Cardiac Endocrine Function and Hormonal Interplay in Pediatrics: From Development to Clinical Implications
Abstract
1. Introduction
2. Methods
3. Fetal Heart Development
4. Hormonal Regulation of Heart Development and Function
4.1. Hormonal Control of Heart Development in Fetal Life
4.1.1. Thyroid Hormones
4.1.2. Corticosteroid Hormones
4.1.3. Catecholamines
4.1.4. Sex Hormones
4.1.5. Growth Hormone/Insulin-like Growth Factors and Insulin
4.2. Hormonal Effects on Heart Function in Childhood
4.2.1. Cardiac Effects of Thyroid Hormones
4.2.2. Cardiovascular Control via the Hypothalamic–Pituitary–Adrenal (HPA) Axis
4.2.3. Insulin’s Roles in Cardiac Metabolism and Vascular Function
5. Cardiac Endocrine Function
6. Clinical Implications of Endocrine Disease-Related Cardiovascular Effects in Fetal and Pediatric Populations
6.1. Cardiac Involvement in Diabetes
6.2. Cardiac Dysfunction and Childhood Obesity
6.3. Cardiac Impairment in Thyroid Disorders
6.4. Cardiac Involvement in Growth Deficiency
6.5. Cardiovascular Effects of Adrenal Gland Disorders
7. Natriuretic Peptides as Clinical Biomarkers in Pediatric Disorders
7.1. BNP and NT-ProBNP in Pediatric Heart Failure
7.2. Atrial Natriuretic Peptide in Heart Failure
7.3. Brain Natriuretic Peptides in Pulmonary Hypertension
7.4. BNP in Inflammatory Syndromes
8. Limitations
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zaffran, S.; Frasch, M. Early signals in cardiac development. Circ. Res. 2002, 91, 457–469. [Google Scholar] [CrossRef]
- Srivastava, D.; Olson, E.N. A genetic blueprint for cardiac development. Nature 2000, 407, 221–226. [Google Scholar] [CrossRef]
- Buckingham, M.; Meilhac, S.; Zaffran, S. Building the mammalian heart from two sources of myocardial cells. Nat. Rev. Genet. 2005, 6, 826–835. [Google Scholar] [CrossRef]
- Ventura-Clapier, R.; Piquereau, J.; Garnier, A.; Mericskay, M.; Lemaire, C.; Crozatier, B. Gender issues in cardiovascular diseases. Focus on energy metabolism. Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165722. [Google Scholar] [CrossRef] [PubMed]
- Chattergoon, N.N. Thyroid hormone signaling and consequences for cardiac development. J. Endocrinol. 2019, 242, T145–T160. [Google Scholar] [CrossRef] [PubMed]
- Graham, N.; Huang, G.N. Endocrine Influence on Cardiac Metabolism in Development and Regeneration. Endocrinology 2021, 162, bqab081. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Bogush, N.; Naib, H.; Perry, J.; Calvert, J.W.; Martin, D.I.K.; Graham, R.M.; Naqvi, N.; Husain, A. Redox activation of JNK2α2 mediates thyroid hormone-stimulated proliferation of neonatal murine cardiomyocytes. Sci. Rep. 2019, 9, 17731. [Google Scholar] [CrossRef]
- Barjaktarovic, M.; Korevaar, T.I.M.; Gaillard, R.; de Rijke, Y.B.; Visser, T.J.; Jaddoe, V.W.V.; Peeters, R.P. Childhood thyroid function, body composition and cardiovascular function. Eur. J. Endocrinol. 2017, 177, 319–327. [Google Scholar] [CrossRef]
- Burford, N.G.; Webster, N.A.; Cruz-Topete, D. Hypothalamic-Pituitary-Adrenal Axis Modulation of Glucocorticoids in the Cardiovascular System. Int. J. Mol. Sci. 2017, 18, 2150. [Google Scholar] [CrossRef]
- Wang, K.C.W.; Zhang, L.; McMillen, I.C.; Botting, K.J.; Duffield, J.A.; Zhang, S.; Suter, C.M.; Brooks, D.A.; Morrison, J.L. Fetal growth restriction and the programming of heart growth and cardiac insulin-like growth factor 2 expression in the lamb. J. Physiol. 2011, 589 Pt 19, 4709–4722. [Google Scholar] [CrossRef]
- Vetter, U.; Kupferschmid, C.; Lang, D.; Pentz, S. Insulin-like growth factors and insulin increase the contractility of neonatal rat cardiocytes in vitro. Basic Res. Cardiol. 1988, 83, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Sokou, R.; Lianou, A.; Lampridou, M.; Panagiotounakou, P.; Kafalidis, G.; Paliatsiou, S.; Volaki, P.; Tsantes, A.G.; Boutsikou, T.; Iliodromiti, Z.; et al. Neonates at Risk: Understanding the Impact of High-Risk Pregnancies on Neonatal Health. Medicina 2025, 61, 1077. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; He, X.; Wang, Y. Cardiomyocyte proliferation and regeneration in congenital heart disease. Pediatr. Discov. 2024, 2, e2501. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, R.K. Emerging risk biomarkers in cardiovascular diseases and disorders. J Lipids. 2015, 2015, 971453. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Holditch, S.J.; Schreiber, C.A.; Nini, R.; Tonne, J.M.; Peng, K.-W.; Geurts, A.; Jacob, H.J.; Burnett, J.C.; Cataliotti, A.; Ikeda, Y. B-Type Natriuretic Peptide Deletion Leads to Progressive Hypertension, Associated Organ Damage, and Reduced Survival: Novel Model for Human Hypertension. Hypertension 2015, 66, 199–210. [Google Scholar] [CrossRef]
- McCrindle, B.W.; Rowley, A.H.; Newburger, J.W.; Burns, J.C.; Bolger, A.F.; Gewitz, M.; Baker, A.L.; Jackson, M.A.; Takahashi, M.; Shah, P.B.; et al. Diagnosis, Treatment, and Long-Term Management of Kawasaki Disease: A Scientific Statement for Health Professionals from the American Heart Association. Circulation 2017, 135, e927–e999. [Google Scholar] [CrossRef]
- Goetze, J.P.; Bruneau, B.G.; Ramos, H.R.; Ogawa, T.; de Bold, M.K.; de Bold, A.J. Cardiac natriuretic peptides. Nat. Rev. Cardiol. 2020, 17, 698–717. [Google Scholar] [CrossRef]
- Ludwikowska, K.M.; Tokarczyk, M.; Paleczny, B.; Tracewski, P.; Szenborn, L.; Kusa, J. Clinical Significance of B-Type Natriuretic Peptide and N-Terminal Pro-B-Type Natriuretic Peptide in Pediatric Patients: Insights into Their Utility in the Presence or Absence of Pre-Existing Heart Conditions. Int. J. Mol. Sci. 2024, 25, 8781. [Google Scholar] [CrossRef]
- Kloesel, B.; DiNardo, J.A.; Body, S.C. Cardiac Embryology and Molecular Mechanisms of Congenital Heart Disease: A Primer for Anesthesiologists. Anesth. Analg. 2016, 123, 551–569. [Google Scholar] [CrossRef]
- Li, Y.; Du, J.; Deng, S.; Liu, B.; Jing, X.; Yan, Y.; Liu, Y.; Wang, J.; Zhou, X.; She, Q. The molecular mechanisms of cardiac development and related diseases. Signal Transduct. Target. Ther. 2024, 9, 368. [Google Scholar] [CrossRef]
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119, Erratum in Diabetes Res. Clin. Pract. 2023, 204, 110945. https://doi.org/10.1016/j.diabres.2023.110945. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Katano, W.; Moriyama, Y.; Takeuchi, J.K.; Koshiba-Takeuchi, K. Cardiac septation in heart development and evolution. Dev. Growth Differ. 2019, 61, 114–123. [Google Scholar] [CrossRef]
- Galow, A.M.; Brenmoehl, J.; Hoeflich, A. Synergistic effects of hormones on structural and functional maturation of cardiomyocytes and implications for heart regeneration. Cell. Mol. Life Sci. 2023, 80, 240. [Google Scholar] [CrossRef]
