From Biomarkers to Behavior: Mapping the Neuroimmune Web of Pain, Mood, and Memory
1. Setting the Stage: Mood, Memory and Pain in Clinical Convergence
2. Where the Gaps Were
3. Snapshot of the Ten Papers
3.1. Chronic Pain and Mechanisms
3.2. Comorbidity and Cognitive Decline
3.3. Neuro-Immune Stress Circuitry
3.4. Lifestyle and Biopsychosocial Angles
3.5. Neurodevelopment and Novel Targets
4. Bridges Built: How These Studies Advance the Field
5. Still Unpaved Roads: Future Research Directions
5.1. Multi-Omics Mega-Cohorts
5.2. Longitudinal Pain-Mood Tracking and Lifestyle-Targeted Randomized Controlled Trials (RCTs)
5.3. Cross-Talking Neuro-Immune Combination Therapies
6. Take-Home Message
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CGRP/R | Calcitonin gene-related peptide/receptor |
DSM-5 | Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition |
ER | Endoplasmic reticulum |
IGF2 | insulin-like growth factor II |
ICD-11 | International Classification of Diseases, Eleventh Revision |
ICHD-3 | International Classification of Headache Disorders, Third Edition |
ICOP | International Classification of Orofacial Pain |
NTRK1 | Neurotrophic tyrosine kinase receptor type 1 |
References
- Li, M.; She, K.; Zhu, P.; Li, Z.; Liu, J.; Luo, F.; Ye, Y. Chronic Pain and Comorbid Emotional Disorders: Neural Circuitry and Neuroimmunity Pathways. Int. J. Mol. Sci. 2025, 26, 436. [Google Scholar] [CrossRef]
- Krsek, A.; Ostojic, L.; Zivalj, D.; Baticic, L. Navigating the Neuroimmunomodulation Frontier: Pioneering Approaches and Promising Horizons—A Comprehensive Review. Int. J. Mol. Sci. 2024, 25, 9695. [Google Scholar] [CrossRef]
- Sălcudean, A.; Bodo, C.R.; Popovici, R.A.; Cozma, M.M.; Păcurar, M.; Crăciun, R.E.; Crisan, A.I.; Enatescu, V.R.; Marinescu, I.; Cimpian, D.M.; et al. Neuroinflammation—A Crucial Factor in the Pathophysiology of Depression—A Comprehensive Review. Biomolecules 2025, 15, 502. [Google Scholar] [CrossRef]
- Mokhtari, T.; Irandoost, E.; Sheikhbahaei, F. Stress, pain, anxiety, and depression in endometriosis-Targeting glial activation and inflammation. Int. Immunopharmacol. 2024, 132, 111942. [Google Scholar] [CrossRef]
- Szabó, Á.; Galla, Z.; Spekker, E.; Szűcs, M.; Martos, D.; Takeda, K.; Ozaki, K.; Inoue, H.; Yamamoto, S.; Toldi, J.; et al. Oxidative and Excitatory Neurotoxic Stresses in CRISPR/Cas9-Induced Kynurenine Aminotransferase Knockout Mice: A Novel Model for Despair-Based Depression and Post-Traumatic Stress Disorder. Front. Biosci. (Landmark Ed) 2025, 30, 25706. [Google Scholar] [CrossRef]
- Yin, W.; Swanson, S.P.; Biltz, R.G.; Goodman, E.J.; Gallagher, N.R.; Sheridan, J.F.; Godbout, J.P. Unique brain endothelial profiles activated by social stress promote cell adhesion, prostaglandin E2 signaling, hypothalamic-pituitary-adrenal axis modulation, and anxiety. Neuropsychopharmacology 2022, 47, 2271–2282. [Google Scholar] [CrossRef] [PubMed]
- Kokkosis, A.G.; Madeira, M.M.; Hage, Z.; Valais, K.; Koliatsis, D.; Resutov, E.; Tsirka, S.E. Chronic psychosocial stress triggers microglial-/macrophage-induced inflammatory responses leading to neuronal dysfunction and depressive-related behavior. GLIA 2024, 72, 111–132. [Google Scholar] [CrossRef]
- Brandl, F.; Weise, B.; Mulej Bratec, S.; Jassim, N.; Hoffmann Ayala, D.; Bertram, T.; Ploner, M.; Sorg, C. Common and specific large-scale brain changes in major depressive disorder, anxiety disorders, and chronic pain: A transdiagnostic multimodal meta-analysis of structural and functional MRI studies. Neuropsychopharmacology 2022, 47, 1071–1080. [Google Scholar] [CrossRef] [PubMed]
- Sim, M.A.; Doecke, J.D.; Liew, O.W.; Wong, L.L.; Tan, E.S.J.; Chan, S.P.; Chong, J.R.F.; Cai, Y.; Hilal, S.; Venketasubramanian, N.; et al. Plasma proteomics for cognitive decline and dementia—A Southeast Asian cohort study. Alzheimer’s Dement. 2025, 21, e14577. [Google Scholar] [CrossRef]
