.; Maria Chiu, M.; Kurdyak, P.A. Trends in standardized mortality among individuals with schizophrenia, 1993–2012: A population-based, repeated cross-sectional study. CMAJ 2017, 189, E1177–E1187. [Google Scholar] [CrossRef]
- Olfson, M.; Gerhard, T.; Huang, C.; Crystal, S.; Stroup, T.S. Premature mortality among adults with schizophrenia in the United States. JAMA Psychiatry 2015, 72, 1172–1181. [Google Scholar] [CrossRef]
- Long, S.; Romani, A.M. Role of Cellular Magnesium in Human Diseases. Austin J. Nutr. Food Sci. 2014, 2, 1051. [Google Scholar]
- Wang, B.; Fang, T.; Chen, H. Zinc and Central Nervous System Disorders. Nutrients 2023, 15, 2140. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Makova, M.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Rhodes, C.J.; Valko, M. Essential metals in health and disease. Chem. Biol. Interact. 2022, 367, 110173. [Google Scholar] [CrossRef] [PubMed]
- Lowenstein, F.W.; Stanton, M.F. Serum magnesium levels in the United States, 1971–1974. J. Am. Coll. Nutr. 1986, 5, 399–414. [Google Scholar] [CrossRef]
- Costello, R.B.; Elin, R.J.; Rosanoff, A.; Wallace, T.C.; Guerrero-Romero, F.; Hruby, A.; Lutsey, P.L.; Nielsen, F.H.; Rodriguez-Moran, M.; Song, Y.; et al. Perspective: The Case for an Evidence-Based Reference Interval for Serum Magnesium: The Time Has Come. Adv. Nutr. 2016, 7, 977–993. [Google Scholar] [CrossRef] [PubMed]
- Saco, R.L.; Chong, J.Y.; Prabhakaran, S. Experimental treatment for acute ischemic stroke. Lancet 2007, 369, 331–334. [Google Scholar] [CrossRef]
- McKee, J.A.; Brewer, R.P.; Macy, G.E.; Phillips-Bute, B.; Campbell, K.A.; Borel, C.O.; Reynolds, J.D.; Warner, D.S. Analysis of the brain bioavailability of peripherally administered magnesium sulfate: A study in humans with acute brain injury undergoing prolonged induced hypermagnesemia. Crit. Care Med. 2005, 33, 661–666. [Google Scholar] [CrossRef]
- Koh, J.Y. Zinc and disease of the brain. Mol. Neurobiol. 2001, 24, 99–106. [Google Scholar] [CrossRef]
- Paoletti, P.; Vergnano, A.M.; Barbour, B.; Casado, M. Zinc at glutamatergic synapses. Neuroscience 2009, 158, 126–136. [Google Scholar] [CrossRef]
- Menniti, F.S.; Lindsley, C.W.; Conn, P.J.; Pandit, J.; Zagouras, P.; Volkmann, R.A. Allosteric modulators for the treatment of schizophrenia: Targeting glutamatergic networks. Curr. Top. Med. Chem. 2013, 13, 26–54. [Google Scholar] [CrossRef]
- Mocchegiani, E.; Bertoni-Freddari, C.; Marcellini, F.; Malavolta, M. Brain, aging and neurodegeneration: Role of zinc ion availability. Prog. Neurobiol. 2005, 75, 367–390. [Google Scholar] [CrossRef]
- Portbury, S.D.; Adlard, P.A. Zinc Signal in Brain Diseases. Int. J. Mol. Sci. 2017, 18, 2506. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, W.; Ishida, A.; Takada, G. Magnesium attenuates a striatal dopamine increase induced by anoxia in the neonatal rat brain: An in vivo microdialysis study. Pediatr. Res. 1997, 41, 809–814. [Google Scholar] [CrossRef] [PubMed]
- Kirov, G.K.; Tsachev, K.N. Magnesium, schizophrenia and manic-depressive disease. Neuropsychobiology 1990, 23, 79–81. [Google Scholar] [CrossRef]
- Kanofsky, J.D.; Sandyk, R. Magnesium deficiency in chronic schizophrenia. Int. J. Neurosci. 1991, 61, 87–90. [Google Scholar] [CrossRef][Green Version]
- Ma, J.; Yan, L.; Guo, T.; Yang, S.; Liu, Y.; Xie, Q.; Ni, D.; Wang, J. Association between Serum Essential Metal Elements and the Risk of Schizophrenia in China. Sci. Rep. 2020, 10, 10875. [Google Scholar] [CrossRef]
- Alexander, P.E.; Van Kammen, D.P.; Bunney, W.E., Jr. Serum calcium and magnesium in schizophrenia: Relationship to clinical phenomena and neuroleptic treatment. Br. J. Psychiatry 1978, 133, 143–149. [Google Scholar] [CrossRef]
- Kornhuber, J.; Lange, K.W.; Kruzik, P.; Rausch, W.D.; Gabriel, E.; Jellinger, K.; Riederer, P. Iron, copper, zinc, magnesium, and calcium in postmortem brain tissue from schizophrenic patients. Biol. Psychiatry 1994, 36, 31–34. [Google Scholar] [CrossRef] [PubMed]
- Gattaz, W.F.; Kattermann, R.; Gattaz, D.; Beckmann, H. Magnesium and calcium in the CSF of schizophrenic patients and healthy controls: Correlations with cyclic GMP. Biol. Psychiatry 1983, 18, 935–939. [Google Scholar]
- Brackenridge, C.J.; Jones, I.H. Relation of hypermagnesaemia to activity and neuroleptic drug therapy in schizophrenic states. J. Neurol. Neurosurg. Psychiatry 1971, 34, 195–199. [Google Scholar] [CrossRef]
- Levine, J.; Rapoport, A.; Mashiah, M.; Dolev, E. Serum and cerebrospinal levels of calcium and magnesium in acute versus remitted schizophrenic patients. Neuropsychobiology 1996, 33, 169–172. [Google Scholar] [CrossRef]
- Joe, P.; Petrilli, M.; Malaspina, D.; Weissman, J. Zinc in schizophrenia: A meta-analysis. Gen. Hosp. Psychiatry 2018, 53, 19–24. [Google Scholar] [CrossRef]
- Rahman, A.; Azad, M.A.K.; Hossain, I.; Qusar, M.M.A.S.; Bari, W.; Begum, F.; Huq, S.M.I.; Hasnat, A. Zinc, manganese, calcium, copper, and cadmium level in scalp hair samples of schizophrenic patients. Biol. Trace Elem. Res. 2009, 127, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Andrews, R.C. Unification of the findings in schizophrenia by reference to the effects of gestational zinc deficiency. Med. Hypotheses 1990, 31, 141–153. [Google Scholar] [CrossRef]
- Richardson-Andrews, R.C. The sunspot theory of schizophrenia: Further evidence, a change of mechanism, and a strategy for the elimination of the disorder. Med. Hypotheses 2009, 72, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Olatunbosun, D.A.; Akindele, M.O.; Adadevoh, B.K.; Asuni, T. Serum copper in schizophrenia in Nigerians. Br. J. Psychiatry 1975, 127, 119–121. [Google Scholar] [CrossRef] [PubMed]
- Tandon, R.; Gaebel, W.; Barch, D.M.; Bustillo, J.; Gur, R.E.; Heckers, S.; Malaspina, D.; Owen, M.J.; Schultz, S.; Tsuang, M.; et al. Definition and description of schizophrenia in the DSM-5. Schizophr. Res. 2013, 50, 3–10. [Google Scholar] [CrossRef]
- Saha, S.; Chant, D.; Welham, J.; McGrath, J. A systematic review of the prevalence of schizophrenia. PLoS Med. 2005, 2, e141. [Google Scholar] [CrossRef]
- Yang, A.C.; Tsai, S.J. New Targets for Schizophrenia Treatment beyond the Dopamine Hypothesis. Int. J. Mol. Sci. 2017, 18, 1689. [Google Scholar] [CrossRef]
- van Kammen, D.P.; Kelley, M. Dopamine and norepinephrine activity in schizophrenia. An integrative perspective. Schizophr. Res. 1991, 4, 173–191. [Google Scholar] [CrossRef]
- Howes, O.D.; Kambeitz, J.; Kim, E.; Stahl, D.; Slifstein, M.; Abi-Dargham, A.; Kapur, S. The nature of dopamine dysfunction in schizophrenia and what this means for treatment. Arch. Gen. Psychiatry 2012, 69, 776–786. [Google Scholar] [CrossRef]
- Mackay, A.V.; Iversen, L.L.; Rossor, M.; Spokes, E.; Bird, E.; Arregui, A.; Creese, I.; Synder, S.H. Increased brain dopamine and dopamine receptors in schizophrenia. Arch. Gen. Psychiatry 1982, 39, 991–997. [Google Scholar] [CrossRef] [PubMed]
- Howes, O.D.; McCutcheon, R.; Owen, M.J.; Murray, R.M. The Role of Genes, Stress, and Dopamine in the Development of Schizophrenia. Biol. Psychiatry 2017, 81, 9–20. [Google Scholar] [CrossRef]
- Seeman, P.; Guan, H.; van Tol, H. Dopamine D4 receptors elevated in schizophrenia. Nature 1993, 365, 441–445. [Google Scholar] [CrossRef] [PubMed]