- Bianco, A.C.; Dumitrescu, A.; Gereben, B.; O Ribeiro, M.; Fonseca, T.L.; Fernandes, G.W.; Bocco, B.M.L.C. Paradigms of Dynamic Control of Thyroid Hormone Signaling. Endocr. Rev. 2019, 40, 1000–1047. [Google Scholar] [CrossRef]
- Amanollahi, R.; Holman, S.L.; Bertossa, M.R.; Meakin, A.S.; Thornburg, K.L.; McMillen, I.C.; Wiese, M.D.; Lock, M.C.; Morrison, J.L. Ontogeny of Fetal Cardiometabolic Pathways: The Potential Role of Cortisol and Thyroid Hormones in Driving the Transition from Preterm to Near-Term Heart Development in Sheep. J. Cardiovasc. Dev. Dis. 2025, 12, 36. [Google Scholar] [CrossRef]
- CCruz-Topete, D.; Oakley, R.H.; Cidlowski, J.A. Glucocorticoid Signaling and the Aging Heart. Front. Endocrinol. 2020, 11, 347. [Google Scholar] [CrossRef]
- Song, R.; Hu, X.-Q.; Zhang, L. Glucocorticoids and programming of the microenvironment in heart. J. Endocrinol. 2019, 242, T121–T133. [Google Scholar] [CrossRef]
- De Bosscher, K.; Beck, I.M.; Dejager, L.; Bougarne, N.; Gaigneaux, A.; Chateauvieux, S.; Ratman, D.; Bracke, M.; Tavernier, J.; Berghe, W.V.; et al. Selective modulation of the glucocorticoid receptor can distinguish between transrepression of NF-κB and AP-1. Cell. Mol. Life Sci. 2014, 71, 143–163. [Google Scholar] [CrossRef]
- Abel, E.D. Insulin signaling in the heart. American journal of physiology. Endocrinol. Metab. 2021, 321, E130–E145. [Google Scholar] [CrossRef]
- Ayrout, M.; Simon, V.; Bernard, V.; Binart, N.; Cohen-Tannoudji, J.; Lombès, M.; Chauvin, S. A novel non genomic glucocorticoid signaling mediated by a membrane palmitoylated glucocorticoid receptor cross talks with GnRH in gonadotrope cells. Sci. Rep. 2017, 7, 1537. [Google Scholar] [CrossRef]
- Knowlton, A.A.; Lee, A.R. Estrogen and the cardiovascular system. Pharmacol. Ther. 2012, 135, 54–70. [Google Scholar] [CrossRef]
- Mattingly, K.A.; Ivanova, M.M.; Riggs, K.A.; Wickramasinghe, N.S.; Barch, M.J.; Klinge, C.M. Estradiol Stimulates Transcription of Nuclear Respiratory Factor-1 and Increases Mitochondrial Biogenesis. Mol. Endocrinol. 2008, 22, 609–622. [Google Scholar] [CrossRef]
- Ventura-Clapier, R.; Moulin, M.; Piquereau, J.; Lemaire, C.; Mericskay, M.; Veksler, V.; Garnier, A. Mitochondria: A central target for sex differences in pathologies. Clin. Sci. 2017, 131, 803–822. [Google Scholar] [CrossRef]
- El Ghorayeb, N.; Bourdeau, I.; Lacroix, A. Role of ACTH and Other Hormones in the Regulation of Aldosterone Production in Primary Aldosteronism. Front. Endocrinol. 2016, 7, 72. [Google Scholar] [CrossRef]
- Epstein, M. Aldosterone and mineralocorticoid receptor signaling as determinants of cardiovascular and renal injury: An extraordinary paradigm shift. Kidney Int. Suppl. 2022, 12, 1–6. [Google Scholar] [CrossRef]
- Yamashita, K.; Yamatabe, T.; Abe, H.; Yokoyama, M. Influence of systemic vascular resistance on cardiac output measured by new non-invasive cardiac output monitor. Crit. Care 2010, 14 (Suppl. S1), P104. [Google Scholar] [CrossRef]
- Casey, M.L.; Howell, M.L.; Winkel, C.A.; Simpson, E.R.; Macdonald, P.C. Deoxycorticosterone Sulfate Biosynthesis in Human Fetal Kidney. J. Clin. Endocrinol. Metab. 1981, 53, 990–996. [Google Scholar] [CrossRef]
- Comline, R.S.; Silver, M. The development of the adrenal medulla of the foetal and new-born calf. J. Physiol. 1966, 183, 305–340. [Google Scholar] [CrossRef]
- Dongdem, J.T.; Etornam, A.E.; Beletaa, S.; Alidu, I.; Kotey, H.; Wezena, C.A. The β3-Adrenergic Receptor: Structure, Physiopathology of Disease, and Emerging Therapeutic Potential. Adv. Pharmacol. Pharm. Sci. 2024, 2024, 2005589. [Google Scholar] [CrossRef]
- Lymperopoulos, A.; Rengo, G.; Koch, W.J. Adrenergic nervous system in heart failure: Pathophysiology and therapy. Circ. Res. 2013, 113, 739–753. [Google Scholar] [CrossRef]
- Bode, C.; Preissl, S.; Hein, L.; Lother, A. Catecholamine treatment induces reversible heart injury and cardiomyocyte gene expression. Intensive Care Med. Exp. 2024, 12, 48. [Google Scholar] [CrossRef]
- Hooper, S.B.; Te Pas, A.B.; Lang, J.; van Vonderen, J.J.; Roehr, C.C.; Kluckow, M.; Gill, A.W.; Wallace, E.M.; Polglase, G.R. Cardiovascular transition at birth: A physiological sequence. Pediatr. Res. 2015, 77, 608–614. [Google Scholar] [CrossRef] [PubMed]
- Short, B.L.; Van Meurs, K.; Evans, J.R.; Cardiology Group. Summary proceedings from the cardiology group on cardiovascular instability in preterm infants. Pediatrics 2006, 117 Pt 2, S34–S39. [Google Scholar] [CrossRef] [PubMed]
- Antolic, A.; Wood, C.E.; Keller-Wood, M. Chronic maternal hypercortisolemia in late gestation alters fetal cardiac function at birth. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018, 314, R342–R352. [Google Scholar] [CrossRef] [PubMed]
- Antolic, A.; Li, M.; Richards, E.M.; Curtis, C.W.; Wood, C.E.; Keller-Wood, M. Mechanisms of in utero cortisol effects on the newborn heart revealed by transcriptomic modeling. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2019, 316, R323–R337. [Google Scholar] [CrossRef]
- Troncoso, R.; Ibarra, C.; Vicencio, J.M.; Jaimovich, E.; Lavandero, S. New insights into IGF-1 signaling in the heart. Trends Endocrinol. Metab. 2014, 25, 128–137. [Google Scholar] [CrossRef]
- Caicedo, D.; Díaz, O.; Devesa, P.; Devesa, J. Growth Hormone (GH) and Cardiovascular System. Int. J. Mol. Sci. 2018, 19, 290. [Google Scholar] [CrossRef]
- Isgaard, J.; Arcopinto, M.; Karason, K.; Cittadini, A. GH and the cardiovascular system: An update on a topic at heart. Endocrine 2015, 48, 25–35. [Google Scholar] [CrossRef]
- Giammanco, M.; Di Liegro, C.M.; Schiera, G.; Di Liegro, I. Genomic and Non-Genomic Mechanisms of Action of Thyroid Hormones and Their Catabolite 3,5-Diiodo-L-Thyronine in Mammals. Int J Mol Sci. 2020, 21, 4140. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yamakawa, H.; Kato, T.S.; Noh, J.Y.; Yuasa, S.; Kawamura, A.; Fukuda, K.; Aizawa, Y. Thyroid Hormone Plays an Important Role in Cardiac Function: From Bench to Bedside. Front. Physiol. 2021, 12, 606931. [Google Scholar] [CrossRef]
- Carrillo, E.D.; Alvarado, J.A.; Hernández, A.; Lezama, I.; García, M.C.; Sánchez, J.A. Thyroid Hormone Upregulates Cav1.2 Channels in Cardiac Cells via the Downregulation of the Channels’ β4 Subunit. Int. J. Mol. Sci. 2024, 25, 10798. [Google Scholar] [CrossRef]
- Belhadjer, Z.; Méot, M.; Bajolle, F.; Khraiche, D.; Legendre, A.; Abakka, S.; Auriau, J.; Grimaud, M.; Oualha, M.; Beghetti, M.; et al. Acute Heart Failure in Multisystem Inflammatory Syndrome in Children in the Context of Global SARS-CoV-2 Pandemic. Circulation 2020, 142, 429–436. [Google Scholar] [CrossRef]