- Tanaka, M.; Battaglia, S. Dualistic Dynamics in Neuropsychiatry: From Monoaminergic Modulators to Multiscale Biomarker Maps. Biomedicines 2025, 13, 1456. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Liu, C.; Hu, A.; Zhang, D.; Yang, H.; Mao, Y. Understanding the immunosuppressive microenvironment of glioma: Mechanistic insights and clinical perspectives. J. Hematol. Oncol. 2024, 17, 31. [Google Scholar] [CrossRef]
- Fang, J.; Lu, Y.; Zheng, J.; Jiang, X.; Shen, H.; Shang, X.; Lu, Y.; Fu, P. Exploring the crosstalk between endothelial cells, immune cells, and immune checkpoints in the tumor microenvironment: New insights and therapeutic implications. Cell Death Dis. 2023, 14, 586. [Google Scholar] [CrossRef] [PubMed]
- Martos, D.; Lőrinczi, B.; Szatmári, I.; Vécsei, L.; Tanaka, M. Decoupling Behavioral Domains via Kynurenic Acid Analog Optimization: Implications for Schizophrenia and Parkinson’s Disease Therapeutics. Cells 2025, 14, 973. [Google Scholar] [CrossRef]
- Carvalho, A.F.; Solmi, M.; Sanches, M.; Machado, M.O.; Stubbs, B.; Ajnakina, O.; Sherman, C.; Sun, Y.R.; Liu, C.S.; Brunoni, A.R.; et al. Evidence-based umbrella review of 162 peripheral biomarkers for major mental disorders. Transl. Psychiatry 2020, 10, 152. [Google Scholar] [CrossRef]
- McQuaid, R.J. Transdiagnostic biomarker approaches to mental health disorders: Consideration of symptom complexity, comorbidity and context. Brain Behav. Immun. Health 2021, 16, 100303. [Google Scholar] [CrossRef]
- Franklyn, S.I.; Stewart, J.; Beaurepaire, C.; Thaw, E.; McQuaid, R.J. Developing symptom clusters: Linking inflammatory biomarkers to depressive symptom profiles. Transl. Psychiatry 2022, 12, 133. [Google Scholar] [CrossRef] [PubMed]
- Łoś, K.; Waszkiewicz, N. Biological Markers in Anxiety Disorders. J. Clin. Med. 2021, 10, 1744. [Google Scholar] [CrossRef]
- Battaglia, S.; Servajean, P.; Friston, K.J. The paradox of the self-studying brain. Phys. Life Rev. 2025, 52, 197–204. [Google Scholar] [CrossRef]
- Gregorio, F.D.; Battaglia, S. The intricate brain-body interaction in psychiatric and neurological diseases. Adv. Clin. Exp. Med. 2024, 33, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Sabbah, S.G.; Northoff, G. The self in depression and anxiety as a transdiagnostic and differential-diagnostic neural marker: A systematic review. Neurosci. Biobehav. Rev. 2025, 169, 106034. [Google Scholar] [CrossRef]
- Goldsmith, D.R.; Bekhbat, M.; Mehta, N.D.; Felger, J.C. Inflammation-Related Functional and Structural Dysconnectivity as a Pathway to Psychopathology. Biol. Psychiatry 2023, 93, 405–418. [Google Scholar] [CrossRef] [PubMed]
- Prompiengchai, S.; Dunlop, K. Breakthroughs and challenges for generating brain network-based biomarkers of treatment response in depression. Neuropsychopharmacology 2024, 50, 230–245. [Google Scholar] [CrossRef]
- Lobato-Delgado, B.; Priego-Torres, B.; Sanchez-Morillo, D. Combining Molecular, Imaging, and Clinical Data Analysis for Predicting Cancer Prognosis. Cancers 2022, 14, 3215. [Google Scholar] [CrossRef]
- Tanaka, M. From Serendipity to Precision: Integrating AI, Multi-Omics, and Human-Specific Models for Personalized Neuropsychiatric Care. Biomedicines 2025, 13, 167. [Google Scholar] [CrossRef]
- Ahmed, Z. Practicing precision medicine with intelligently integrative clinical and multi-omics data analysis. Hum. Genom. 2020, 14, 35. [Google Scholar] [CrossRef]
- Abdelaziz, E.H.; Ismail, R.; Mabrouk, M.S.; Amin, E. Multi-omics data integration and analysis pipeline for precision medicine: Systematic review. Comput. Biol. Chem. 2024, 113, 108254. [Google Scholar] [CrossRef]
- Tanaka, M.; Szatmári, I.; Vécsei, L. Quinoline Quest: Kynurenic Acid Strategies for Next-Generation Therapeutics via Rational Drug Design. Pharmaceuticals 2025, 18, 607. [Google Scholar] [CrossRef] [PubMed]
- Hagenberg, J.; Brückl, T.M.; Erhart, M.; Kopf-Beck, J.; Ködel, M.; Rehawi, G.; Röh-Karamihalev, S.; Sauer, S.; Yusupov, N.; Rex-Haffner, M.; et al. Dissecting depression symptoms: Multi-omics clustering uncovers immune-related subgroups and cell-type specific dysregulation. Brain Behav. Immun. 2025, 123, 353–369. [Google Scholar] [CrossRef]