- Howes, O.D.; Williams, M.; Ibrahim, K.; Leung, G.; Egerton, A.; McGuire, P.K.; Turkheimer, F. Midbrain dopamine function in schizophrenia and depression: A post-mortem and positron emission tomographic imaging study. Brain 2013, 136, 3242–3251. [Google Scholar] [CrossRef]
- Egerton, A.; Chaddock, C.A.; Winton-Brown, T.T.; Bloomfield, M.A.; Bhattacharyya, S.; Allen, P.; McGuire, P.K.; Howes, O.D. Presynaptic striatal dopamine dysfunction in people at ultra-high risk for psychosis: Findings in a second cohort. Biol. Psychiatry 2013, 74, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Howes, O.D.; Kapur, S. The dopamine hypothesis of schizophrenia: Version III—The final common pathway. Schizophr. Bull. 2009, 35, 549–562. [Google Scholar] [CrossRef]
- Mailman, R.B.; Murthy, V. Third generation antipsychotic drugs: Partial agonism or receptor functional selectivity? Curr. Pharm. Des. 2010, 16, 488–501. [Google Scholar] [CrossRef]
- Lepping, P.; Huber, M. Role of zinc in the pathogenesis of attention-deficit hyperactivity disorder: Implications for research and treatment. CNS Drugs 2010, 24, 721–728. [Google Scholar] [CrossRef]
- Guzmán, D.C.; Brizuela, N.O.; Herrera, M.O.; Peraza, A.V.; Juárez-Olguín, H.; Mejía, G.B. Insulin plus zinc induces a favorable biochemical response effects on oxidative damage and dopamine levels in rat brain. Int. J. Biol. Macromol. 2019, 132, 230–235. [Google Scholar] [CrossRef]
- Herman, M.; Tarran, R. E-cigarettes, nicotine, the lung and the brain: Multi-level cascading pathophysiology. J. Physiol. 2020, 598, 5063–5071. [Google Scholar] [CrossRef]
- Oliva, I.; Wanat, M.J. Operant Costs Modulate Dopamine Release to Self-Administered Cocaine. J. Neurosci. 2019, 39, 1249–1260. [Google Scholar] [CrossRef] [PubMed]
- van den Buuse, M.; Webber, K.M. Endothelin and dopamine release. Prog. Neurobiol. 2000, 60, 385–405. [Google Scholar] [CrossRef]
- Jin, S.; Fredholm, B.B. Electrically-evoked dopamine and acetylcholine release from rat striatal slices perfused without magnesium: Regulation by glutamate acting on NMDA receptors. Br. J. Pharmacol. 1997, 121, 1269–1276. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Poenaru, S.; Rouhani, S.; Durlach, J.; Aymard, N.; Belkahla, F.; Rayssiguier, Y.; Iovino, M. Vigilance states and cerebral monoamine metabolism in experimental magnesium deficiency. Magnesium 1984, 3, 145–151. [Google Scholar][Green Version]
- Martínez-Fong, D.; Rosales, M.G.; Góngora-Alfaro, J.L.; Hernández, S.; Aceves, J. NMDA receptor mediates dopamine release in the striatum of unanesthetized rats as measured by brain microdialysis. Brain Res. 1992, 595, 309–315. [Google Scholar] [CrossRef]
- Krebs, M.O.; Kemel, M.L.; Gauchy, C.; Desban, M.; Glowinski, J. Local GABAergic regulation of the N-methyl-D-aspartate-evoked release of dopamine is more prominent in striosomes than in matrix of the rat striatum. Neuroscience 1993, 57, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Desce, J.M.; Godeheu, G.; Galli, T.; Artaud, F.; Chéramy, A.; Glowinski, J. L-glutamate-evoked release of dopamine from synaptosomes of the rat striatum: Involvement of AMPA and N-methyl-D-aspartate receptors. Neuroscience 1992, 47, 333–339. [Google Scholar] [CrossRef]
- Okada, M.; Mizuno, K.; Okuyama, M.; Kaneko, S. Magnesium ion augmentation of inhibitory effects of adenosine on dopamine release in the rat striatum. Psychiatry Clin. Neurosci. 1996, 50, 147–156. [Google Scholar] [CrossRef]
- Su, P.; Li, S.; Chen, S.; Lipina, T.V.; Wang, M.; Lai, T.K.; Lee, F.H.; Zhang, H.; Zhai, D.; Ferguson, S.S. A dopamine D2 receptor-DISC1 protein complex may contribute to antipsychotic-like effects. Neuron 2014, 84, 1302–1316. [Google Scholar] [CrossRef]
- Krebs, M.O. Glutamatergic hypothesis of schizophrenia: Psychoses induced by phencyclidine and cortical-subcortical imbalance. Encephale 1995, 21, 581–588. [Google Scholar]
- Kruse, A.O.; Bustillo, J.R. Glutamatergic dysfunction in Schizophrenia. Transl. Psychiatry 2022, 12, 500. [Google Scholar] [CrossRef] [PubMed]
- Lorrain, D.S.; Baccei, C.S.; Bristow, L.J.; Anderson, J.J.; Varney, J.J. Effects of ketamine and N-methyl-d-aspartate on glutamate and dopamine release in the rat prefrontal cortex: Modulation by a group II selective metabotropic glutamate receptor agonist LY379268. Neuroscience 2003, 117, 697–706. [Google Scholar] [CrossRef] [PubMed]
- Krystal, J.H.; D’Souza, D.C.; Mathalon, D.; Perry, E.; Belger, A.; Hoffman, R. NMDA receptor antagonist effects, cortical glutamatergic function, and schizophrenia: Toward a paradigm shift in medication development. Psychopharmacology 2003, 169, 215–233. [Google Scholar] [CrossRef]
- Balu, D.T.; Coyle, J.T. The NMDA receptor ‘glycine modulatory site’ in schizophrenia: D-serine, glycine, and beyond. Curr. Opin. Pharmacol. 2015, 20, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Bergeron, R.; Meyer, T.M.; Coyle, J.T.; Greene, R.W. Modulation of N-methyl-d-aspartate receptor function by glycine transport. Proc. Natl. Acad. Sci. USA 1998, 95, 15730–15734. [Google Scholar] [CrossRef]
- Blakemore, L.J.; Trombley, P.Q. Diverse modulation of olfactory bulb AMPA receptors by zinc. Neuroreport 2004, 15, 919–923. [Google Scholar] [CrossRef]
- Greger, I.H.; Watson, J.F.; Cull-Candy, S.G. Structural and Functional Architecture of AMPA-Type Glutamate Receptors and Their Auxiliary Proteins. Neuron 2017, 94, 713–730. [Google Scholar] [CrossRef]
- Kessels, H.W.; Malinow, R. Synaptic AMPA receptor plasticity and behavior. Neuron 2009, 61, 340–350. [Google Scholar] [CrossRef]
- Pehrson, A.L.; Moghaddam, B. Impact of metabotropic glutamate 2/3 receptor stimulation on activated dopamine release and locomotion. Psychopharmacology 2010, 211, 443–455. [Google Scholar] [CrossRef]
- Takeda, A. Zinc signaling in the hippocampus and its relation to pathogenesis of depression. Mol. Neurobiol. 2011, 44, 166–174. [Google Scholar] [CrossRef]
- Jelen, L.A.; Green, M.S.; King, S.; Morris, A.G.; Zhang, X.; Lythgoe, D.J.; Young, A.H.; De Belleroche, J.; Stone, J.M. Variants in the zinc transporter-3 encoding gene (SLC30A3) in schizophrenia and bipolar disorder: Effects on brain glutamate—A pilot study. Front. Psychiatry 2022, 13, 929306. [Google Scholar] [CrossRef]
- Kalappa, B.I.; Anderson, C.T.; Goldberg, J.M.; Lippard, S.J.; Tzounopoulos, T. AMPA receptor inhibition by synaptically released zinc. Proc. Natl. Acad. Sci. USA 2015, 112, 15749–15754. [Google Scholar] [CrossRef]
- Krall, R.F.; Tzounopoulos, T.; Aizenmana, E. The function and regulation of zinc in the brain. Neuroscience 2021, 457, 235–258. [Google Scholar] [CrossRef]
- Di Iorio, G.; Baroni, G.; Lorusso, M.; Montemitro, C.; Spano, M.C.; di Giannantonio, M. Efficacy of Memantine in Schizophrenic Patients: A Systematic Review. J. Amino Acids 2017, 2017, 7021071. [Google Scholar] [CrossRef]
- Kishi, T.; Matsunaga, S.; Oya, K.; Nomura, I.; Ikuta, T.; Iwata, N. Memantine for Alzheimer’s Disease: An Updated Systematic Review and Meta-analysis. J. Alzheimers Dis. 2017, 60, 401–425. [Google Scholar] [CrossRef]
- Huang, X.; Sun, X.; Wang, Q.; Zhang, J.; Wen, H.; Chen, W.J.; Zhu, S. Structural insights into the diverse actions of magnesium on NMDA receptors. Neuron 2025, 113, 1006–1018.e4. [Google Scholar] [CrossRef]