- Soetedjo, N.N.M.; Agustini, D.; Permana, H. The impact of thyroid disorder on cardiovascular disease: Unraveling the connection and implications for patient care. IJC Heart Vasc. 2024, 55, 101536. [Google Scholar] [CrossRef]
- Banu Rupani, N.; Alijanpour, M.; Babazadeh, K.; Hajian-Tilaki, K.; Moadabdoost, F. Effect of levothyroxine on cardiac function in children with subclinical hypothyroidism: A quasi-experimental study. Casp. J. Intern. Med. 2019, 10, 332–338. [Google Scholar] [CrossRef]
- Haas, N.A.; Camphausen, C.K.; Kececioglu, D. Clinical review: Thyroid hormone replacement in children after cardiac surgery—Is it worth a try? Crit. Care 2006, 10, 213. [Google Scholar] [CrossRef]
- Flores, S.; Loomba, R.S.; Checchia, P.A.; Graham, E.M.; Bronicki, R.A. Thyroid Hormone (Triiodothyronine) Therapy in Children After Congenital Heart Surgery: A Meta-Analysis. Semin. Thorac. Cardiovasc. Surg. 2020, 32, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Radman, M.; Portman, M.A. Thyroid Hormone in the Pediatric Intensive Care Unit. J. Pediatr. Intensive Care 2016, 5, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, B.; Dabas, A.; Goswami, B.; Agarwal, A.; Kurian, S. Non-thyroidal Illness in Children with Congestive Heart Failure. J. Clin. Res. Pediatr. Endocrinol. 2024, 16, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Takefuji, M.; Murohara, T. Corticotropin-Releasing Hormone Family and Their Receptors in the Cardiovascular System. Circ. J. 2019, 83, 261–266. [Google Scholar] [CrossRef]
- Oakley, R.H.; Cidlowski, J.A. Glucocorticoid signaling in the heart: A cardiomyocyte perspective. J. Steroid Biochem. Mol. Biol. 2015, 153, 27–34. [Google Scholar] [CrossRef]
- Omori, Y.; Mano, T.; Ohtani, T.; Sakata, Y.; Takeda, Y.; Tamaki, S.; Tsukamoto, Y.; Miwa, T.; Yamamoto, K.; Komuro, I. Glucocorticoids Induce Cardiac Fibrosis via Mineralocorticoid Receptor in Oxidative Stress: Contribution of Elongation Factor Eleven-Nineteen Lysine-Rich Leukemia (ELL). Yonago Acta Medica 2014, 57, 109–116. [Google Scholar]
- Coutinho, A.E.; Chapman, K.E. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol. Cell. Endocrinol. 2011, 335, 2–13. [Google Scholar] [CrossRef]
- Motiejunaite, J.; Amar, L.; Vidal-Petiot, E. Adrenergic receptors and cardiovascular effects of catecholamines. Ann. D’endocrinologie 2021, 82, 193–197. [Google Scholar] [CrossRef]
- Parichatikanond, W.; Duangrat, R.; Kurose, H.; Mangmool, S. Regulation of β-Adrenergic Receptors in the Heart: A Review on Emerging Therapeutic Strategies for Heart Failure. Cells 2024, 13, 1674. [Google Scholar] [CrossRef] [PubMed]
- Varghese, R.T.; John, A.M.; Paul, T.V. Catecholamine induced cardiomyopathy in pheochromocytoma. Indian J. Endocrinol. Metab. 2013, 17, 733–735. [Google Scholar] [CrossRef] [PubMed]
- Y-Hassan, S.; Falhammar, H. Cardiovascular Manifestations and Complications of Pheochromocytomas and Paragangliomas. J. Clin. Med. 2020, 9, 2435. [Google Scholar] [CrossRef] [PubMed]
- Prigent, H.; Maxime, V.; Annane, D. Science review: Mechanisms of impaired adrenal function in sepsis and molecular actions of glucocorticoids. Crit. Care 2004, 8, 243–252. [Google Scholar] [CrossRef]
- Ye, W.; Han, K.; Xie, M.; Li, S.; Chen, G.; Wang, Y.; Li, T. Mitochondrial energy metabolism in diabetic cardiomyopathy: Physiological adaption, pathogenesis, and therapeutic targets. Chin. Med. J. 2024, 137, 936–948. [Google Scholar] [CrossRef]
- Lin, J.; Duan, J.; Wang, Q.; Xu, S.; Zhou, S.; Yao, K. Mitochondrial Dynamics and Mitophagy in Cardiometabolic Disease. Front. Cardiovasc. Med. 2022, 9, 917135. [Google Scholar] [CrossRef]
- DeBosch, B.J.; Muslin, A.J. Insulin signaling pathways and cardiac growth. J. Mol. Cell. Cardiol. 2008, 44, 855–864. [Google Scholar] [CrossRef]
- Barakat, S.; McLean, S.A.; Bryant, E.; Le, A.; Marks, P.; National Eating Disorder Research Consortium; Touyz, S.; Maguire, S. Risk factors for eating disorders: Findings from a rapid review. J. Eat. Disord. 2023, 11, 8. [Google Scholar] [CrossRef]
- Clerk, A.; Sugden, P.H. The insulin receptor family in the heart: New light on old insights. Biosci. Rep. 2022, 42, BSR20221212. [Google Scholar] [CrossRef]
- Shao, D.; Tian, R. Glucose Transporters in Cardiac Metabolism and Hypertrophy. Compr. Physiol. 2015, 6, 331–351. [Google Scholar] [CrossRef]
- Caturano, A.; Galiero, R.; Vetrano, E.; Sardu, C.; Rinaldi, L.; Russo, V.; Monda, M.; Marfella, R.; Sasso, F.C. Insulin-Heart Axis: Bridging Physiology to Insulin Resistance. Int. J. Mol. Sci. 2024, 25, 8369. [Google Scholar] [CrossRef] [PubMed]
- Libianto, R.; Batu, D.; MacIsaac, R.J.; Cooper, M.E.; Ekinci, E.I. Pathophysiological Links Between Diabetes and Blood Pressure. Can. J. Cardiol. 2018, 34, 585–594. [Google Scholar] [CrossRef] [PubMed]
- Ames, M.K.; Atkins, C.E.; Pitt, B. The renin-angiotensin-aldosterone system and its suppression. J. Vet. Intern. Med. 2019, 33, 363–382. [Google Scholar] [CrossRef] [PubMed]
- Geraldes, P.; King, G.L. Activation of protein kinase C isoforms and its impact on diabetic complications. Circ. Res. 2010, 106, 1319–1331. [Google Scholar] [CrossRef]
- Sarzani, R.; Allevi, M.; Di Pentima, C.; Schiavi, P.; Spannella, F.; Giulietti, F. Role of Cardiac Natriuretic Peptides in Heart Structure and Function. Int. J. Mol. Sci. 2022, 23, 14415. [Google Scholar] [CrossRef]
- de Bold, A.; Borenstein, H.; Veress, A.; Sonnenberg, H. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci. 1981, 28, 89–94. [Google Scholar] [CrossRef]
- Ogawa, T.; de Bold, A.J. Uncoordinated regulation of atrial natriuretic factor and brain natriuretic peptide in lipopolysaccharide-treated rats. Biomarkers Biochem. Indic. Expo. Response Susceptibility Chem. 2012, 17, 140–149. [Google Scholar] [CrossRef]
- Murakami, Y.; Shimada, T.; Inoue, S.; Shimizu, H.; Ohta, Y.; Katoh, H.; Nakamura, K.; Ishibashi, Y. New insights into the mechanism of the elevation of plasma brain natriuretic polypeptide levels in patients with left ventricular hypertrophy. Can. J. Cardiol. 2002, 18, 1294–1300. [Google Scholar] [PubMed]
- Bogush, N.; Tan, L.; Naib, H.; Faizullabhoy, E.; Calvert, J.W.; Iismaa, S.E.; Gupta, A.; Ramchandran, R.; Martin, D.I.K.; Graham, R.M.; et al. DUSP5 expression in left ventricular cardiomyocytes of young hearts regulates thyroid hormone (T3)-induced proliferative ERK1/2 signaling. Sci. Rep. 2020, 10, 21918. [Google Scholar] [CrossRef] [PubMed]
- D’uVa, G.; Aharonov, A.; Lauriola, M.; Kain, D.; Yahalom-Ronen, Y.; Carvalho, S.; Weisinger, K.; Bassat, E.; Rajchman, D.; Yifa, O.; et al. ERBB2 triggers mammalian heart regeneration by promoting cardiomyocyte dedifferentiation and proliferation. Nat. Cell Biol. 2015, 17, 627–638. [Google Scholar] [CrossRef] [PubMed]