- Richards, J.H.; Freeman, D.D.; Detloff, M.R. Myeloid Cell Association with Spinal Cord Injury-Induced Neuropathic Pain and Depressive-like Behaviors in LysM-eGFP Mice. J. Pain 2024, 25, 104433. [Google Scholar] [CrossRef] [PubMed]
- Hanč, P.; Gonzalez, R.J.; Mazo, I.B.; Wang, Y.; Lambert, T.; Ortiz, G.; Miller, E.W.; von Andrian, U.H. Multimodal control of dendritic cell functions by nociceptors. Science 2023, 379, eabm5658. [Google Scholar] [CrossRef]
- Battaglia, S.; Fazio, C.D.; Borgomaneri, S.; Avenanti, A. Cortisol Imbalance and Fear Learning in PTSD: Therapeutic Approaches to Control Abnormal Fear Responses. Curr. Neuropharmacol. 2025, 23, 835–846. [Google Scholar] [CrossRef] [PubMed]
- Battaglia, S.; Andero, R.; Thayer, J.F. Translational cross-species evidence of heart-related dynamics in threat learning. Neurosci. Biobehav. Rev. 2025, 176, 106273. [Google Scholar] [CrossRef] [PubMed]
- Sass, D.; Saligan, L.; Fitzgerald, W.; Berger, A.M.; Torres, I.; Barb, J.J.; Kupzyk, K.; Margolis, L. Extracellular vesicle associated and soluble immune marker profiles of psychoneurological symptom clusters in men with prostate cancer: An exploratory study. Transl. Psychiatry 2021, 11, 440. [Google Scholar] [CrossRef]
- Vinkers, C.H.; Kuzminskaite, E.; Lamers, F.; Giltay, E.J.; Penninx, B. An integrated approach to understand biological stress system dysregulation across depressive and anxiety disorders. J. Affect. Disord. 2021, 283, 139–146. [Google Scholar] [CrossRef]
- Lee, A.T.; Chang, E.F.; Paredes, M.F.; Nowakowski, T.J. Large-scale neurophysiology and single-cell profiling in human neuroscience. Nature 2024, 630, 587–595. [Google Scholar] [CrossRef]
- Hoang, N.; Sardaripour, N.; Ramey, G.D.; Schilling, K.; Liao, E.; Chen, Y.; Park, J.H.; Bledsoe, X.; Landman, B.A.; Gamazon, E.R.; et al. Integration of estimated regional gene expression with neuroimaging and clinical phenotypes at biobank scale. PLoS Biol. 2024, 22, e3002782. [Google Scholar] [CrossRef] [PubMed]
- Emani, P.S.; Liu, J.J.; Clarke, D.; Jensen, M.; Warrell, J.; Gupta, C.; Meng, R.; Lee, C.Y.; Xu, S.; Dursun, C.; et al. Single-cell genomics and regulatory networks for 388 human brains. Science 2024, 384, eadi5199. [Google Scholar] [CrossRef]
- van den Oord, E.; Aberg, K.A. Fine-grained cell-type specific association studies with human bulk brain data using a large single-nucleus RNA sequencing based reference panel. Sci. Rep. 2023, 13, 13004. [Google Scholar] [CrossRef]
- Alemán-Gómez, Y.; Griffa, A.; Houde, J.C.; Najdenovska, E.; Magon, S.; Cuadra, M.B.; Descoteaux, M.; Hagmann, P. A multi-scale probabilistic atlas of the human connectome. Sci. Data 2022, 9, 516. [Google Scholar] [CrossRef]
- Luo, C.; Liu, H.; Xie, F.; Armand, E.J.; Siletti, K.; Bakken, T.E.; Fang, R.; Doyle, W.I.; Stuart, T.; Hodge, R.D.; et al. Single nucleus multi-omics identifies human cortical cell regulatory genome diversity. Cell Genom. 2022, 2, 100107. [Google Scholar] [CrossRef]
- Balliu, B.; Douglas, C.; Seok, D.; Shenhav, L.; Wu, Y.; Chatzopoulou, D.; Kaiser, W.; Chen, V.; Kim, J.; Deverasetty, S. Personalized mood prediction from patterns of behavior collected with smartphones. NPJ Digit. Med. 2024, 7, 49. [Google Scholar] [CrossRef] [PubMed]
- Asare, K.O.; Moshe, I.; Terhorst, Y.; Vega, J.; Hosio, S.; Baumeister, H.; Pulkki-Råback, L.; Ferreira, D. Mood ratings and digital biomarkers from smartphone and wearable data differentiates and predicts depression status: A longitudinal data analysis. Pervasive Mob. Comput. 2022, 83, 101621. [Google Scholar] [CrossRef]
- Rykov, Y.G.; Ng, K.P.; Patterson, M.D.; Gangwar, B.A.; Kandiah, N. Predicting the severity of mood and neuropsychiatric symptoms from digital biomarkers using wearable physiological data and deep learning. Comput. Biol. Med. 2024, 180, 108959. [Google Scholar] [CrossRef]