- Hayashi, Y.; Nabeshima, Y.; Kobayashi, K.; Miyakawa, T.; Tanda, K.; Takao, K.; Suzuki, H.; Esumi, E.; Noguchi, S.; Matsuda, Y.; et al. Enhanced stability of hippocampal place representation caused by reduced magnesium block of NMDA receptors in the dentate gyrus. Mol. Brain 2014, 7, 44. [Google Scholar] [CrossRef][Green Version]
- Saha, S.; González-Maeso, J. The crosstalk between 5-HT2AR and mGluR2 in schizophrenia. Neuropharmacology 2023, 230, 109489. [Google Scholar] [CrossRef]
- Teitler, M.; Leonhardt, S.; Weisberg, E.L.; Hoffman, B.J. 4-[125I]iodo-(2,5-dimethoxy)phenylisopropylamine and [3H]ketanserin labeling of 5-hydroxytryptamine2 (5HT2) receptors in mammalian cells transfected with a rat 5HT2 cDNA: Evidence for multiple states and not multiple 5HT2 receptor subtypes. Mol. Pharmacol. 1990, 38, 594–598. [Google Scholar] [CrossRef]
- Aghajanian, G.K.; Marek, G.J. Serotonin and hallucinogens. Neuropsychopharmacology 1999, 21, 16S–23S. [Google Scholar] [CrossRef]
- Halberstadt, A.L.; Geyer, M.A. Multiple receptors mediate the behavioral effects of indoleamine hallucinogens. Neuropharmacology 2011, 61, 36. [Google Scholar] [CrossRef]
- Benneyworth, M.A.; Xiang, Z.; Smith, R.L.; Garcia, E.E.; Conn, P.J.; Sanders-Bush, E. A selective positive allosteric modulator of metabotropic glutamate receptor subtype 2 blocks a hallucinogenic drug model of psychosis. Mol. Pharmacol. 2007, 72, 477–484. [Google Scholar] [CrossRef]
- Ali, B.H.; Silsby, J.L.; El Halawani, M.E. The effect of magnesium aspartate, xylazine and morphine on the immobilization-induced increase in the levels of prolactin in turkey plasma. J. Vet. Pharmacol. Ther. 1987, 10, 119–126. [Google Scholar] [CrossRef]
- Bleich, A.; Brown, S.L.; Kahn, R.; van Praag, H.M. The role of serotonin in schizophrenia. Schizophr. Bull. 1988, 14, 297–315. [Google Scholar] [CrossRef]
- Barrondo, S.; Sallés, J. Allosteric modulation of 5-HT(1A) receptors by zinc: Binding studies. Neuropharmacology 2009, 56, 455–462. [Google Scholar] [CrossRef]
- Xu, M.Y.; Wong, A.H.C. GABAergic inhibitory neurons as therapeutic targets for cognitive impairment in schizophrenia. Acta Pharmacol. Sin. 2018, 39, 733–753. [Google Scholar] [CrossRef]
- Kumar, V.; Vajawat, B.; Rao, N.P. Frontal GABA in schizophrenia: A meta-analysis of 1H-MRS studies. World J. Biol. Psychiatry 2021, 22, 1–13. [Google Scholar] [CrossRef]
- Smolders, I.; De Klippel, N.; Sarre, S.; Ebinger, G.; Michotte, Y. Tonic GABA-ergic modulation of striatal dopamine release studied by in vivo microdialysis in the freely moving rat. Eur. J. Pharmacol. 1995, 284, 83–91. [Google Scholar] [CrossRef]
- Blum, B.P.; Mann, J.J. The GABAergic system in schizophrenia. Int. J. Neuropsychopharmacol. 2002, 5, 159–179. [Google Scholar] [CrossRef]
- Mizukami, K.; Ishikawa, M.; Hidaka, S.; Iwakiri, M.; Sasaki, M.; Iritani, S. Immunohistochemical localization of GABAB receptor in the entorhinal cortex and inferior temporal cortex of schizophrenic brain. Prog. Neuropsychopharmacol. Biol. Psychiatry 2002, 26, 393–396. [Google Scholar] [CrossRef]
- Möykkynen, T.; Uusi-Oukari, M.; Heikkilä, J.; Lovinger, D.M.; Lüddens, H.; Korpi, E.R. Magnesium potentiation of the function of native and recombinant GABAA receptors. Neuroreport 2001, 12, 2175–2179. [Google Scholar] [CrossRef]
- Poleszak, E. Benzodiazepine/GABA(A) receptors are involved in magnesium-induced anxiolytic-like behavior in mice. Pharmacol. Rep. 2008, 60, 483–489. [Google Scholar]
- Janáky, R.; Saransaari, P.; Oja, S.S. Release of GABA from rat hippocampal slices: Involvement of quisqualate/N-methyl-D-aspartate-gated ionophores and extracellular magnesium. Neuroscience 1993, 53, 779–785. [Google Scholar] [CrossRef]
- Stangherlin, A.; O’Neill, J.S. Signal Transduction: Magnesium Manifests as a Second Messenger. Curr. Biol. 2018, 28, R1403–R1405. [Google Scholar] [CrossRef]
- Yamanaka, R.; Shindo, Y.; Hotta, K.; Koji Suzuki, K.; Oka, K. GABA-Induced Intracellular Mg2+ Mobilization Integrates and Coordinates Cellular Information Processing for the Maturation of Neural Networks. Curr. Biol. 2018, 28, 3984–3991.e5. [Google Scholar] [CrossRef]
- Takeda, A.; Itoh, H.; Imano, S.; Oku, N. Impairment of GABAergic neurotransmitter system in the amygdala of young rats after 4-week zinc deprivation. Neurochem. Int. 2006, 49, 746–750. [Google Scholar] [CrossRef]
- Hosie, A.; Dunne, E.; Harvey, R.J.; Trevor, G. Smart Zinc-mediated inhibition of GABA(A) receptors: Discrete binding sites underlie subtype specificity. Nat. Neurosci. 2003, 6, 362–369. [Google Scholar] [CrossRef]
- Zuardi, A.W.; Crippa, J.A.; Hallak, J.E.; Bhattacharyya, S.; Atakan, Z.; Martin-Santos, R.; McGuire, P.K.; Guimaraes, F.S. A critical review of the antipsychotic effects of cannabidiol: 30 years of a translational investigation. Curr. Pharm. Des. 2012, 18, 5131–5140. [Google Scholar] [CrossRef]
- Bac, P.; Pages, N.; Herrenknecht, C.; Maurois, P.; Durlach, J. Magnesium deficiency reveals the neurotoxicity of delta-9-tetrahydrocannabinol (THC) low doses in rats. Magnes. Res. 2003, 16, 21–28. [Google Scholar]
- Shen, M.; Thayer, S.A. Cannabinoid receptor agonists protect cultured rat hippocampal neurons from excitotoxicity. Mol. Pharmacol. 1998, 54, 459–462. [Google Scholar] [CrossRef]
- Shen, M.; Piser, T.M.; Seybold, V.S.; Thayer, S.A. Cannabinoid receptor agonists inhibit glutamatergic synaptic transmission in rat hippocampal cultures. J. Neurosci. 1996, 16, 4322–4334. [Google Scholar] [CrossRef]
- Shen, M.; Thayer, S.A. Delta9-tetrahydrocannabinol acts as a partial agonist to modulate glutamatergic synaptic transmission between rat hippocampal neurons in culture. Mol. Pharmacol. 1999, 55, 8–13. [Google Scholar] [CrossRef]
- Zavitsanou, K.; Katsifis, A.; Yu, Y.; Huang, X.F. M2/M4 muscarinic receptor binding in the anterior cingulate cortex in schizophrenia and mood disorders. Brain Res. Bull. 2005, 65, 397–403. [Google Scholar] [CrossRef]
- Newell, K.A.; Zavitsanou, K.; Jew, S.K.; Huang, X.F. Alterations of muscarinic and GABA receptor binding in the posterior cingulate cortex in schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 2007, 31, 225–233. [Google Scholar] [CrossRef]
- Shor, O.L.; Fidzinski, P.; Behr, J. Muscarinic acetylcholine receptors and voltage-gated calcium channels contribute to bidirectional synaptic plasticity at CA1-subiculum synapses. Neurosci. Lett. 2009, 449, 220–223. [Google Scholar] [CrossRef]
- Steven, P.M.; Yohn, S.E.; Popiolek, M.; Miller, A.C.; Felder, C.C. Muscarinic Acetylcholine Receptor Agonists as Novel Treatments for Schizophrenia. Am. J. Psychiatry 2022, 179, 611–627. [Google Scholar] [CrossRef]
- Olincy, A.; Stevens, K.E. Treating schizophrenia symptoms with an α7 nicotinic agonist, from mice to men. Biochem. Pharmacol. 2007, 74, 1192–1201. [Google Scholar] [CrossRef]
- Ifune, C.K.; Steinbach, J.H. Voltage-dependent block by magnesium of neuronal nicotinic acetylcholine receptor channels in rat phaeochromocytoma cells. J. Physiol. 1991, 443, 683–701. [Google Scholar] [CrossRef]
- Ulus, I.H.; Buyukuysal, R.L.; Wurtman, R.J. N-methyl-D-aspartate increases acetylcholine release from rat striatum and cortex: Its effect is augmented by choline. J. Pharmacol. Exp. Ther. 1992, 261, 1122–1128. [Google Scholar] [CrossRef]