- Glezeva, N.; Collier, P.; Voon, V.; Ledwidge, M.; McDonald, K.; Watson, C.; Baugh, J. Attenuation of monocyte chemotaxis--a novel anti-inflammatory mechanism of action for the cardio-protective hormone B-type natriuretic peptide. J. Cardiovasc. Transl. Res. 2013, 6, 545–557. [Google Scholar] [CrossRef]
- Huang, L.; Huang, L.; Yu, J.; Wu, X.; Zhao, J. An association between N-terminal pro-brain natriuretic protein level and risk of left ventricular hypertrophy in patients without heart failure. Exp. Ther. Med. 2020, 19, 3259–3266. [Google Scholar] [CrossRef]
- Rubattu, S.; Bigatti, G.; Evangelista, A.; Lanzani, C.; Stanzione, R.; Zagato, L.; Manunta, P.; Marchitti, S.; Venturelli, V.; Bianchi, G.; et al. Association of atrial natriuretic peptide and type a natriuretic peptide receptor gene polymorphisms with left ventricular mass in human essential hypertension. J. Am. Coll. Cardiol. 2006, 48, 499–505. [Google Scholar] [CrossRef]
- Pye, M.P.; Cobbe, S.M. Mechanisms of ventricular arrhythmias in cardiac failure and hypertrophy. Cardiovasc. Res. 1992, 26, 740–750. [Google Scholar] [CrossRef]
- Wang, T.J.; Larson, M.G.; Levy, D.; Benjamin, E.J.; Leip, E.P.; Omland, T.; Wolf, P.A.; Vasan, R.S. Plasma natriuretic peptide levels and the risk of cardiovascular events and death. New Engl. J. Med. 2004, 350, 655–663. [Google Scholar] [CrossRef]
- Patton, K.K.; Ellinor, P.T.; Heckbert, S.R.; Christenson, R.H.; DeFilippi, C.; Gottdiener, J.S.; Kronmal, R.A. N-terminal pro-B-type natriuretic peptide is a major predictor of the development of atrial fibrillation: The Cardiovascular Health Study. Circulation 2009, 120, 1768–1774. [Google Scholar] [CrossRef]
- Yamauchi, T.; Sakata, Y.; Miura, M.; Onose, T.; Tsuji, K.; Abe, R.; Oikawa, T.; Kasahara, S.; Sato, M.; Nochioka, K.; et al. Prognostic Impact of Atrial Fibrillation and New Risk Score of Its Onset in Patients at High Risk of Heart Failure—A Report From the CHART-2 Study. Circ. J. Off. J. Jpn. Circ. Soc. 2017, 81, 185–194. [Google Scholar] [CrossRef]
- Potter, L.R.; Yoder, A.R.; Flora, D.R.; Antos, L.K.; Dickey, D.M. Natriuretic peptides: Their structures, receptors, physiologic functions and therapeutic applications. In cGMP: Generators, Effectors and Therapeutic Implications; Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2009; pp. 341–366. [Google Scholar] [CrossRef]
- Scott, P.A.; Barry, J.; Roberts, P.R.; Morgan, J.M. Brain natriuretic peptide for the prediction of sudden cardiac death and ventricular arrhythmias: A meta-analysis. Eur. J. Heart Fail. 2009, 11, 958–966. [Google Scholar] [CrossRef] [PubMed]
- McGrath, M.F.; de Bold, M.L.; de Bold, A.J. The endocrine function of the heart. Trends Endocrinol. Metab. TEM 2005, 16, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, R.; Ali, Y.; Hashizume, R.; Suzuki, N.; Ito, M. BNP as a Major Player in the Heart-Kidney Connection. Int. J. Mol. Sci. 2019, 20, 3581. [Google Scholar] [CrossRef] [PubMed]
- Luchner, A.; Schunkert, H. Interactions between the sympathetic nervous system and the cardiac natriuretic peptide system. Cardiovasc. Res. 2004, 63, 443–449. [Google Scholar] [CrossRef]
- Maack, T. Role of atrial natriuretic factor in volume control. Kidney Int. 1996, 49, 1732–1737. [Google Scholar] [CrossRef]
- Heinl, E.S.; Broeker, K.A.; Lehrmann, C.; Heydn, R.; Krieger, K.; Ortmaier, K.; Tauber, P.; Schweda, F. Localization of natriuretic peptide receptors A, B, and C in healthy and diseased mouse kidneys. Pflug. Arch. Eur. J. Physiol. 2023, 475, 343–360. [Google Scholar] [CrossRef]
- Jensen, B.L. Natriuretic peptide receptors in the kidneys are predominantly vascular and not tubular. Pflug. Arch. Eur. J. Physiol. 2023, 475, 289–290. [Google Scholar] [CrossRef]
- Barrett, C.J.; Schultz, H.D. Sympathoinhibitory effects of atrial natriuretic peptide in rats with heart failure. J. Card. Fail. 1999, 5, 316–323. [Google Scholar] [CrossRef]
- Oparil, S.; Chen, Y.F.; Wang, R.P. Atrial natriuretic peptide inhibits sympathetic outflow in NaCl-sensitive spontaneously hypertensive rats. J. Hypertens. 1991, 9, 1177–1185. [Google Scholar]
- Basu, M.; Garg, V. Maternal hyperglycemia and fetal cardiac development: Clinical impact and underlying mechanisms. Birth Defects Res. 2018, 110, 1504–1516. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rowland, T.W.; Hubbell, J.P., Jr.; Nadas, A.S. Congenital heart disease in infants of diabetic mothers. J. Pediatr. 1973, 83, 815–820. [Google Scholar] [CrossRef]
- Liu, S.; Joseph, K.S.; Lisonkova, S.; Rouleau, J.; Van den Hof, M.; Sauve, R.; Kramer, M.S.; Canadian Perinatal Surveillance System (Public Health Agency of Canada). Association between maternal chronic conditions and congenital heart defects: A population-based cohort study. Circulation 2013, 128, 583–589. [Google Scholar] [CrossRef]
- Gillette, P.C. Genetic and environmental risk factors of major cardiovascular malformations: The baltimore–washington infant study: 1981–1989 edited by Charlotte Ferencz, Adolfo Correa–Villasenor, Christopher A. Loffredo, P. David Wilson, Futura Publishing Company, Inc., Armonk, N.Y. (1998) 463 pages, illustrated, $95.00 ISBN: 1044–4157. Clin. Cardiol. 2009, 21, 867–868. [Google Scholar] [CrossRef] [PubMed Central]
- Loffredo, C.A.; Wilson, P.D.; Ferencz, C. Maternal diabetes: An independent risk factor for major cardiovascular malformations with increased mortality of affected infants. Teratology 2001, 64, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Ghouse, J.; Hansson, M.; Vøgg, R.O.B.; Sillesen, A.S.; Pærregaard, S.; Raja, A.A.; Vejlstrup, N.; Frikke-Schmidt, R.; Øyen, N.; Kulkarni, A.; et al. Maternal Diabetes and Cardiac Left Ventricular Structure and Function in the Infant: A Copenhagen Baby Heart Study. Diabetes Care 2024, 47, 2230–2238. [Google Scholar] [CrossRef] [PubMed]
- Gireadă, R.; Socolov, D.; Mihălceanu, E.; Lazăr, I.T.; Luca, A.; Matasariu, R.; Ursache, A.; Bujor, I.; Gireadă, T.; Boiculese, V.L.; et al. Evaluation of Fetal Cardiac Geometry and Contractility in Gestational Diabetes Mellitus by Two-Dimensional Speckle-Tracking Technology. Diagnostics 2022, 12, 2053. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marchincin, S.L.; Howley, M.M.; Van Zutphen, A.R.; Fisher, S.C.; Nestoridi, E.; Tinker, S.C.; Browne, M.L.; National Birth Defects. Prevention Study Risk of birth defects by pregestational type 1 or type 2 diabetes: National Birth Defects Prevention Study, 1997–2011. Birth Defects Res. 2023, 115, 56–66. [Google Scholar] [CrossRef]
- Wren, C.; Birrell, G.; Hawthorne, G. Cardiovascular malformations in infants of diabetic mothers. Heart 2003, 89, 1217–1220. [Google Scholar] [CrossRef]