- Shah, R.V.; Grennan, G.; Zafar-Khan, M.; Alim, F.; Dey, S.; Ramanathan, D.; Mishra, J. Personalized machine learning of depressed mood using wearables. Transl. Psychiatry 2021, 11, 338. [Google Scholar] [CrossRef]
- Li, B.; Sano, A. Extraction and interpretation of deep autoencoder-based temporal features from wearables for forecasting personalized mood, health, and stress. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2020, 4, 49. [Google Scholar] [CrossRef]
- Chen, J.; Abbod, M.; Shieh, J.S. Pain and Stress Detection Using Wearable Sensors and Devices—A Review. Sensors 2021, 21, 1030. [Google Scholar] [CrossRef]
- Patel, J.; Hung, C.; Katapally, T.R. Evaluating predictive artificial intelligence approaches used in mobile health platforms to forecast mental health symptoms among youth: A systematic review. Psychiatry Res. 2025, 343, 116277. [Google Scholar] [CrossRef] [PubMed]
- Vitali, D.; Olugbade, T.; Eccleston, C.; Keogh, E.; Bianchi-Berthouze, N.; Williams, A.C.d.C. Sensing behavior change in chronic pain: A scoping review of sensor technology for use in daily life. Pain 2024, 165, 1348–1360. [Google Scholar] [CrossRef] [PubMed]
- Dura-Bernal, S.; Herrera, B.; Lupascu, C.; Marsh, B.M.; Gandolfi, D.; Marasco, A.; Neymotin, S.; Romani, A.; Solinas, S.; Bazhenov, M.; et al. Large-Scale Mechanistic Models of Brain Circuits with Biophysically and Morphologically Detailed Neurons. J. Neurosci. 2024, 44, e1236242024. [Google Scholar] [CrossRef]
- Xie, L.; Das, S.R.; Li, Y.; Wisse, L.E.M.; McGrew, E.; Lyu, X.; DiCalogero, M.; Shah, U.; Ilesanmi, A.; Denning, A.E.; et al. A multi-cohort study of longitudinal and cross-sectional Alzheimer’s disease biomarkers in cognitively unimpaired older adults. Alzheimer’s Dement. 2025, 21, e14492. [Google Scholar] [CrossRef]
- Suárez, L.E.; Markello, R.D.; Betzel, R.F.; Misic, B. Linking Structure and Function in Macroscale Brain Networks. Trends Cogn. Sci. 2020, 24, 302–315. [Google Scholar] [CrossRef]
- McDonnell, E.I.; Xie, S.; Marder, K.; Cui, F.; Wang, Y. Dynamic undirected graphical models for time-varying clinical symptom and neuroimaging networks. Stat. Med. 2024, 43, 4131–4147. [Google Scholar] [CrossRef]
- Lori, A.; Schultebraucks, K.; Galatzer-Levy, I.; Daskalakis, N.P.; Katrinli, S.; Smith, A.K.; Myers, A.J.; Richholt, R.; Huentelman, M.; Guffanti, G.; et al. Transcriptome-wide association study of post-trauma symptom trajectories identified GRIN3B as a potential biomarker for PTSD development. Neuropsychopharmacology 2021, 46, 1811–1820. [Google Scholar] [CrossRef]
- Maric, D.; Jahanipour, J.; Li, X.R.; Singh, A.; Mobiny, A.; Van Nguyen, H.; Sedlock, A.; Grama, K.; Roysam, B. Whole-brain tissue mapping toolkit using large-scale highly multiplexed immunofluorescence imaging and deep neural networks. Nat. Commun. 2021, 12, 1550. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhang, K.; Zhang, W.; Jiao, B.; Cao, X.; Yu, S.; Zhang, M.; Zhang, X. Unidirectional Crosstalk Between NTRK1 and IGF2 Drives ER Stress in Chronic Pain. Biomedicines 2025, 13, 1632. [Google Scholar] [CrossRef]
- Della Vecchia, A.; De Luca, C.; Becattini, L.; Curto, L.; Ferrari, E.; Siciliano, G.; Gori, S.; Baldacci, F. Beyond Pain Relief: Unveiling the Multifaceted Impact of Anti-CGRP/R mAbs on Comorbid Symptoms in Resistant Migraine Patients. Biomedicines 2024, 12, 677. [Google Scholar] [CrossRef]
- Arévalo-Caro, C.; López, D.; Sánchez Milán, J.A.; Lorca, C.; Mulet, M.; Arboleda, H.; Losada Amaya, S.; Serra, A.; Gallart-Palau, X. Periodontal Indices as Predictors of Cognitive Decline: Insights from the PerioMind Colombia Cohort. Biomedicines 2025, 13, 205. [Google Scholar] [CrossRef]
- Menegon, F.; De Marchi, F.; Aprile, D.; Zanelli, I.; Decaroli, G.; Comi, C.; Tondo, G. From Mild Cognitive Impairment to Dementia: The Impact of Comorbid Conditions on Disease Conversion. Biomedicines 2024, 12, 1675. [Google Scholar] [CrossRef] [PubMed]