- Burgmer, U.; Schulz, U.; Tränkle, C.; Mohr, K. Interaction of Mg2+ with the allosteric site of muscarinic M2 receptors. Naunyn Schmiedebergs Arch. Pharmacol. 1998, 357, 363–370. [Google Scholar] [CrossRef]
- Spasov, A.A.; Iezhitsa, I.N.; Kravchenko, M.S.; Kharitonova, M.V. Features of central neurotransmission in animals in conditions of dietary magnesium deficiency and after its correction. Neurosci. Behav. Physiol. 2009, 39, 645–653. [Google Scholar] [CrossRef]
- Mantovani, P.; Pepeu, G. Interactions between ionophores, Mg2+ and Ca2+ on acetylcholine formation and release in brain slices. Pharmacol. Res. Commun. 1981, 13, 175–184. [Google Scholar] [CrossRef]
- Zheng, B.; Yang, Y.; Li, J.; Li, J.; Zuo, S.; Chu, X.; Xu, S.; Ma, D.; Chu, L. Magnesium Isoglycyrrhizinate Alleviates Arsenic Trioxide-Induced Cardiotoxicity: Contribution of Nrf2 and TLR4/NF-κB Signaling Pathway. Drug Des. Devel Ther. 2021, 15, 543–556. [Google Scholar] [CrossRef]
- Mohammadi, H.; Shamshirian, A.; Eslami, S.; Shamshirian, D.; Ebrahimzadeh, M.A. Magnesium Sulfate Attenuates Lethality and Oxidative Damage Induced by Different Models of Hypoxia in Mice. Biomed. Res. Int. 2020, 2020, 2624734. [Google Scholar] [CrossRef]
- Hashimoto, K. Recent Advances in the Early Intervention in Schizophrenia: Future Direction from Preclinical Findings. Curr. Psychiatry Rep. 2019, 21, 75. [Google Scholar] [CrossRef]
- Angelucci, F.; Brene, S.; Mathe, A.A. BDNF in schizophrenia, depression and corresponding animal models. Mol. Psychiatry 2005, 10, 345–352. [Google Scholar] [CrossRef]
- Đurić, V.; Batinić, B.; Jelena Petrović, J.; Stanić, D.; Bulat, Z.; Pešić, V. A single dose of magnesium, as well as chronic administration, enhances long-term memory in novel object recognition test, in healthy and ACTH-treated rats. Magnes. Res. 2018, 31, 24–32. [Google Scholar] [CrossRef]
- Vink, R.; Donkin, J.J.; Cruz, M.I.; Nimmo, A.J.; Cernak, I. A substance P antagonist increases brain intracellular free magnesium concentration after diffuse traumatic brain injury in rats. J. Am. Coll. Nutr. 2004, 23, 538S–540S. [Google Scholar] [CrossRef]
- Vázquez-Gómez, E.V.; García-Colunga, J. Neuronal nicotinic acetylcholine receptors are modulated by zinc. Neuropharmacology 2009, 56, 1035–1040. [Google Scholar] [CrossRef]
- Morishita, H.; Vinogradov, S. Neuroplasticity and displasticity processes in schizophrenia. Schizophr. Res. 2019, 207, 1–2. [Google Scholar] [CrossRef]
- McCullumsmith, R.E.; Clinton, S.M.; Meador-Woodruff, J.H. Schizophrenia as a disorder of neuroplasticity. Int. Rev. Neurobiol. 2004, 59, 19–45. [Google Scholar] [CrossRef]
- Ross, C.A.; Margolis, R.L.; Reading, S.A.; Pletnikov, M.; Coyle, J.T. Neurobiology of schizophrenia. Neuron 2006, 52, 139–153. [Google Scholar] [CrossRef]
- Johnstone, E.C.; Owens, D.G.; Bydder, G.M.; Colter, N.; Crow, T.J.; Frith, C.D. The spectrum of structural brain changes in schizophrenia: Age of onset as a predictor of cognitive and clinical impairments and their cerebral correlates. Psychol. Med. 1989, 19, 91–103. [Google Scholar] [CrossRef]
- Frost, D.O.; Tamminga, C.A.; Medoff, D.R.; Caviness, V.; Innocenti, G.; Carpenter, W.T. Neuroplasticity and schizophrenia. Biol. Psychiatry 2004, 56, 540–543. [Google Scholar] [CrossRef]
- Adamo, A.M.; Zago, M.P.; Mackenzie, G.G.; Aimo, L.; Keen, C.L.; Keenan, A.; Oteiza, P.I. The role of zinc in the modulation of neuronal proliferation and apoptosis. Neurotox. Res. 2010, 17, 1–14. [Google Scholar] [CrossRef]
- Clegg, M.S.; Hanna, L.A.; Niles, B.J.; Momma, T.Y.; Keen, C.L. Zinc deficiency-induced cell death. IUBMB Life 2005, 57, 661–669. [Google Scholar] [CrossRef]
- Hattori, T.; Baba, K.; Matsuzaki, S.; Honda, A.; Miyoshi, K.; Inoue, K.; Taniguchi, M.; Hashimoto, H.; Shintani, N.; Baba, A.; et al. A novel DISC1-interacting partner DISC1-Binding Zinc-finger protein: Implication in the modulation of DISC1-dependent neurite outgrowth. Mol. Psychiatry 2007, 12, 398–407. [Google Scholar] [CrossRef]
- Wang, A.K.; Miller, B.J. Meta-analysis of cerebrospinal fluid cytokine and tryptophan catabolite alterations in psychiatric patients: Comparisons between schizophrenia, bipolar disorder, and depression. Schizophr. Bull. 2018, 44, 75–88. [Google Scholar] [CrossRef]
- Na, K.S.; Jung, H.Y.; Kim, Y.K. The role of pro-inflammatory cytokines in the neuroinflammation and neurogenesis of schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 2014, 48, 277–286. [Google Scholar] [CrossRef]
- Najjar, S.; Pahlajani, S.; De Sanctis, V.; Stern, J.N.H.; Najjar, A.; Chong, D. Neurovascular Unit Dysfunction and Blood-Brain Barrier Hyperpermeability Contribute to Schizophrenia Neurobiology: A Theoretical Integration of Clinical and Experimental Evidence. Front. Psychiatry 2017, 8, 83. [Google Scholar] [CrossRef]
- Gładysz, D.; Krzywdzińska, A.; Hozyasz, K.K. Immune Abnormalities in Autism Spectrum Disorder-Could They Hold Promise for Causative Treatment? Mol. Neurobiol. 2018, 55, 6387–6435. [Google Scholar] [CrossRef]
- Fillman, S.G.; Weickert, T.W.; Lenroot, R.K.; Catts, S.V.; Bruggemann, J.M.; Catts, V.S.; Weickert, C.S. Elevated peripheral cytokines characterize a subgroup of people with schizophrenia displaying poor verbal fluency and reduced Broca’s area volume. Mol. Psychiatry 2016, 21, 1090–1098. [Google Scholar] [CrossRef] [PubMed]
- García-Bueno, B.; Bioque, M.; Mac-Dowell, K.S.; Barcones, M.F.; Martínez-Cengotitabengoa, M.; Pina-Camacho, L.; Rodríguez-Jiménez, R.; Sáiz, P.A.; Castro, C.; Lafuente, A.; et al. Pro-/anti-inflammatory dysregulation in patients with first episode of psychosis: Toward an integrative inflammatory hypothesis of schizophrenia. Schizophr. Bull. 2014, 40, 376–387. [Google Scholar] [CrossRef] [PubMed]
- Monji, A.; Mizoguchi, Y. Neuroinflammation in Late-Onset Schizophrenia: Viewing from the Standpoint of the Microglia Hypothesis. Neuropsychobiology 2022, 81, 98–103. [Google Scholar] [CrossRef]
- Sparkman, N.L.; Johnson, R.W. Neuroinflammation associated with aging sensitizes the brain to the effects of infection or stress. Neuroimmunomodulation 2008, 15, 323–330. [Google Scholar] [CrossRef]
- Zhang, Y.; Catts, V.S.; Sheedy, D.; McCrossin, T.; Kril, J.J.; Weickert, C.S. Cortical grey matter volume reduction in people with schizophrenia is associated with neuro-inflammation. Transl. Psychiatry 2016, 6, e982. [Google Scholar] [CrossRef] [PubMed]
- Meyer, U. Developmental neuroinflammation and schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 2013, 42, 20–34. [Google Scholar] [CrossRef]
- Langbein, K.; Hesse, J.; Gussew, A.; Milleit, B.; Lavoie, S.; Amminger, G.P.; Gaser, C.; Wagner, G.; Reichenbach, J.R.; Hipler, U.-C.; et al. Disturbed glutathione antioxidative defense is associated with structural brain changes in neuroleptic-naïve first-episode psychosis patients. Prostaglandins Leukot. Essent. Fat. Acids 2018, 136, 103–110. [Google Scholar] [CrossRef]
- Wu, Z.W.; Yu, H.H.; Wang, X.; Guan, H.Y.; Xiu, M.H.; Zhang, X.Y. Interrelationships between Oxidative Stress, Cytokines, and Psychotic Symptoms and Executive Functions in Patients with Chronic Schizophrenia. Psychosom. Med. 2021, 83, 485–491. [Google Scholar] [CrossRef] [PubMed]