- Simeone, R.M.; Devine, O.J.; Marcinkevage, J.A.; Gilboa, S.M.; Razzaghi, H.; Bardenheier, B.H.; Sharma, A.J.; Honein, M.A. Diabetes and congenital heart defects: A systematic review, meta-analysis, and modeling project. Am. J. Prev. Med. 2015, 48, 195–204. [Google Scholar] [CrossRef]
- Øyen, N.; Diaz, L.J.; Leirgul, E.; Boyd, H.A.; Priest, J.; Mathiesen, E.R.; Quertermous, T.; Wohlfahrt, J.; Melbye, M. Prepregnancy Diabetes and Offspring Risk of Congenital Heart Disease: A Nationwide Cohort Study. Circulation 2016, 133, 2243–2253. [Google Scholar] [CrossRef]
- Ramos-Arroyo, M.A.; Rodriguez-Pinilla, E.; Cordero, J.F. Maternal diabetes: The risk for specific birth defects. Eur. J. Epidemiol. 1992, 8, 503–508. [Google Scholar] [CrossRef]
- Gözüküçük, D.; İleri, B.A.; Başkan, S.K.; Öztarhan, E.; Güller, D.; Önal, H.; Öztarhan, K. Evaluation of cardiac autonomic dysfunctions in children with type 1 diabetes mellitus. BMC Pediatr. 2024, 24, 229. [Google Scholar] [CrossRef]
- Bjornstad, P.; Truong, U.; Pyle, L.; Dorosz, J.L.; Cree-Green, M.; Baumgartner, A.; Coe, G.; Regensteiner, J.G.; Reusch, J.E.; Nadeau, K.J. Youth with type 1 diabetes have worse strain and less pronounced sex differences in early echocardiographic markers of diabetic cardiomyopathy compared to their normoglycemic peers: A RESistance to InSulin in Type 1 ANd Type 2 diabetes (RESISTANT) Study. J. Diabetes Its Complicat. 2016, 30, 1103–1110. [Google Scholar] [CrossRef]
- Ng, A.C.; Auger, D.; Delgado, V.; van Elderen, S.G.; Bertini, M.; Siebelink, H.M.; van der Geest, R.J.; Bonetti, C.; van der Velde, E.T.; de Roos, A.; et al. Association between diffuse myocardial fibrosis by cardiac magnetic resonance contrast-enhanced T1 mapping and subclinical myocardial dysfunction in diabetic patients: A pilot study. Circ. Cardiovasc. Imaging 2012, 5, 51–59. [Google Scholar] [CrossRef] [PubMed]
- TODAY Study Group. Longitudinal Changes in Cardiac Structure and Function from Adolescence to Young Adulthood in Participants With Type 2 Diabetes Mellitus: The TODAY Follow-Up Study. Circ. Heart Fail. 2020, 13, e006685. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.S.; Isom, S.; Dabelea, D.; D’Agostino, R.; Dolan, L.M., Jr.; Wagenknecht, L.; Imperatore, G.; Saydah, S.; Liese, A.D.; Lawrence, J.M.; et al. A cross sectional study to compare cardiac structure and diastolic function in adolescents and young adults with youth-onset type 1 and type 2 diabetes: The SEARCH for Diabetes in Youth Study. Cardiovasc. Diabetol. 2021, 20, 136. [Google Scholar] [CrossRef] [PubMed]
- Galli-Tsinopoulou, A.; Chatzidimitriou, A.; Kyrgios, I.; Rousso, I.; Varlamis, G.; Karavanaki, K. Children and adolescents with type 1 diabetes mellitus have a sixfold greater risk for prolonged QTc interval. J. Pediatr. Endocrinol. Metab. 2014, 27, 237–243. [Google Scholar] [CrossRef]
- Aygün, D.; Aygün, F.; Nişli, K.; Baş, F.; Çıtak, A. Electrocardiographic changes in children with diabetic ketoacidosis and ketosis. Turk Pediatri Ars. 2017, 52, 194–201. [Google Scholar] [CrossRef]
- Ertaş, K.; Gül, Ö.; Yıldırım, R.; Özalkak, Ş. Evaluation of cardiac electrophysiological balance index in children diagnosed with type 1 diabetes mellitus. Cardiol. Young 2025, 35, 593–599. [Google Scholar] [CrossRef]
- Türe, M.; Akın, A.; Unal, E.; Kan, A.; Savaş, S. Electrocardiographic data of children with type 1 diabetes mellitus. Cardiol. Young 2022, 32, 106–110. [Google Scholar] [CrossRef]
- Burden, S.; Weedon, B.; Whaymand, L.; Rademaker, J.; Dawes, H.; Jones, A. The effect of overweight/obesity on diastolic function in children and adolescents: A meta-analysis. Clin. Obes. 2021, 11, e12476. [Google Scholar] [CrossRef]
- Mangner, N.; Scheuermann, K.; Winzer, E.; Wagner, I.; Hoellriegel, R.; Sandri, M.; Zimmer, M.; Mende, M.; Linke, A.; Kiess, W.; et al. Childhood obesity: Impact on cardiac geometry and function. JACC Cardiovasc. Imaging 2014, 7, 1198–1205. [Google Scholar] [CrossRef] [PubMed]
- Erbs, S.; Broniecki, H.; Scheuermann, K.; Winzer, E.; Adam, J.; Spielau, U.; Woitek, F.; Sandri, M.; Zimmer, M.; Besler, C.; et al. Impact of Weight Reduction During Adolescence on Parameters of Cardiac Geometry and Function in Obese Children. JACC Cardiovasc. Imaging 2018, 11, 1915–1917. [Google Scholar] [CrossRef] [PubMed]
- Yi, L.F.; Wen, H.X.; Huang, X.L.; Qiu, M.; Cao, X.X. Cardiac autonomic nerve function in obese school-age children. Chin. J. Contemp. Pediatr. 2017, 19, 524–528. [Google Scholar] [CrossRef]
- Nimpum, D.; Jittham, W. Echocardiographic assessment of cardiac function abnormalities and related risk factors in Thai overweight and obese children. Ann. Pediatr. Cardiol. 2023, 16, 413–421. [Google Scholar] [CrossRef]
- Freitas, I.M.; Miranda, J.A.; Mira, P.A.; Lanna, C.M.; Lima, J.R.; Laterza, M.C. Cardiac autonomic dysfunction in obese normotensive children and adolescents. Rev. Paul. Pediatr. 2014, 32, 244–249. [Google Scholar] [CrossRef]
- Campos, J.O.; Barros, M.A.V.; Oliveira, T.L.P.S.A.; Nobre, I.G.; de Morais, A.S.; Santos, M.A.M.; Leandro, C.G.; Costa-Silva, J.H. Cardiac autonomic dysfunction in school age children with overweight and obesity. Nutr. Metab. Cardiovasc. Dis. NMCD 2022, 32, 2410–2417. [Google Scholar] [CrossRef]
- Wirix, A.J.; Finken, M.J.; von Rosenstiel-Jadoul, I.A.; Heijboer, A.C.; Nauta, J.; Groothoff, J.W.; Chinapaw, M.J.; Kist-van Holthe, J.E. Is There an Association Between Cortisol and Hypertension in Overweight or Obese Children? J. Clin. Res. Pediatr. Endocrinol. 2017, 9, 344–349. [Google Scholar] [CrossRef]
- Scavone, M.; Tallarico, V.; Stefanelli, E.; Parisi, F.; De Sarro, R.; Salpietro, C.; Ceravolo, G.; Sestito, S.; Pensabene, L.; Chimenz, R.; et al. Cardiac malformations in children with congenital hypothyroidism. J. Biol. Regul. Homeost. Agents 2020, 34 (Suppl. S2), 91–97. [Google Scholar]
- Soto-Rivera, C.L.; Schwartz, S.M.; Sawyer, J.E.; Macrae, D.J.; Agus, M.S. Endocrinologic Diseases in Pediatric Cardiac Intensive Care. Pediatr. Crit. Care Med. 2016, 17 (Suppl. S1), S296–S301. [Google Scholar] [CrossRef]
- Metwalley, K.A.; Farghaly, H.S. Graves’ Disease in Children: An Update. Clin. Med. Insights Endocrinol. Diabetes 2023, 16, 11795514221150615. [Google Scholar] [CrossRef]
- Léger, J.; Carel, J.C. Hyperthyroidism in childhood: Causes, when and how to treat. J. Clin. Res. Pediatr. Endocrinol. 2013, 5 (Suppl. S1), 50–56. [Google Scholar] [CrossRef]
- Subramonian, D.; Wu, Y.J.; Amed, S.; Sanatani, S. Hyperthyroidism with Atrial Fibrillation in Children: A Case Report and Review of the Literature. Front. Endocrinol. 2021, 12, 689497. [Google Scholar] [CrossRef]