- Tsiakiri, A.; Bakirtzis, C.; Plakias, S.; Vlotinou, P.; Vadikolias, K.; Terzoudi, A.; Christidi, F. Predictive Models for the Transition from Mild Neurocognitive Disorder to Major Neurocognitive Disorder: Insights from Clinical, Demographic, and Neuropsychological Data. Biomedicines 2024, 12, 1232. [Google Scholar] [CrossRef] [PubMed]
- Smagin, D.A.; Bezryadnov, D.V.; Zavialova, M.G.; Abramova, A.Y.; Pertsov, S.S.; Kudryavtseva, N.N. Blood Plasma Markers in Depressed Mice under Chronic Social Defeat Stress. Biomedicines 2024, 12, 1485. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo Godoy, A.C.; Frota, F.F.; Araújo, L.P.; Valenti, V.E.; Pereira, E.; Detregiachi, C.R.P.; Galhardi, C.M.; Caracio, F.C.; Haber, R.S.A.; Fornari Laurindo, L.; et al. Neuroinflammation and Natural Antidepressants: Balancing Fire with Flora. Biomedicines 2025, 13, 1129. [Google Scholar] [CrossRef]
- Grande, G.H.D.; Ferrero-Hernández, P.; de Oliveira, L.R.; Ramos, V.; Palma, M.R.; Vidal, R.; Oishi, A.; Ferrari, G.; Christofaro, D.G.D. Physical Inactivity Amplifies the Link Between Anxiety, Depression, and Neck Pain in Breast Cancer Survivors. Biomedicines 2025, 13, 1089. [Google Scholar] [CrossRef]
- Canfora, F.; Ottaviani, G.; Calabria, E.; Pecoraro, G.; Leuci, S.; Coppola, N.; Sansone, M.; Rupel, K.; Biasotto, M.; Di Lenarda, R.; et al. Advancements in Understanding and Classifying Chronic Orofacial Pain: Key Insights from Biopsychosocial Models and International Classifications (ICHD-3, ICD-11, ICOP). Biomedicines 2023, 11, 3266. [Google Scholar] [CrossRef]
- Samra, A.I.; Kamel, A.S.; Abdallah, D.M.; El Fattah, M.A.A.; Ahmed, K.A.; El-Abhar, H.S. Preclinical Evidence for the Role of the Yin/Yang Angiotensin System Components in Autism Spectrum Disorder: A Therapeutic Target of Astaxanthin. Biomedicines 2023, 11, 3156. [Google Scholar] [CrossRef] [PubMed]
- Barbalho, S.M.; Leme Boaro, B.; da Silva Camarinha Oliveira, J.; Patočka, J.; Barbalho Lamas, C.; Tanaka, M.; Laurindo, L.F. Molecular Mechanisms Underlying Neuroinflammation Intervention with Medicinal Plants: A Critical and Narrative Review of the Current Literature. Pharmaceuticals 2025, 18, 133. [Google Scholar] [CrossRef]
- Sacco, S.; Amin, F.M.; Ashina, M.; Bendtsen, L.; Deligianni, C.I.; Gil-Gouveia, R.; Katsarava, Z.; MaassenVanDenBrink, A.; Martelletti, P.; Mitsikostas, D.D.; et al. European Headache Federation guideline on the use of monoclonal antibodies targeting the calcitonin gene related peptide pathway for migraine prevention—2022 update. J. Headache Pain. 2022, 23, 67. [Google Scholar] [CrossRef] [PubMed]
- Messina, R.; Huessler, E.M.; Puledda, F.; Haghdoost, F.; Lebedeva, E.R.; Diener, H.C. Safety and tolerability of monoclonal antibodies targeting the CGRP pathway and gepants in migraine prevention: A systematic review and network meta-analysis. Cephalalgia 2023, 43, 3331024231152169. [Google Scholar] [CrossRef] [PubMed]
- Russo, A.F.; Hay, D.L. CGRP physiology, pharmacology, and therapeutic targets: Migraine and beyond. Physiol. Rev. 2023, 103, 1565–1644. [Google Scholar] [CrossRef]
- Tanaka, M.; Battaglia, S.; Liloia, D. Navigating Neurodegeneration: Integrating Biomarkers, Neuroinflammation, and Imaging in Parkinson’s, Alzheimer’s, and Motor Neuron Disorders. Biomedicines 2025, 13, 1045. [Google Scholar] [CrossRef]
- de Lima, E.P.; Laurindo, L.F.; Catharin, V.C.S.; Direito, R.; Tanaka, M.; Jasmin Santos German, I.; Lamas, C.B.; Guiguer, E.L.; Araújo, A.C.; Fiorini, A.M.R.; et al. Polyphenols, Alkaloids, and Terpenoids Against Neurodegeneration: Evaluating the Neuroprotective Effects of Phytocompounds Through a Comprehensive Review of the Current Evidence. Metabolites 2025, 15, 124. [Google Scholar] [CrossRef]
- Juhász, L.; Spisák, K.; Szolnoki, B.Z.; Nászai, A.; Szabó, Á.; Rutai, A.; Tallósy, S.P.; Szabó, A.; Toldi, J.; Tanaka, M.; et al. The Power Struggle: Kynurenine Pathway Enzyme Knockouts and Brain Mitochondrial Respiration. J. Neurochem. 2025, 169, e70075. [Google Scholar] [CrossRef] [PubMed]