- Ermakov, E.A.; Dmitrieva, E.M.; Parshukova, D.A.; Kazantseva, D.V.; Vasilieva, A.R.; Smirnova, L.P. Oxidative Stress-Related Mechanisms in Schizophrenia Pathogenesis and New Treatment Perspectives. Oxid. Med. Cell Longev. 2021, 2021, 8881770. [Google Scholar] [CrossRef] [PubMed]
- Micó, J.A.; Rojas-Corrales, M.O.; Gibert-Rahola, J.; Parellada, M.; Moreno, D.; Fraguas, D.; Graell, M.; Gil, J.; Irazusta, J.; Castro-Fornieles, J.; et al. Reduced antioxidant defense in early onset first-episode psychosis: A case-control study. BMC Psychiatry 2011, 11, 26. [Google Scholar] [CrossRef] [PubMed]
- Ranjekar, P.K.; Hinge, A.; Hegde, M.V.; Ghate, M.; Kale, A.; Sitasawad, S.; Wagh, U.V.; Debsikdar, V.B.; Mahadik, S.P. Decreased antioxidant enzymes and membrane essential polyunsaturated fatty acids in schizophrenic and bipolar mood disorder patients. Psychiatry Res. 2003, 121, 109–122. [Google Scholar] [CrossRef]
- Raffa, M.; Atig, F.; Mhalla, A.; Kerkeni, A.; Mechri, A. Decreased glutathione levels and impaired antioxidant enzyme activities in drug-naive first-episode schizophrenic patients. BMC Psychiatry 2011, 11, 124. [Google Scholar] [CrossRef]
- Gravina, P.; Spoletini, I.; Masini, S.; Valentini, A.; Vanni, D.; Paladini, E.; Bossù, P.; Caltagirone, C.; Federici, G.; Spalletta, G.; et al. Genetic polymorphisms of glutathione S-transferases GSTM1, GSTT1, GSTP1 and GSTA1 as risk factors for schizophrenia. Psychiatr. Res. 2011, 187, 454–456. [Google Scholar] [CrossRef]
- Buosi, P.; Borghi, F.A.; Lopes, A.M.; da Silva Facincani, I.; Fernandes-Ferreira, R.; Oliveira-Brancati, C.I.F.; do Carmo, T.S.; Souza, D.R.S.; da Silva, D.G.H.; de Almeida, E.A.; et al. Oxidative stress biomarkers in treatment-responsive and treatment-resistant schizophrenia patients. Trends Psychiatry Psychother. 2021, 43, 278–285. [Google Scholar] [CrossRef]
- Ermak, G.; Davies, K.J. Calcium and oxidative stress: From cell signaling to cell death. Mol. Immunol. 2002, 38, 713–721. [Google Scholar] [CrossRef]
- Bókkon, I.; Anta, I. Schizophrenia: Redox regulation and volume neurotransmission. Curr. Neuropharmacol. 2011, 9, 289–300. [Google Scholar] [CrossRef][Green Version]
- Cabungcal, J.H.; Nicolas, D.; Kraftsik, R.; Cuénod, M.; Do, K.Q.; Hornung, J.P. Glutathione deficit during development induces anomalies in the rat anterior cingulate GABAergic neurons: Relevance to schizophrenia. Neurobiol. Dis. 2006, 22, 624–637. [Google Scholar] [CrossRef]
- Bitanihirwe, B.K.Y.; Woo, T.U.W. Oxidative Stress in Schizophrenia: An Integrated Approach. Neurosci. Biobehav. Rev. 2011, 35, 878–893. [Google Scholar] [CrossRef] [PubMed]
- Prabakaran, S.; Swatton, J.E.; Ryan, M.M.; Huffaker, S.J.; Huang, J.T.; Griffin, J.L.; Wayland, M.; Freeman, T.; Dudbridge, F.; Lilley, K.S.; et al. Mitochondrial dysfunction in schizophrenia: Evidence for compromised brain metabolism and oxidative stress. Mol. Psychiatry 2004, 9, 684–697. [Google Scholar] [CrossRef]
- McCullumsmith, R.E.; Gupta, D.; Beneyto, M.; Kreger, E.; Haroutunian, V.; Davis, K.L.; Meador-Woodruff, J.H. Expression of transcripts for myelination-related genes in the anterior cingulate cortex in schizophrenia. Schizophr. Res. 2007, 90, 15–27. [Google Scholar] [CrossRef]
- Yao, J.K.; Leonard, S.; Reddy, R.D. Increased nitric oxide radicals in postmortem brains from schizophrenic patients. Schizophr. Bull. 2004, 30, 923–934. [Google Scholar] [CrossRef]
- Maulik, D.; Qayyum, I.; Powell, S.R.; Karantza, M.; Mishra, O.P.; Delivoria-Papadopoulos, M. Post-hypoxic magnesium decreases nuclear oxidative damage in the fetal guinea pig brain. Brain Res. 2001, 890, 130–136. [Google Scholar] [CrossRef]
- Song, Y.; Leonard, S.W.; Traber, M.G.; Ho, E. Zinc deficiency affects DNA damage, oxidative stress, antioxidant defenses, and DNA repair in rats. J. Nutr. 2009, 139, 1626–1631. [Google Scholar] [CrossRef]
- Ben-Shachar, D.; Laifenfeld, D. Mitochondria, synaptic plasticity, and schizophrenia. Int. Rev. Neurobiol. 2004, 59, 273–296. [Google Scholar] [CrossRef] [PubMed]
- Bai, M.; Cui, Y.; Sang, Z.; Gao, S.; Zhao, H.; Mei, X. Zinc ions regulate mitochondrial quality control in neurons under oxidative stress and reduce PAN optosis in spinal cord injury models via the Lgals3-Bax pathway. Free Radic. Biol. Med. 2024, 221, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Ponnusamy, T.; Velusamy, P.; Shanmughapriya, S. Mrs2-mediated mitochondrial magnesium uptake is essential for the regulation of MCU-mediated mitochondrial Ca2+ uptake and viability. Mitochondrion 2024, 76, 101877. [Google Scholar] [CrossRef]
- Weinshenker, D.; Holmes, P.V. Regulation of neurological and neuropsychiatric phenotypes by locus coeruleus-derived galanin. Brain Res. 2016, 1641, 320–337. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, P.J. Is elevated norepinephrine an etiological factor in some cases of schizophrenia? Psychiatry Res. 2014, 215, 497–504. [Google Scholar] [CrossRef]
- Amyard, N.; Leyris, A.; Monier, C.; Francès, H.; Boulu, R.G.; Henrotte, J.G. Brain catecholamines, serotonin and their metabolites in mice selected for low (MGL) and high (MGH) blood magnesium levels. Magnes. Res. 1995, 8, 5–9. [Google Scholar] [PubMed]
- Fink, K.; Schultheiss, R.; Göthert, M. Stimulation of noradrenaline release in human cerebral cortex mediated by N-methyl-D-aspartate (NMDA) and non-NMDA receptors. Br. J. Pharmacol. 1992, 106, 67–72. [Google Scholar] [CrossRef]
- Blakely, R.D.; De Felice, L.J.; Hartzell, H.C. Molecular physiology of norepinephrine and serotonin transporters. J. Exp. Biol. 1994, 196, 263–281. [Google Scholar] [CrossRef]
- Mitsuya, H.; Naoto Omata, N.; Kiyono, Y.; Mizuno, T.; Murata, T.; Mita, K.; Okazawa, H.; Wada, Y. The co-occurrence of zinc deficiency and social isolation has the opposite effects on mood compared with either condition alone due to changes in the central norepinephrine system. Behav. Brain Res. 2015, 284, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Devoto, P.; Flore, G.; Saba, P.; Scheggi, S.; Mulas, G.; Gambarana, C.; Spiga, S.; Gessa, G.L. Noradrenergic terminals are the primary source of α2-adrenoceptor mediated dopamine release in the medial prefrontal cortex. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2019, 90, 97–103. [Google Scholar] [CrossRef]
- Morton, D.J.; James, M.F. Effect of magnesium ions on rat pineal N-acetyltransferase (EC 2.3 1.5) activity. J. Pineal Res. 1985, 2, 387–391. [Google Scholar] [CrossRef]
- Henrotte, J.G.; Aymard, N.; Leyris, A.; Monier, C.; Francès, H.; Boulu, R. Brain weight and noradrenaline content in mice selected for low (MGL) and high (MGH) blood magnesium. Magnes. Res. 1993, 6, 21–24. [Google Scholar]
- Bing, O.; Möller, C.; Engel, J.A.; Söderpalm, B.; Heilig, M. Anxiolytic-like action of centrally administered galanin. Neurosci. Lett. 1993, 164, 17–20. [Google Scholar] [CrossRef]
- Karlsson, R.M.; Holmes, A. Galanin as a modulator of anxiety and depression and a therapeutic target for affective disease. Amino Acids 2006, 31, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Seutin, V.; Verbanck, P.; Massotte, L.; Dresse, A. Galanin decreases the activity of locus coeruleus neurons in vitro. Eur. J. Pharmacol. 1989, 164, 373–376. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Gao, M.; Zeng, K.; Xing, J.X.; Xu, F.L.; Xuan, J.F.; Xia, X.; Liu, Y.P.; Yao, J.; Wang, B.J. Association Between Polymorphisms in the 5′ Region of the GALR1 Gene and Schizophrenia in the Northern Chinese Han Population: A Case-Control Study. Neuropsychiatr. Dis. Treat. 2020, 16, 1519–1532. [Google Scholar] [CrossRef] [PubMed]