- Petrovic Djordjevic, I.; Petrovic, J.; Radomirovic, M.; Petrovic, S.; Biorac, B.; Jemuovic, Z.; Tesic, M.; Trifunovic Zamaklar, D.; Nedeljkovic, I.; Nedeljkovic Beleslin, B.; et al. Impairment of Left Ventricular Function in Hyperthyroidism Caused by Graves’ Disease: An Echocardiographic Study. J. Clin. Med. 2024, 13, 7348. [Google Scholar] [CrossRef]
- Park, S.K.; Ryoo, J.H.; Kang, J.G.; Jung, J.Y. Association of left ventricular hypertrophy with the level of thyroid hormone in euthyroid state. J. Endocrinol. Investig. 2021, 44, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Zúñiga, D.; Balasubramanian, S.; Mehmood, K.T.; Al-Baldawi, S.; Zúñiga Salazar, G. Hypothyroidism and Cardiovascular Disease: A Review. Cureus 2024, 16, e52512. [Google Scholar] [CrossRef]
- Udovcic, M.; Pena, R.H.; Patham, B.; Tabatabai, L.; Kansara, A. Hypothyroidism and the Heart. Methodist DeBakey Cardiovasc. J. 2017, 13, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, R.; Sirohi, T.; Talapa, R.; Jamir, I. Case series of unusual cases of hypothyroidism-induced pericardial effusion. J. Fam. Med. Prim. Care 2024, 13, 2776–2779. [Google Scholar] [CrossRef] [PubMed]
- Karki, S.; Rayamajhi, R.J.; Shikhrakar, S.; Shahi, S.; Dhakal, B.; Khadka, M. Pericardial effusion in hypothyroidism: A case report. Ann. Med. Surg. 2021, 72, 102999. [Google Scholar] [CrossRef]
- Ebrahimi, P.; Taheri, H.; Bahiraie, P.; Rader, F.; Siegel, R.J.; Mandegar, M.H.; Hosseini, K.; Shahid, F. Incidence of secondary pericardial effusions associated with different etiologies: A comprehensive review of literature. J. Cardiothorac. Surg. 2025, 20, 141. [Google Scholar] [CrossRef]
- Cojić, M.; Cvejanov-Kezunović, L. Subclinical Hypothyroidism—Whether and When to Start Treatment? Open Access Maced. J. Med. Sci. 2017, 5, 1042–1046. [Google Scholar] [CrossRef]
- Radetti, G.; Renzullo, L.; Gottardi, E.; D’Addato, G.; Messner, H. Altered thyroid and adrenal function in children born at term and preterm, small for gestational age. J. Clin. Endocrinol. Metab. 2004, 89, 6320–6324. [Google Scholar] [CrossRef]
- Biondi, B.; Palmieri, E.A.; Lombardi, G.; Fazio, S. Subclinical hypothyroidism and cardiac function. Thyroid. Off. J. Am. Thyroid Assoc. 2002, 12, 505–510. [Google Scholar] [CrossRef]
- Brienza, C.; Grandone, A.; Di Salvo, G.; Corona, A.M.; Di Sessa, A.; Pascotto, C.; Calabrò, R.; Toraldo, R.; Perrone, L.; del Giudice, E.M. Subclinical hypothyroidism and myocardial function in obese children. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 898–902. [Google Scholar] [CrossRef]
- Danzi, S.; Klein, I. Thyroid hormone and the cardiovascular system. Minerva Endocrinol. 2004, 29, 139–150. [Google Scholar] [CrossRef]
- Menendez-Castro, C.; Rascher, W.; Hartner, A. Intrauterine growth restriction-impact on cardiovascular diseases later in life. Mol. Cell. Pediatr. 2018, 5, 4. [Google Scholar] [CrossRef]
- Ozdemir, O.; Abaci, A.; Hizli, S.; Razi, C.H.; Akelma, A.Z.; Kocak, M.; Kislal, F.M. Cardiac functions in children with growth hormone deficiency before and during growth hormone-replacement therapy. Pediatr. Cardiol. 2011, 32, 766–771. [Google Scholar] [CrossRef] [PubMed]
- Alkan, F.; Ersoy, B.; Kızılay, D.O.; Coskun, S. Cardiac functions in children with growth hormone deficiency: Effects of one year of GH replacement therapy. Growth Horm. IGF 2021, 60–61, 101432. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.D.; Dattani, A.; Zemrak, F.; Burchell, T.; Akker, S.A.; Gurnell, M.; Grossman, A.B.; Davies, L.C.; Korbonits, M. Characterisation of myocardial structure and function in adult-onset growth hormone deficiency using cardiac magnetic resonance. Endocrine 2016, 54, 778–787. [Google Scholar] [CrossRef] [PubMed]
- Minczykowski, A.; Gryczynska, M.; Ziemnicka, K.; Czepczynski, R.; Sowinski, J.; Wysocki, H. The influence of growth hormone (GH) therapy on cardiac performance in patients with childhood onset GH deficiency. Growth Horm. IGF Res. 2005, 15, 156–164. [Google Scholar] [CrossRef]
- Improda, N.; Moracas, C.; Mattace Raso, G.; Valente, V.; Crisci, G.; Lorello, P.; Di Mase, R.; Salerno, M.; Capalbo, D. Vascular Function and Intima-Media Thickness in Children and Adolescents with Growth Hormone Deficiency: Results from a Prospective Case-Control Study. Horm. Res. Paediatr. 2024, 97, 140–147. [Google Scholar] [CrossRef]
- Kościuszko, M.; Buczyńska, A.; Hryniewicka, J.; Jankowska, D.; Adamska, A.; Siewko, K.; Jacewicz-Święcka, M.; Zaniuk, M.; Krętowski, A.J.; Popławska-Kita, A. Early Cardiovascular and Metabolic Benefits of rhGH Therapy in Adult Patients with Severe Growth Hormone Deficiency: Impact on Oxidative Stress Parameters. Int. J. Mol. Sci. 2025, 26, 5434. [Google Scholar] [CrossRef]
- Aguilar, M.; Rose, R.A.; Takawale, A.; Nattel, S.; Reilly, S. New aspects of endocrine control of atrial fibrillation and possibilities for clinical translation. Cardiovasc. Res. 2021, 117, 1645–1661. [Google Scholar] [CrossRef]
- Fauchier, L.; de Groote, P. Atrial fibrillation and renin-angiotensin-aldosterone system: Believe it or not. Europace 2011, 13, 297–298. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Xiong, Y.; Li, X.; Yang, Y. Cardiac Fibrosis: Cellular Effectors, Molecular Pathways, and Exosomal Roles. Front. Cardiovasc. Med. 2021, 8, 715258. [Google Scholar] [CrossRef] [PubMed]
- Nair, G.M.; Nery, P.B.; Redpath, C.J.; Birnie, D.H. The Role of Renin Angiotensin System In Atrial Fibrillation. J. Atr. Fibrillation 2014, 6, 972. [Google Scholar] [PubMed]
- Sodero, G.; Cipolla, C.; Rigante, D.; Arzilli, F.; Mercuri, E.M. Pubertal induction therapy in pediatric patients with Duchenne muscular dystrophy. J. Pediatr. Endocrinol. Metab. 2025, 38, 781–787. [Google Scholar] [CrossRef]
- Peck, M.; Connelly, P.; Lucas-Herald, A.K. Cardiometabolic outcomes of early onset hypogonadism in males. Best Pract. Res. Clin. Endocrinol. Metab. 2025. advance online publication. [Google Scholar] [CrossRef]
- Johansson, S.; Norman, M.; Legnevall, L.; Dalmaz, Y.; Lagercrantz, H.; Vanpée, M. Increased catecholamines and heart rate in children with low birth weight: Perinatal contributions to sympathoadrenal overactivity. J. Intern. Med. 2007, 261, 480–487. [Google Scholar] [CrossRef]
- Ream, M.A.; Chandra, R.; Peavey, M.; Ray, A.M.; Roffler-Tarlov, S.; Kim, H.G.; Wetsel, W.C.; Rockman, H.A.; Chikaraishi, D.M. High oxygen prevents fetal lethality due to lack of catecholamines. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 295, R942–R953. [Google Scholar] [CrossRef]
- Szatko, A.; Glinicki, P.; Gietka-Czernel, M. Pheochromocytoma/paraganglioma-associated cardiomyopathy. Front. Endocrinol. 2023, 14, 1204851. [Google Scholar] [CrossRef]