- Darwish, S.F.; Elbadry, A.M.M.; Elbokhomy, A.S.; Salama, G.A.; Salama, R.M. The dual face of microglia (M1/M2) as a potential target in the protective effect of nutraceuticals against neurodegenerative diseases. Front. Aging 2023, 4, 1231706. [Google Scholar] [CrossRef]
- Tsai, C.F.; Chen, G.W.; Chen, Y.C.; Shen, C.K.; Lu, D.Y.; Yang, L.Y.; Chen, J.H.; Yeh, W.L. Regulatory Effects of Quercetin on M1/M2 Macrophage Polarization and Oxidative/Antioxidative Balance. Nutrients 2021, 14, 67. [Google Scholar] [CrossRef]
- Hooshmand, M.; Asoodeh, A. Coadministration of Monophosphoryl Lipid and Curcumin Modulates Neuroprotective Effects in LPS Stimulated Rat Primary Microglial Cells. Oxid. Med. Cell Longev. 2024, 2024, 9422312. [Google Scholar] [CrossRef]
- Doré, I.; Plante, A.; Peck, S.S.; Bedrossian, N.; Sabiston, C.M. Physical activity and sedentary time: Associations with fatigue, pain, and depressive symptoms over 4 years post-treatment among breast cancer survivors. Support. Care Cancer 2022, 30, 785–792. [Google Scholar] [CrossRef]
- Hirschey, R.; Bryant, A.L.; Macek, C.; Battaglini, C.; Santacroce, S.; Courneya, K.S.; Walker, J.S.; Avishai, A.; Sheeran, P. Predicting physical activity among cancer survivors: Meta-analytic path modeling of longitudinal studies. Health Psychol. 2020, 39, 269–280. [Google Scholar] [CrossRef]
- Andersen, B.L.; Lacchetti, C.; Ashing, K.; Berek, J.S.; Berman, B.S.; Bolte, S.; Dizon, D.S.; Given, B.; Nekhlyudov, L.; Pirl, W.; et al. Management of Anxiety and Depression in Adult Survivors of Cancer: ASCO Guideline Update. J. Clin. Oncol. 2023, 41, 3426–3453. [Google Scholar] [CrossRef]
- Sun, M.; Liu, C.; Lu, Y.; Zhu, F.; Li, H.; Lu, Q. Effects of Physical Activity on Quality of Life, Anxiety and Depression in Breast Cancer Survivors: A Systematic Review and Meta-analysis. Asian Nurs. Res. (Korean Soc. Nurs. Sci.) 2023, 17, 276–285. [Google Scholar] [CrossRef]
- Van Dijck, S.; De Groef, A.; Kothari, J.; Dams, L.; Haenen, V.; Roussel, N.; Meeus, M. Barriers and facilitators to physical activity in cancer survivors with pain: A systematic review. Support. Care Cancer 2023, 31, 668. [Google Scholar] [CrossRef] [PubMed]
- Blount, D.S.; McDonough, D.J.; Gao, Z. Effect of Wearable Technology-Based Physical Activity Interventions on Breast Cancer Survivors’ Physiological, Cognitive, and Emotional Outcomes: A Systematic Review. J. Clin. Med. 2021, 10, 2015. [Google Scholar] [CrossRef] [PubMed]
- Michelini, G.; Carlisi, C.O.; Eaton, N.R.; Elison, J.T.; Haltigan, J.D.; Kotov, R.; Krueger, R.F.; Latzman, R.D.; Li, J.J.; Levin-Aspenson, H.F.; et al. Where do neurodevelopmental conditions fit in transdiagnostic psychiatric frameworks? Incorporating a new neurodevelopmental spectrum. World Psychiatry 2024, 23, 333–357. [Google Scholar] [CrossRef]
- Gaebel, W.; Stricker, J.; Kerst, A. Changes from ICD-10 to ICD-11 and future directions in psychiatric classification. Dialogues Clin. Neurosci. 2020, 22, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Morris-Rosendahl, D.J.; Crocq, M.A. Neurodevelopmental disorders-the history and future of a diagnostic concept. Dialogues Clin. Neurosci. 2020, 22, 65–72. [Google Scholar] [CrossRef]
- Stein, D.J.; Szatmari, P.; Gaebel, W.; Berk, M.; Vieta, E.; Maj, M.; de Vries, Y.A.; Roest, A.M.; de Jonge, P.; Maercker, A.; et al. Mental, behavioral and neurodevelopmental disorders in the ICD-11: An international perspective on key changes and controversies. BMC Med. 2020, 18, 21. [Google Scholar] [CrossRef]
- Sturchio, A.; Marsili, L.; Vizcarra, J.A.; Dwivedi, A.K.; Kauffman, M.A.; Duker, A.P.; Lu, P.; Pauciulo, M.W.; Wissel, B.D.; Hill, E.J.; et al. Phenotype-Agnostic Molecular Subtyping of Neurodegenerative Disorders: The Cincinnati Cohort Biomarker Program (CCBP). Front. Aging Neurosci. 2020, 12, 553635. [Google Scholar] [CrossRef]
- Xu, C.; Lopez, R.; Mehlman, E.; Regier, J.; Jordan, M.I.; Yosef, N. Probabilistic harmonization and annotation of single-cell transcriptomics data with deep generative models. Mol. Syst. Biol. 2021, 17, e9620. [Google Scholar] [CrossRef]