- Borroto-Escuela, D.O.; Carlsson, J.; Ambrogini, P.; Narváez, M.; Wydra, K.; Tarakanov, A.O.; Li, X.; Millón, C.; Ferraro, L.; Cuppini, R.; et al. Understanding the Role of GPCR Heteroreceptor Complexes in Modulating the Brain Networks in Health and Disease. Front. Cell Neurosci. 2017, 11, 37. [Google Scholar] [CrossRef]
- Selvais, P.L.; Labuche, C.; Ninh, N.X.; Ketelslegers, J.; Denef, J.F.; Maiter, D.M. Cyclic feeding behaviour and changes in hypothalamic galanin and neuropeptide Y gene expression induced by zinc deficiency in the rat. J. Neuroendocrinol. 1997, 9, 55–62. [Google Scholar] [CrossRef]
- Murphy, C.E.; Lawther, A.J.; Webster, M.J.; Asai, M.; Kondo, Y.; Matsumoto, M.; Walker, A.K.; Weickert, C.S. Nuclear factor kappa B activation appears weaker in schizophrenia patients with high brain cytokines than in non-schizophrenic controls with high brain cytokines. J. Neuroinflamm. 2020, 17, 215. [Google Scholar] [CrossRef]
- Fu, C.; Chen, D.; Chen, R.; Hu, Q.; Wang, G. The Schizophrenia-Related Protein Dysbindin-1A Is Degraded and Facilitates NF-Kappa B Activity in the Nucleus. PLoS ONE 2015, 10, e0132639. [Google Scholar] [CrossRef]
- Shahi, A.; Aslani, S.; Ataollahi, M.R.; Mahmoudi, M. The role of magnesium in different inflammatory diseases. Inflammopharmacology 2019, 27, 649–661. [Google Scholar] [CrossRef]
- Herbein, G.; Varin, A.; Fulop, T. NF-κB, AP-1, Zinc-deficiency and aging. Biogerontology 2006, 7, 409–419. [Google Scholar] [CrossRef]
- Burnet, P.W.; Harrison, P.J. Substance P (NK1) receptors in the cingulate cortex in unipolar and bipolar mood disorder and schizophrenia. Biol. Psychiatry 2000, 47, 80–83. [Google Scholar] [CrossRef]
- Jia, Y.X.; Sekizawa, K.; Ohrui, T.; Nakayama, K.; Sasaki, H. Dopamine D1 receptor antagonist inhibits swallowing reflex in guinea pigs. Am. J. Physiol. 1998, 274, R76–R80. [Google Scholar] [CrossRef]
- Nagamine, T. Serum substance P levels in patients with chronic schizophrenia treated with typical or atypical antipsychotics. Neuropsychiatr. Dis. Treat. 2008, 4, 289–294. [Google Scholar] [CrossRef]
- Tang, H.B.; Miyano, K.; Nakata, Y. Modulation of the substance P release from cultured rat primary afferent neurons by zinc ion. J. Pharmacol. Sci. 2009, 110, 397–400. [Google Scholar] [CrossRef] [PubMed]
- Palomino, A.; Vallejo-Illarramendi, A.; Gonzalez-Pinto, A.; Aldama, A.; Gonzalez-Gomez, C.; Mosquera, F.; Gonzalez-Garcia, G.; Matute, C. Decreased levels of plasma BDNF in first-episode schizophrenia and bipolar disorder patients. Schizophr. Res. 2006, 86, 321–322. [Google Scholar] [CrossRef]
- Potkin, S.G.; Turner, J.A.; Brown, G.G.; McCarthy, G.; Greve, D.N.; Glover, G.H.; Manoach, D.S.; Belger, A.; Diaz, M.; Wible, C.G.; et al. Working memory and DLPFC inefficiency in schizophrenia: The FBIRN study. Schizophr. Bull. 2009, 35, 19–31. [Google Scholar] [CrossRef]
- Neupane, S.P.; Bramness, J.G.; Lien, L. Comorbid post-traumatic stress disorder in alcohol use disorder: Relationships to demography, drinking and neuroimmune profile. BMC Psychiatry 2017, 17, 312. [Google Scholar] [CrossRef]
- Doboszewska, U.; Sowa-Kućma, M.; Młyniec, K.; Pochwat, B.; Hołuj, M.; Ostachowicz, B.; Pilc, A.; Nowak, G.; Szewczyk, B. Zinc deficiency in rats is associated with up-regulation of hippocampal NMDA receptor. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2015, 56, 254–263. [Google Scholar] [CrossRef]
- Ryan, M.C.M.; Sharifi, N.; Condren, R.; Thakore, J.T. Evidence of basal pituitary-adrenal overactivity in first episode, drug naïve patients with schizophrenia. Psychoneuroendocrinology 2004, 29, 1065–1070. [Google Scholar] [CrossRef] [PubMed]
- Chaumette, B.; Kebir, O.; Fook, C.M.L.; Bourgin, J.; Godsil, B.; Gaillard, R.; Jay, T.; Krebs, M.-O. Stress and psychotic transition: A literature review. Encephale 2016, 42, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Gajsak, L.R.; Gelemanovic, A.; Kuzman, M.R.; Puljak, L. Impact of stress response in development of first-episode psychosis in schizophrenia: An overview of systematic reviews. Psychiatr. Danub. 2017, 29, 14–23. [Google Scholar] [CrossRef]
- Walker, E.; Mittal, V.; Tessner, K. Stress and the hypothalamic pituitary adrenal axis in the developmental course of schizophrenia. Annu. Rev. Clin. Psychol. 2008, 4, 189–216. [Google Scholar] [CrossRef]
- Yunice, A.A.; Czerwinski, A.W.; Lindeman, R.D. Influence of synthetic corticosteroids on plasma zinc and copper levels in humans. Am. J. Med. Sci. 1981, 282, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Brandão-Neto, J.; de Mendonça, B.B.; Shuhama, T.; Marchini, J.S.; Pimenta, W.P.; Tornero, M.T. Zinc acutely and temporarily inhibits adrenal cortisol secretion in humans. A preliminary report. Biol. Trace Elem. Res. 1990, 24, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Ettinger, U.; Hurlemann, R.; Chan, R.C.K. Oxytocin and Schizophrenia Spectrum Disorders. Curr. Top. Behav. Neurosci. 2018, 35, 515–527. [Google Scholar] [CrossRef]
- Shilling, P.D.; Feifel, D. Potential of Oxytocin in the Treatment of Schizophrenia. CNS Drugs 2016, 30, 193–208. [Google Scholar] [CrossRef]
- Liu, D.; Seuthe, A.B.; Ehrler, O.T.; Zhang, X.; Wyttenbach, T.; Hsu, J.F.; Bowers, M.T. Oxytocin-receptor binding: Why divalent metals are essential. J. Am. Chem. Soc. 2005, 127, 2024–2025. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, J.J.; Uyeda, K.S.; Stevenson, M.J.; Heffern, M.C. Investigation of metal modulation of oxytocin structure receptor-mediated signaling. RSC Chem. Biol. 2023, 4, 165–172. [Google Scholar] [CrossRef]
- Prasad, A.S. Clinical, endocrinological and biochemical effects of zinc deficiency. Clin. Endocrinol. Metab. 1985, 14, 567–589. [Google Scholar] [CrossRef]
- Koppelman, M.C. A potential role for prolactin in zinc homeostasis. Med. Hypotheses 1988, 25, 65–68. [Google Scholar] [CrossRef]
- Sprecher, K.E.; Ferrarelli, F.; Benca, R.M. Sleep and plasticity in schizophrenia. Curr. Top. Behav. Neurosci. 2015, 25, 433–458. [Google Scholar] [CrossRef]
- Kantrowitz, J.; Citrome, L.; Javitt, D. GABA(B) receptors, schizophrenia and sleep dysfunction: A review of the relationship and its potential clinical and therapeutic implications. CNS Drugs 2009, 23, 681–691. [Google Scholar] [CrossRef]
- Stickgold, R. Sleep-dependent memory consolidation. Nature 2005, 437, 1272–1278. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, C.; Lu, L.; Knutson, K.L.; Carnethon, M.R.; Fly, A.D.; Luo, J.; Haas, D.M.; Shikany, J.M.; Kahe, K. Association of magnesium intake with sleep duration and sleep quality: Findings from the CARDIA study. Sleep 2022, 45, zsab276. [Google Scholar] [CrossRef]
- Abbasi, B.; Kimiagar, M.; Sadeghniiat, K.; Shirazi, M.M.; Hedayati, M.; Rashidkhani, B. The effect of magnesium supplementation on primary insomnia in elderly: A double-blind placebo-controlled clinical trial. J. Res. Med. Sci. 2012, 17, 1161–1169. [Google Scholar]