- Heidarpour, M.; Zare, M.M.; Armani, S.; Torkashvan, H.; Mazaheri-Tehrani, S.; Shafie, D. Acute Heart Failure as a First Manifestation of Primary Adrenal Insufficiency: Highly Lethal If Not Diagnosed! Case Rep. Endocrinol. 2024, 2024, 5759629. [Google Scholar] [CrossRef] [PubMed]
- Kirk, R.; Dipchand, A.I.; Rosenthal, D.N.; Addonizio, L.; Burch, M.; Chrisant, M.; Dubin, A.; Everitt, M.; Gajarski, R.; Mertens, L.; et al. The International Society for Heart and Lung Transplantation Guidelines for the management of pediatric heart failure: Executive summary. J. Heart Lung Transplant. 2014, 33, 888–909. [Google Scholar] [CrossRef] [PubMed]
- Ross, R.D. The Ross classification for heart failure in children after 25 years: A review and an age-stratified revision. Pediatr. Cardiol. 2012, 33, 1295–1300. [Google Scholar] [CrossRef] [PubMed]
- Connolly, D.; Rutkowski, M.; Auslender, M.; Artman, M. The New York University Pediatric Heart Failure Index: A new method of quantifying chronic heart failure severity in children. J. Pediatr. 2001, 138, 644–648. [Google Scholar] [CrossRef]
- Cantinotti, M.; Storti, S.; Ripoli, A.; Zyw, L.; Crocetti, M.; Assanta, N.; Murzi, B.; Clerico, A. Diagnostic accuracy of B-type natriuretic hormone for congenital heart disease in the first month of life. Clin. Chem. Lab. Med. 2010, 48, 1333–1338. [Google Scholar] [CrossRef]
- Holmgren, D.; Westerlind, A.; Lundberg, P.A.; Wåhlander, H. Increased plasma levels of natriuretic peptide type B and A in children with congenital heart defects with left compared with right ventricular volume overload or pressure overload. Clin. Physiol. Funct. Imaging 2005, 25, 263–269. [Google Scholar] [CrossRef]
- Sandeep, B.; Huang, X.; Li, Y.; Wang, X.; Mao, L.; Kan, Y.; Xiong, D.; Gao, K.; Zongwei, X. Evaluation of right ventricle pulmonary artery coupling on right ventricular function in post operative tetralogy of Fallot patients underwent for pulmonary valve replacement. J. Cardiothorac. Surg. 2020, 15, 241. [Google Scholar] [CrossRef]
- Tatani, S.B.; Carvalho, A.C.; Andriolo, A.; Rabelo, R.; Campos, O.; Moises, V.A. Echocardiographic parameters and brain natriuretic peptide in patients after surgical repair of tetralogy of Fallot. Echocardiography 2010, 27, 442–447. [Google Scholar] [CrossRef]
- Afshani, N.; Schülein, S.; Biccard, B.M.; Thomas, J.M. Clinical utility of B-type natriuretic peptide (NP) in pediatric cardiac surgery—A systematic review. Paediatr. Anaesth. 2015, 25, 115–126. [Google Scholar] [CrossRef]
- Lin, F.; Zheng, L.; Cui, Y.; Chen, W.; Gupta, R.K.; Li, H.; Chen, X.; Xia, H.; Liang, H. Prognostic value of perioperative NT-proBNP after corrective surgery for pediatric congenital heart defects. BMC Pediatr. 2019, 19, 497. [Google Scholar] [CrossRef]
- Palm, J.; Holdenrieder, S.; Hoffmann, G.; Hörer, J.; Shi, R.; Klawonn, F.; Ewert, P. Predicting Major Adverse Cardiovascular Events in Children with Age-Adjusted NT-proBNP. J. Am. Coll. Cardiol. 2021, 78, 1890–1900. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, W.; Diedrich, C.; Hamza, T.H.; Meyer, M.; Eissing, T.; Breitenstein, S.; Rossano, J.W.; Lipshultz, S.E. NT-proBNP for Predicting All-Cause Death and Heart Transplant in Children and Adults with Heart Failure. Pediatr. Cardiol. 2025, 46, 694–703. [Google Scholar] [CrossRef] [PubMed]
- Volpe, M.; Carnovali, M.; Mastromarino, V. The natriuretic peptides system in the pathophysiology of heart failure: From molecular basis to treatment. Clin. Sci. 2016, 130, 57–77. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Agnoletti, G.; Panzali, A.F.; Ferrari, R. Levels of atrial natriuretic factor in the plasma and urine of patients with and without heart failure. Int. J. Cardiol. 1993, 40, 179–182. [Google Scholar] [CrossRef]
- Cantinotti, M.; Walters, H.L.; Crocetti, M.; Marotta, M.; Murzi, B.; Clerico, A. BNP in children with congenital cardiac disease: Is there now sufficient evidence for its routine use? Cardiol. Young 2015, 25, 424–437. [Google Scholar] [CrossRef]
- Westerlind, A.; Wåhlander, H.; Berggren, H.; Lundberg, P.A.; Holmgren, D. Plasma levels of natriuretic peptide type B and A in children with heart disease with different types of cardiac load or systolic dysfunction. Clin. Physiol. Funct. Imaging 2008, 28, 277–284. [Google Scholar] [CrossRef]
- Kotby, A.A.; Taman, K.H.; Sedky, H.T.; Habeeb, N.M.; El-Hadidi, E.S.; Yosseif, H.S. Atrial natriuretic peptide as a marker of heart failure in children with left ventricular volume overload. J. Paediatr. Child Health 2013, 49, 43–47. [Google Scholar] [CrossRef]
- Ghosh, N.; Haddad, H. Atrial natriuretic peptides in heart failure: Pathophysiological significance, diagnostic and prognostic value. Can. J. Physiol. Pharmacol. 2011, 89, 587–591. [Google Scholar] [CrossRef]
- Uner, A.; Doğan, M.; Ay, M.; Acar, C. The evaluation of serum N-terminal prohormone brain-type natriuretic peptide, troponin-I, and high-sensitivity C-reactive protein levels in children with congenital heart disease. Hum. Exp. Toxicol. 2014, 33, 1158–1166. [Google Scholar] [CrossRef]
- Shaddy, R.; Burch, M.; Kantor, P.F.; Solar-Yohay, S.; Garito, T.; Zhang, S.; Kocun, M.; Mao, C.; Cilliers, A.; Wang, X.; et al. PANORAMA-HF Investigators Sacubitril/Valsartan in Pediatric Heart Failure (PANORAMA-HF): A Randomized, Multicenter, Double-Blind Trial. Circulation 2024, 150, 1756–1766. [Google Scholar] [CrossRef]
- Benza, R.L.; Miller, D.P.; Gomberg-Maitland, M.; Frantz, R.P.; Foreman, A.J.; Coffey, C.S.; Frost, A.; Barst, R.J.; Badesch, D.B.; Elliott, C.G.; et al. Predicting survival in pulmonary arterial hypertension: Insights from the Registry to Evaluate Early and Long-Term Pulmonary Arterial Hypertension Disease Management (REVEAL). Circulation 2010, 122, 164–172. [Google Scholar] [CrossRef]
- Cuna, A.; Kandasamy, J.; Sims, B. B-type natriuretic peptide and mortality in extremely low birth weight infants with pulmonary hypertension: A retrospective cohort analysis. BMC Pediatr. 2014, 14, 68. [Google Scholar] [CrossRef]
- Xiong, T.; Kulkarni, M.; Gokulakrishnan, G.; Shivanna, B.; Pammi, M. Natriuretic peptides in bronchopulmonary dysplasia: A systematic review. J. Perinatol. 2020, 40, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, S.; Bettermann, E.; Kelleman, M.; Kanaan, U.; Sachdeva, R.; Petit, C.; Kim, D.; Vincent, R.; Bauser-Heaton, H. N-terminal pro-B-type-natriuretic peptide as a screening tool for pulmonary hypertension in the paediatric population. Cardiol. Young 2021, 31, 1595–1607. [Google Scholar] [CrossRef] [PubMed]