- O’Hara, A.J.; Cohen, T.; Stancliffe, E.; Richardson, A.; Corney, D.; Turner, L.; Latif, H.; Zhou, G. Integrated multiomics unlocks holistic phenotypic insights allowing for deep molecular exploration. Cancer Res. 2025, 85, 3691. [Google Scholar] [CrossRef]
- Bringmann, M.; Imam, F.; Krish, V. The Global Neurodegeneration Proteomics Consortium-Biomarker and Drug Target Discovery Across> 40,000 Biosamples for AD, PD, ALS, FTD, and Aging. Alzheimer’s Dement. 2024, 20, e095579. [Google Scholar] [CrossRef]
- Ruzicka, W.B.; Mohammadi, S.; Fullard, J.F.; Davila-Velderrain, J.; Subburaju, S.; Tso, D.R.; Hourihan, M.; Jiang, S.; Lee, H.C.; Bendl, J.; et al. Single-cell multi-cohort dissection of the schizophrenia transcriptome. Science 2024, 384, eadg5136. [Google Scholar] [CrossRef]
- Dries, R.; Chen, J.; Del Rossi, N.; Khan, M.M.; Sistig, A.; Yuan, G.C. Advances in spatial transcriptomic data analysis. Genome Res. 2021, 31, 1706–1718. [Google Scholar] [CrossRef]
- Bonté, P.E.; Arribas, Y.A.; Merlotti, A.; Carrascal, M.; Zhang, J.V.; Zueva, E.; Binder, Z.A.; Alanio, C.; Goudot, C.; Amigorena, S. Single-cell RNA-seq-based proteogenomics identifies glioblastoma-specific transposable elements encoding HLA-I-presented peptides. Cell Rep. 2022, 39, 110916. [Google Scholar] [CrossRef]
- Dhir, S.; Derue, H.; Ribeiro-da-Silva, A. Temporal changes of spinal microglia in murine models of neuropathic pain: A scoping review. Front. Immunol. 2024, 15, 1460072. [Google Scholar] [CrossRef]
- Hiraga, S.I.; Itokazu, T.; Nishibe, M.; Yamashita, T. Neuroplasticity related to chronic pain and its modulation by microglia. Inflamm. Regen. 2022, 42, 15. [Google Scholar] [CrossRef] [PubMed]
- Tsuda, M.; Masuda, T.; Kohno, K. Microglial diversity in neuropathic pain. Trends Neurosci. 2023, 46, 597–610. [Google Scholar] [CrossRef]
- Liu, Y.; Cai, X.; Shi, B.; Mo, Y.; Zhang, J.; Luo, W.; Yu, B.; Li, X. Mechanisms and Therapeutic Prospects of Microglia-Astrocyte Interactions in Neuropathic Pain Following Spinal Cord Injury. Mol. Neurobiol. 2025, 62, 4654–4676. [Google Scholar] [CrossRef] [PubMed]
- de Vries, L.P.; Baselmans, B.M.L.; Bartels, M. Smartphone-Based Ecological Momentary Assessment of Well-Being: A Systematic Review and Recommendations for Future Studies. J. Happiness Stud. 2021, 22, 2361–2408. [Google Scholar] [CrossRef] [PubMed]
- Yim, S.J.; Lui, L.M.W.; Lee, Y.; Rosenblat, J.D.; Ragguett, R.M.; Park, C.; Subramaniapillai, M.; Cao, B.; Zhou, A.; Rong, C.; et al. The utility of smartphone-based, ecological momentary assessment for depressive symptoms. J. Affect. Disord. 2020, 274, 602–609. [Google Scholar] [CrossRef]
- Mestdagh, M.; Verdonck, S.; Piot, M.; Niemeijer, K.; Kilani, G.; Tuerlinckx, F.; Kuppens, P.; Dejonckheere, E. m-Path: An easy-to-use and highly tailorable platform for ecological momentary assessment and intervention in behavioral research and clinical practice. Front. Digit. Health 2023, 5, 1182175. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, N.C.; Bhattacharya, S. Digital biomarkers of anxiety disorder symptom changes: Personalized deep learning models using smartphone sensors accurately predict anxiety symptoms from ecological momentary assessments. Behav. Res. Ther. 2022, 149, 104013. [Google Scholar] [CrossRef]
- Russell, M.A.; Gajos, J.M. Annual Research Review: Ecological momentary assessment studies in child psychology and psychiatry. J. Child. Psychol. Psychiatry 2020, 61, 376–394. [Google Scholar] [CrossRef]
- Brem, S. Vagus nerve stimulation: Novel concept for the treatment of glioblastoma and solid cancers by cytokine (interleukin-6) reduction, attenuating the SASP, enhancing tumor immunity. Brain Behav. Immun. Health 2024, 42, 100859. [Google Scholar] [CrossRef]
- Herhaus, B. Alterations in pro-inflammatory cytokine TNF-alpha and stimulation of the cholinergic anti-inflammatory pathway in individuals with panic disorder using slow-paced breathing with HRV-BF–a randomized controlled trial. Psychoneuroendocrinology 2024, 160, 106751. [Google Scholar] [CrossRef]