- Billyard, A.J.; Eggett, D.L.; Franz, K.B. Dietary magnesium deficiency decreases plasma melatonin in rats. Magnes. Res. 2006, 19, 157–161. [Google Scholar]
- Jazinaki, M.S.; Gheflati, A.; Moghadam, M.R.S.F.; Hadi, S.; Razavidarmian, M.; Nezhad, M.Y.; Akhtari, H.; Nematizadeh, M.; Safarian, M. Effects of zinc supplementation on sleep quality in humans: A systematic review of randomized controlled trials. Health Sci. Rep. 2024, 7, e70019. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chan, R.C.K.; Shum, D.H.K. Schizophrenia and prospective memory impairments: A review. Clin. Neuropsychol. 2018, 32, 836–857. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Hu, Q.; Li, S.; Dai, F.; Qian, W.; Hewlings, S.; Yan, T.; Wang, Y. A Magtein, Magnesium L-Threonate, -Based Formula Improves Brain Cognitive Functions in Healthy Chinese Adults. Nutrients 2022, 14, 5235. [Google Scholar] [CrossRef]
- Hoane, M.R. The role of magnesium therapy in learning and memory. In Magnesium in the Central Nervous System; Vink, R., Nechifor, M., Eds.; University of Adelaide Press: Adelaide, Australia, 2011; pp. 115–120. [Google Scholar]
- El-Domiaty, H.F.; El-Roghy, E.S.; Salem, H.R. Combination of magnesium supplementation with treadmill exercise improves memory deficit in aged rats by enhancing hippocampal neurogenesis and plasticity: A functional and histological study. Appl. Physiol. Nutr. Metab. 2022, 47, 296–308. [Google Scholar] [CrossRef]
- Cetin, A.; Ozdemir, E.; Golgeli, A.; Taskiran, A.S.; Karabulut, S.; Ergul, M.; Gumus, E.; Dastan, S.D. The effect of magnesium sulfate on memory and anxiety-like behavior in a rat model: An investigation of its neuronal molecular mechanisms. Neurol. Res. 2024, 46, 752–762. [Google Scholar] [CrossRef] [PubMed]
- Olaya-Galindo, M.D.; Vargas-Cifuentes, O.A.; Van-Meerbeke, A.V.; Talero-Gutiérrez, C. Establishing the Relationship Between Attention Deficit Hyperactivity Disorder and Emotional Facial Expression Recognition Deficit: A Systematic Review. J. Atten. Disord. 2023, 27, 1181–1195. [Google Scholar] [CrossRef]
- Zhou, X.; Huang, Z.; Zhang, J.; Chen, J.L.; Yao, P.W.; Mai, C.L.; Mai, J.Z.; Zhang, H.; Liu, X.G. Chronic Oral Administration of Magnesium-L-Threonate Prevents Oxaliplatin-Induced Memory and Emotional Deficits by Normalization of TNF-α/NF-κB Signaling in Rats. Neurosci. Bull. 2021, 37, 55–69. [Google Scholar] [CrossRef]
- Wang, D.; Jacobs, S.A.; Tsien, J.Z. Targeting the NMDA receptor subunit NR2B for treating or preventing age-related memory decline. Expert. Opin. Ther. Targets 2014, 18, 1121–1130. [Google Scholar] [CrossRef]
- Prasad, A.S. Discovery of human zinc deficiency: Its impact on human health and disease. Adv. Nutr. 2013, 4, 176–190. [Google Scholar] [CrossRef]
- Mackenzie, G.G.; Zago, M.P.; Keen, C.L.; Oteiza, P.I. Low intracellular zinc impairs the translocation of activated NF-kappa B to the nuclei in human neuroblastoma IMR-32 cells. J. Biol. Chem. 2002, 277, 34610–34617. [Google Scholar] [CrossRef] [PubMed]
- Weersma, R.K.; Zhernakova, A.; Fu, J. Interaction between drugs and the gut microbiome. Gut 2020, 69, 1510–1519. [Google Scholar] [CrossRef] [PubMed]
- Galland, L. The gut microbiome and the brain. J. Med. Food 2014, 17, 1261–1272. [Google Scholar] [CrossRef]
- Góralczyk-Bińkowska, A.; Szmajda-Krygier, D.; Kozłowska, E. The Microbiota-Gut-Brain Axis in Psychiatric Disorders. Int. J. Mol. Sci. 2022, 23, 11245. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Z.; Yang, R.; Wang, W.; Qi, L.; Huang, T. Associations between gut microbiota and Alzheimer’s disease, major depressive disorder, and schizophrenia. J. Neuroinflamm. 2020, 17, 288. [Google Scholar] [CrossRef]
- Sauer, A.K.; Grabrucker, A.M. Zinc Deficiency During Pregnancy Leads to Altered Microbiome and Elevated Inflammatory Markers in Mice. Front. Neurosci. 2019, 29, 1295. [Google Scholar] [CrossRef]
- Elwyn, R.; Mitchell, J.; Kohn, M.R.; Driver, C.; Hay, P.; Lagopoulos, J.; Hermens, D.F. Novel ketamine and zinc treatment for anorexia nervosa and the potential beneficial interactions with the gut microbiome. Neurosci. Biobehav. Rev. 2023, 148, 105122. [Google Scholar] [CrossRef]
- Huynh, U.; Nguyen, H.N.; Trinh, B.K.; Elhaj, J.; Zast, M.L. A bioinformatic analysis of zinc transporters in intestinal Lactobacillaceae. Metallomics 2023, 15, mfad044. [Google Scholar] [CrossRef]
- Jørgensen, B.P.; Winther, G.; Kihl, P.; Nielsen, D.S.; Wegener, G.; Hansen, A.K.; Sørensen, D.B. Dietary magnesium deficiency affects gut microbiota and anxiety-like behaviour in C57BL/6N mice. Acta Neuropsychiatr. 2015, 27, 307–311. [Google Scholar] [CrossRef]
- Del Chierico, F.; Trapani, V.; Petito, V.; Reddel, S.; Pietropaolo, G.; Graziani, C.; Masi, L.; Gasbarrini, A.; Putignani, L.; Scaldaferri, F.; et al. Dietary Magnesium Alleviates Experimental Murine Colitis through Modulation of Gut Microbiota. Nutrients 2021, 13, 4188. [Google Scholar] [CrossRef]
- Coffman, C.N.; Carroll-Portillo, A.; Alcock, J.; Singh, S.B.; Rumsey, K.; Braun, C.A.; Xue, B.; Lin, H.C. Magnesium Oxide Reduces Anxiety-like Behavior in Mice by Inhibiting Sulfate-Reducing Bacteria. Microorganisms 2024, 12, 1429. [Google Scholar] [CrossRef] [PubMed]
- Bobes, J.; Rejas, J.; Garcia-Garcia, M.; Rico-Villademoros, F.; García-Portilla, M.P.; Fernández, I.; Hernández, G.; EIRE Study Group. Weight gain in patients with schizophrenia treated with risperidone, olanzapine, quetiapine or haloperidol: Results of the EIRE study. Schizophr. Res. 2003, 62, 77–88. [Google Scholar] [CrossRef]
- Hu, X.; Sheikhahmadi, A.; Li, X.; Wang, Y.; Jiao, H.; Lin, H.; Zhang, B.; Song, Z. Effect of Zinc on Appetite Regulatory Peptides in the Hypothalamus of Salmonella-Challenged Broiler Chickens. Biol. Trace Elem. Res. 2016, 172, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Askari, M.; Mozaffari, H.; Jafari, A.; Ghanbari, M.; Mofrad, M.D. The effects of magnesium supplementation on obesity measures in adults: A systematic review and dose-response meta-analysis of randomized controlled trials. Crit. Rev. Food Sci. Nutr. 2021, 61, 2921–2937. [Google Scholar] [CrossRef] [PubMed]
- Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014, 511, 421–427. [Google Scholar] [CrossRef]
- Ordak, M.; Matras, J.; Muszynska, E.; Nasierowski, T.; Bujalska-Zadrozny, M. Magnesium in schizophrenia. Pharmacol. Rep. 2017, 69, 929–934. [Google Scholar] [CrossRef]
- Behrouzian, F.; Nazarinasab, M.; Sadegh, A.M.; Abdi, L.; Sabzevarizadeh, M. Effects of zinc sulfate on schizophrenia symptoms in patients undergoing atypical antipsychotic pharmacotherapy. J. Family Med. Prim. Care 2022, 11, 7795–7799. [Google Scholar] [CrossRef]
- Mortazavi, M.; Farzin, D.; Zarhghami, M.; Hosseini, S.H.; Mansoori, P.; Nateghi, G. Efficacy of Zinc Sulfate as an Add-on Therapy to Risperidone Versus Risperidone Alone in Patients with Schizophrenia: A Double-Blind Randomized Placebo-Controlled Trial. Iran. J. Psychiatry Behav. Sci. 2015, 9, e853. [Google Scholar] [CrossRef]