- Aldalaan, A.M.; Saleemi, S.A.; Weheba, I.; Abdelsayed, A.; Aleid, M.M.; Alzubi, F.; Zaytoun, H.; Alharbi, N. Pulmonary hypertension in Saudi Arabia: First data from the SAUDIPH registry with a focus on pulmonary arterial hypertension. Respirology 2021, 26, 92–101. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, C.; Cheng, S.; Chu, L.; Chen, Z.; Liu, G. The relationship between N-terminal pro-brain natriuretic and coronary artery lesions in Kawasaki disease: A meta-analysis. PLoS ONE 2025, 20, e0324552. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.N.; Lin, C.W.; Tang, W.; Zhang, J.P. Age-Stratified Cut-Off Values for Serum Levels of N-Terminal ProB-Type Natriuretic Peptide and Mortality from Sepsis in Children Under Age 18 Years: A Retrospective Study from a Single Center. Med. Sci. Monit. 2021, 27, e933400. [Google Scholar] [CrossRef]
Hormone | Main Cardiovascular Functions | Effects of Dysfunction During Fetal Development |
---|---|---|
Thyroid hormones | Promote cardiomyocyte terminal differentiation, sarcomere maturation, mitochondrial biogenesis, and metabolic switch from glycolysis to oxidative phosphorylation. Regulate calcium handling and contractile proteins. | Hypothyroidism → impaired cardiomyocyte proliferation, abnormal chamber geometry, reduced systolic/diastolic function, increased perinatal morbidity. Hyperthyroidism → tachycardia, arrhythmias, hypertrophy. |
Glucocorticoids (cortisol) | Regulate cardiomyocyte maturation, stimulate local T3 production, support IGF-II → IGF-I switch, enhance calcium handling and contractility. | Excess → hypertrophy, disrupted architecture, arrhythmias, mitochondrial dysfunction. Deficit → delayed maturation, poor adaptation to birth hemodynamic stress. |
Mineralocorticoids (aldosterone) | Modulate vascular tone and fluid balance via mineralocorticoid receptors. | Hyperaldosteronism → atrial enlargement, fibrosis, oxidative stress, ↑ increased atrial fibrillation risk. |
Catecholamines | Essential for fetal cardiac contractility, heart rate regulation, and stress adaptation; support vascular tone and placental circulation. | Deficiency (e.g., impaired adrenal development) → reduced cardiac output, hypotension, poor stress response. Excess → tachycardia, arrhythmias, myocardial oxygen imbalance. |
Growth hormone | Direct myocardial effects (↑ mass, geometry, contractility). Indirect effects via IGF-I production. | Growth hormone deficiency → reduced left ventricular mass, impaired contractility, endothelial dysfunction. |
Insulin-like growth factors | IGF-II drives early cardiomyocyte proliferation; IGF-I supports hypertrophy and maturation near term; regulate PI3K/AKT/mTOR and MAPK/ERK signaling. | Low IGF signaling (e.g., intrauterine growth retardation) → reduced cardiomyocyte number, myocardial thinning, impaired growth and function. |
Insulin | Supports myocardial growth, enhances glucose uptake and metabolic efficiency, promotes adaptive hypertrophy. | Insulin deficiency/resistance → metabolic inefficiency, risk of cardiomyopathy, association with maternal diabetes-related congenital heart diseases (CHDs). |
Sex hormones (estrogens, androgens) | Estrogens: mitochondrial gene expression, oxidative metabolism, cardioprotection. Androgens: improve contractility, influence electrophysiological maturation. | Estrogen deficiency → impaired maturation, metabolic dysfunction. Androgen deficiency (e.g., delayed puberty) → impaired myocardial performance. |
Natriuretic peptides | Regulate blood pressure, natriuresis, anti-hypertrophic and anti-fibrotic effects; biomarkers of stress and heart failure. | Deficiency → hypertrophy, fibrosis, increased arrhythmias; high neonatal brain natriuretic peptide predicts CHD severity or perinatal stress. |
Biomarker | Target Population/Clinical Context | Screening (Initial Evaluation/Risk Identification) | Follow-Up (Monitoring/Management) |
---|---|---|---|
BNP/NT-proBNP | Children with congenital heart disease, cardiomyopathies, unexplained, heart failure (HF) symptoms | Rarely used for primary screening | Disease monitoring, perioperative assessment, HF follow-up |
IGF-I | Children with growth hormone deficiency, intrauterine growth restriction, poor growth trajectory | Growth and cardiovascular risk assessment | Monitoring treatment response and progression |
TSH, FT4 | Children with congenital or acquired thyroid disorders, arrhythmias, unexplained tachycardia/bradycardia, structural congenital heart disease | Routine cardiovascular risk evaluation | Monitoring disease progression or therapy |
Cortisol | Newborns with maternal stress, antenatal corticosteroid exposure, suspected adrenal insufficiency | Evaluation when adrenal dysfunction is suspected | Monitoring if abnormalities detected or therapy started |
Sex hormones (testosterone, estrogens) | Adolescents with delayed puberty, hypogonadism, neuromuscular diseases (e.g., Duchenne muscular dystrophy) | Evaluation of suspected pubertal or gonadal disorders | Follow-up in confirmed endocrine or cardiovascular involvement |
Catecholamines | Children with suspected adrenal dysfunction, autonomic disorders, or tumors such as pheochromocytoma/paraganglioma | Assessment in cases of unexplained hypertension, tachycardia, or stress intolerance | Monitoring disease activity, treatment response, and recurrence in catecholamine-secreting tumors |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calcaterra, V.; Mannarino, S.; Puricelli, F.; Fini, G.; Cecconi, G.; Evangelista, M.; Baj, B.; Gazzola, C.; Zuccotti, G. Cardiac Endocrine Function and Hormonal Interplay in Pediatrics: From Development to Clinical Implications. Biomedicines 2025, 13, 2225. https://doi.org/10.3390/biomedicines13092225
Calcaterra V, Mannarino S, Puricelli F, Fini G, Cecconi G, Evangelista M, Baj B, Gazzola C, Zuccotti G. Cardiac Endocrine Function and Hormonal Interplay in Pediatrics: From Development to Clinical Implications. Biomedicines. 2025; 13(9):2225. https://doi.org/10.3390/biomedicines13092225
Chicago/Turabian StyleCalcaterra, Valeria, Savina Mannarino, Filippo Puricelli, Giulia Fini, Giulia Cecconi, Martina Evangelista, Beatrice Baj, Cassandra Gazzola, and Gianvincenzo Zuccotti. 2025. "Cardiac Endocrine Function and Hormonal Interplay in Pediatrics: From Development to Clinical Implications" Biomedicines 13, no. 9: 2225. https://doi.org/10.3390/biomedicines13092225
APA StyleCalcaterra, V., Mannarino, S., Puricelli, F., Fini, G., Cecconi, G., Evangelista, M., Baj, B., Gazzola, C., & Zuccotti, G. (2025). Cardiac Endocrine Function and Hormonal Interplay in Pediatrics: From Development to Clinical Implications. Biomedicines, 13(9), 2225. https://doi.org/10.3390/biomedicines13092225