- Hitch, T.C.A.; Hall, L.J.; Walsh, S.K.; Leventhal, G.E.; Slack, E.; de Wouters, T.; Walter, J.; Clavel, T. Microbiome-based interventions to modulate gut ecology and the immune system. Mucosal Immunol. 2022, 15, 1095–1113. [Google Scholar] [CrossRef] [PubMed]
- Di Gregorio, F.; Steinhauser, M.; Maier, M.E.; Thayer, J.F.; Battaglia, S. Error-related cardiac deceleration: Functional interplay between error-related brain activity and autonomic nervous system in performance monitoring. Neurosci. Biobehav. Rev. 2024, 157, 105542. [Google Scholar] [CrossRef]
- Battaglia, S.; Nazzi, C.; Di Fazio, C.; Borgomaneri, S. The role of pre-supplementary motor cortex in action control with emotional stimuli: A repetitive transcranial magnetic stimulation study. Ann. N. Y. Acad. Sci. 2024, 1536, 151–166. [Google Scholar] [CrossRef]
- Turrini, S.; Bevacqua, N.; Cataneo, A.; Chiappini, E.; Fiori, F.; Battaglia, S.; Romei, V.; Avenanti, A. Neurophysiological Markers of Premotor-Motor Network Plasticity Predict Motor Performance in Young and Older Adults. Biomedicines 2023, 11, 1464. [Google Scholar] [CrossRef]
- Tanaka, M.; He, Z.; Han, S.; Battaglia, S. Editorial: Noninvasive brain stimulation: A promising approach to study and improve emotion regulation. Front. Behav. Neurosci. 2025, 19, 1633936. [Google Scholar] [CrossRef] [PubMed]
Deficit | References | |
---|---|---|
1 | Lack of mechanistic alignment linking molecular signals to whole-brain networks | [49,50,51] |
2 | Absence of large, harmonized longitudinal cohorts to chart symptom trajectories | [50,52,53] |
3 | Biomarker panels that ignore contextual nuance and remain unstandardized | [50,53,54] |
4 | Predictive algorithms seldom stress-tested across diverse populations | [49,50,52] |
5 | Fragile pipelines that fail to convert discoveries into patient-centered tools | [49,52,54] |
Thematic Group | Paper Title (Shortened) | References |
---|---|---|
Chronic Pain and Molecular Mechanism | Unidirectional Crosstalk Between NTRK1 and IGF2 Drives ER Stress in Chronic Pain | [55] |
Impact of Anti-CGRP/R mAbs on Comorbid Symptoms in Resistant Migraine | [56] | |
Comorbidities and Cognitive Decline | Periodontal Indices as Predictors of Cognitive Decline (PerioMind Cohort) | [57] |
Impact of Comorbid Conditions on Conversion from Mild Cognitive Impairment to Dementia | [58] | |
Predictive Models for Progression to Major Neurocognitive Disorder | [59] | |
Neuroinflammation, Stress, and Depression | Blood Plasma Markers in Mice under Chronic Social Defeat Stress | [60] |
Neuroinflammation and Natural Antidepressants | [61] | |
Behavioral and Lifestyle Factors in Pain, Depression, and Anxiety | Physical Inactivity Amplifies Anxiety, Depression, and Neck Pain in Breast-Cancer Survivors | [62] |
Advances in Classifying Chronic Orofacial Pain via Biopsychosocial Models | [63] | |
Neurodevelopmental Disorders and Novel Therapeutic Targets | Yin/Yang Angiotensin System Components in Autism Spectrum Disorder; Astaxanthin as Therapy | [64] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanaka, M.; Battaglia, S. From Biomarkers to Behavior: Mapping the Neuroimmune Web of Pain, Mood, and Memory. Biomedicines 2025, 13, 2226. https://doi.org/10.3390/biomedicines13092226
Tanaka M, Battaglia S. From Biomarkers to Behavior: Mapping the Neuroimmune Web of Pain, Mood, and Memory. Biomedicines. 2025; 13(9):2226. https://doi.org/10.3390/biomedicines13092226
Chicago/Turabian StyleTanaka, Masaru, and Simone Battaglia. 2025. "From Biomarkers to Behavior: Mapping the Neuroimmune Web of Pain, Mood, and Memory" Biomedicines 13, no. 9: 2226. https://doi.org/10.3390/biomedicines13092226
APA StyleTanaka, M., & Battaglia, S. (2025). From Biomarkers to Behavior: Mapping the Neuroimmune Web of Pain, Mood, and Memory. Biomedicines, 13(9), 2226. https://doi.org/10.3390/biomedicines13092226