- Jabotinsky-Rubin, K.; Durst, R.; Levitin, L.A.; Moscovich, D.G.; Silver, H.; Lerner, J.; Van Praag, H.; Gardner, E.L. Effects of haloperidol on human plasma magnesium. J. Psychiatr. Res. 1993, 27, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, Y.; Zhang, T.; Yao, Y.; Shen, C.; Xue, Y. Association of Serum Trace Elements with Schizophrenia and Effects of Antipsychotic Treatment. Biol. Trace Elem. Res. 2018, 181, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Nechifor, M.; Vaideanu, C.; Palamaru, I.; Borza, C.; Mindreci, I. The influence of some antipsychotics on erythrocyte magnesium and plasma magnesium, calcium, copper and zinc in patients with paranoid schizophrenia. J. Am. Coll. Nutr. 2004, 23, 549S–551S. [Google Scholar] [CrossRef]
- Kronbauer, M.; Metz, V.G.; Roversi, K.; Dias, V.T.; Antoniazzi, C.T.D.; da Silva Barcelos, R.C.; Burger, M.E. Influence of magnesium supplementation on movement side effects related to typical antipsychotic treatment in rats. Behav. Brain Res. 2017, 320, 400–411. [Google Scholar] [CrossRef]
- Joshi, M.; Akhtar, M.; Najmi, A.; Khuroo, A.; Goswami, D. Effect of zinc in animal models of anxiety, depression and psychosis. Hum. Exp. Toxicol. 2012, 31, 1237–1243. [Google Scholar] [CrossRef]
- Aucoin, M.; LaChance, L.; Cooley, K.; Kidd, S. Diet and Psychosis: A Scoping Review. Neuropsychobiology 2020, 79, 20–42. [Google Scholar] [CrossRef] [PubMed]
- Georgieff, M.K.; Ramel, S.E.; Cusick, S.E. Nutritional Influences on Brain Development. Acta Paediatr. 2018, 107, 1310–1321. [Google Scholar] [CrossRef]
- Madera, P.Z.; Suárez, S.C.; Álvarez, L.G.; González, M.P.G.P.; Fernández, R.J.; Lluch Canut, M.T. Eating and nutritional habits in patients with schizophrenia. Rev. Psiquiatr. Salud Ment. (Engl. Ed.) 2019, S1888-9891, 30098–30099. [Google Scholar] [CrossRef]
- Stefańska, E.; Wendołowicz, A.; Lech, M.; Konarzewska, B.; Zapolska, J.; Waszkiewicz, N.; Ostrowska, L. Does the usual dietary intake of schizophrenia patients require supplementation with vitamins and minerals? Psychiatr. Pol. 2019, 53, 599–612. [Google Scholar] [CrossRef] [PubMed]
- Sarris, J.; Ravindran, A.; Yatham, L.N.; Marx, W.; Rucklidge, J.J.; McIntyre, R.S.; Akhondzadeh, S.; Benedetti, F.; Caneo, C.; Cramer, H.; et al. Clinician guidelines for the treatment of psychiatric disorders with nutraceuticals and phytoceuticals: The World Federation of Societies of Biological Psychiatry (WFSBP) and Canadian Network for Mood and Anxiety Treatments (CANMAT) Taskforce. World J. Biol. Psychiatry 2022, 23, 424–455. [Google Scholar] [CrossRef] [PubMed]
Mg2+ Actions | |
---|---|
Dopaminergic system | -Magnesium at a dose of 1.2 mM reduced, in experimental studies, the NMDA-induced release of dopamine in the striatum [48,49]. -Mg2+ reduces striatal dopamine release stimulated by Ca2+. -Mg2+ decreases striatal dopamine release stimulated by stress [15]. -Absence of Mg2+ in the superfusion buffer in microdialysis studies resulted in doubling of basal dopamine release [46]. |
Glutamatergic system | -Mg2+ blocks the calcium channels coupled to NMDA receptors [67,68]. -Mg2+ reduces glutamate-induced dopamine release [68]. |
GABA-minergic system | -In experimental studies, at a concentration of 10 mM of magnesium, the binding of GABA receptor agonists to GABA receptors (A) was increased [84]. -Mg2+anxiolytic effect is partially mediated by GABA-A receptors activity [85]. -In cell culture, Mg2+ stimulates GABA neuron development [87]. -Mg2+ increases CREB and mTOR neuronal activity [88]. |
Serotoninergic system | -MgCl2 reduces 5-HT concentration in Nc. accumbens and prefrontal areas [78]. |
Cannabinoid system | -Mg2+ decreases THC neurotoxicity [94]. -In experimental studies, THC inhibits Mg-ATP-ase activity [95]. |
Cholinergic system | -Mg2+ blocks Na+ channels coupled with nicotinic receptors [101]. -Mg2+ (1.2–9.3 mM) increases the acetylcholine release from rat cortex slices [105]. |
Oxidative stress | -Mg2+ increases Nrf2 expression [106]. -Mg2+ decreases free radical formation [106]. -Mg2+ protects the neuronal mitochondria in oxidative stress conditions [107]. |
Neuroinflammation | -Mg2+ decreases the synthesis of proinflammatory cytokines [108]. |
Neuroplasticity | -Mg2+ reduces neuronal apoptosis and stimulates brain stem cell neurogenesis [5]. -Reduction in the BDNF level is positively associated with the severity of schizophrenia and cognitive decline, but Mg2+ increases the BDNF level in the hippocampus and also neuroplasticity [109]. |
ACTH and corticosteroids | -In experimental studies in rats, Mg2+ decreases ACTH and corticosteroid synthesis [110]. |
Substance P | -In a diet with a low magnesium content, Mg2+ decreased substance P concentration and also elevated expression of SP receptors on the surface of T lymphocytes [111]. |
Zn2+ Actions | |
---|---|
Dopaminergic system | -Zn2+ reduces dopamine transport and regulates dopamine transporter activity [41]. -In experimental studies on rats, Zn2+ increased dopamine concentrations in some brain areas [42]. |
Glutamatergic system | -Zn2+ is an allosteric antagonist of NMDA receptors [66]. -Experimental studies have shown that low Zn2+ concentrations potentiate AMPA receptor activity [59,60]. -Zinc reduces the increases in extracellular glutamate concentration produced by some factors [63]. |
GABA-minergic system | -Zn2+ binds to a subunit of GABA-A receptors. -In zinc-deprived rats, the extracellular concentration of GABA decreases [89]. |
Serotoninergic system | -Zn2+ is an allosteric modulator of 5-HT(1A) receptors and reduces the binding of agonists to 5-HT(1A)receptors [78] |
Cholinergic system | -Zn2+ potentiates the activity of alpha4 and beta 4 nAch receptors [112]. -Zn2+ increases the currents elicited by Ach at the level of nAch receptors [112]. |
Mitochondria | -Experimental studies have shown that Zn2+ inhibits the activity of some proapoptotic proteins, and this cation preserves the mitochondria integrity [149]. |
Different endogenous substances | -Experimental studies in zinc-deficient Wistar rats showed that the activity of galanin decreases [165]. -Zn2+decreases NF-kB factor activity [169]. -At low concentrations of zinc (10−8–10−7 M), neurons in cultures release an increased amount of SP [173]. -Zn2+ reduces cortisol secretion [183]. -A high level of corticosteroids enhances zinc elimination and decreases zinc plasma levels [182]. -Zn2+ facilitates the activation of MAPK by oxytocin [187]. -In experimental studies, Zn2+ reduces prolactin secretion [188]. -In normal people, zinc deficiency induces hyperprolactinemia [189]. |
Neuroinflammation | -Zn2+ inhibits the synthesis of proinflammatory cytokines [108]. -Zn2+ decreases oxidative stress [147]. -In experimental studies in rats, Zn2+reduced F2-isoprostane synthesis [147]. |
Neuroplasticity | -Zn2+ reduces apoptosis and increases neuroplasticity. -Zn2+ deficiency inhibits cell proliferation. In cell cultures, with a low level of zinc, the cell cycle stops in the G0/G1 phase [118]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nechifor, M. Magnesium and Zinc in Schizophrenia. Biomedicines 2025, 13, 2249. https://doi.org/10.3390/biomedicines13092249
Nechifor M. Magnesium and Zinc in Schizophrenia. Biomedicines. 2025; 13(9):2249. https://doi.org/10.3390/biomedicines13092249
Chicago/Turabian StyleNechifor, Mihai. 2025. "Magnesium and Zinc in Schizophrenia" Biomedicines 13, no. 9: 2249. https://doi.org/10.3390/biomedicines13092249
APA StyleNechifor, M. (2025). Magnesium and Zinc in Schizophrenia. Biomedicines, 13(9), 2249. https://doi.org/10.3390/biomedicines13092249