Neoantigen-Driven Immunotherapy in Triple-Negative Breast Cancer: Emerging Strategies and Clinical Potential
Abstract
1. Introduction
2. Tumor Microenvironment in TNBC and Therapeutic Opportunities
2.1. CD8+ Cells: Main Effectors
2.2. CD4+ Cells and Regulatory T-Cells
2.3. Dendritic Cells: Antigen Presentation
2.4. Immunosuppressive Cell Populations
2.5. TME Modeling Strategies
3. Neoantigen Identification and Prioritization
3.1. Neoantigen Identification: High-Throughput Sequencing Opportunities
3.2. Neoantigen Prediction and Prioritization
3.2.1. Neoantigen Prediction Tools
3.2.2. HLA Binding Affinity
3.2.3. Tumor-Specific Expression
3.2.4. T-Cell Receptor Repertoire Analysis
3.3. The Landscape of Neoantigens in TNBC—State of the Art
4. Adoptive Cell Therapies
4.1. Tumor-Infiltrating Lymphocyte (TIL) Therapy
4.2. CAR-T Therapy
4.3. CAR-NK Therapy
4.4. TCR-T Cell Therapy
5. Neoantigen-Based Vaccine Platforms
5.1. Peptide-Based Vaccines
5.2. DNA/RNA-Based Vaccines
5.3. Dendritic Cell-Based Vaccines
5.4. Oncolytic Viruses
6. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stagg, J.; Allard, B. Immunotherapeutic Approaches in Triple-Negative Breast Cancer: Latest Research and Clinical Prospects. Ther. Adv. Med. Oncol. 2013, 5, 169–181. [Google Scholar] [CrossRef]
- Dent, R.; Hanna, W.M.; Trudeau, M.; Rawlinson, E.; Sun, P.; Narod, S.A. Pattern of Metastatic Spread in Triple-Negative Breast Cancer. Breast Cancer Res. Treat. 2009, 115, 423–428. [Google Scholar] [CrossRef]
- Steward, L.; Conant, L.; Gao, F.; Margenthaler, J.A. Predictive Factors and Patterns of Recurrence in Patients with Triple Negative Breast Cancer. Ann. Surg. Oncol. 2014, 21, 2165–2171. [Google Scholar] [CrossRef] [PubMed]
- Kassam, F.; Enright, K.; Dent, R.; Dranitsaris, G.; Myers, J.; Flynn, C.; Fralick, M.; Kumar, R.; Clemons, M. Survival Outcomes for Patients with Metastatic Triple-Negative Breast Cancer: Implications for Clinical Practice and Trial Design. Clin. Breast Cancer 2009, 9, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Azim, H.A.; Ghosn, M.; Oualla, K.; Kassem, L. Personalized Treatment in Metastatic Triple-Negative Breast Cancer: The Outlook in 2020. Breast J. 2020, 26, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Mahtani, R.; Kittaneh, M.; Kalinsky, K.; Mamounas, E.; Badve, S.; Vogel, C.; Lower, E.; Schwartzberg, L.; Pegram, M.; Breast Cancer Therapy Expert Group (BCTEG). Advances in Therapeutic Approaches for Triple-Negative Breast Cancer. Clin. Breast Cancer 2021, 21, 383–390. [Google Scholar] [CrossRef]
- Vagia, E.; Mahalingam, D.; Cristofanilli, M. The Landscape of Targeted Therapies in TNBC. Cancers 2020, 12, 916. [Google Scholar] [CrossRef]
- Zeichner, S.B.; Terawaki, H.; Gogineni, K. A Review of Systemic Treatment in Metastatic Triple-Negative Breast Cancer. Breast Cancer 2016, 10, 25–36. [Google Scholar] [CrossRef]
- Wein, L.; Loi, S. Mechanisms of Resistance of Chemotherapy in Early-Stage Triple Negative Breast Cancer (TNBC). Breast 2017, 34 (Suppl. S1), S27–S30. [Google Scholar] [CrossRef]
- Bai, X.; Ni, J.; Beretov, J.; Graham, P.; Li, Y. Immunotherapy for Triple-Negative Breast Cancer: A Molecular Insight into the Microenvironment, Treatment, and Resistance. J. Natl. Cancer Cent. 2021, 1, 75–87. [Google Scholar] [CrossRef]
- Mittendorf, E.A.; Philips, A.V.; Meric-Bernstam, F.; Qiao, N.; Wu, Y.; Harrington, S.; Su, X.; Wang, Y.; Gonzalez-Angulo, A.M.; Akcakanat, A.; et al. PD-L1 Expression in Triple-Negative Breast Cancer. Cancer Immunol. Res. 2014, 2, 361–370. [Google Scholar] [CrossRef]
- Cortes, J.; Lipatov, O.; Im, S.-A.; Gonçalves, A.; Lee, K.; Schmid, P.; Tamura, K.; Testa, L.; Witzel, I.; Ohtani, S.; et al. KEYNOTE-119: Phase 3 Study of Pembrolizumab versus Single-Agent Chemotherapy for Metastatic Triple-Negative Breast Cancer (mTNBC). Ann. Oncol. 2019, 30, v859–v860. [Google Scholar] [CrossRef]
- Cortes, J.; Cescon, D.W.; Rugo, H.S.; Nowecki, Z.; Im, S.-A.; Yusof, M.M.; Gallardo, C.; Lipatov, O.; Barrios, C.H.; Holgado, E.; et al. Pembrolizumab plus Chemotherapy versus Placebo plus Chemotherapy for Previously Untreated Locally Recurrent Inoperable or Metastatic Triple-Negative Breast Cancer (KEYNOTE-355): A Randomised, Placebo-Controlled, Double-Blind, Phase 3 Clinical Trial. Lancet 2020, 396, 1817–1828. [Google Scholar] [CrossRef] [PubMed]
- Nanda, R.; Liu, M.C.; Yau, C.; Shatsky, R.; Pusztai, L.; Wallace, A.; Chien, A.J.; Forero-Torres, A.; Ellis, E.; Han, H.; et al. Effect of Pembrolizumab plus Neoadjuvant Chemotherapy on Pathologic Complete Response in Women with Early-Stage Breast Cancer: An Analysis of the Ongoing Phase 2 Adaptively Randomized I-SPY2 Trial. JAMA Oncol. 2020, 6, 676–684. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Feng, L.; Huang, Y.; Wu, Y.; Xie, N. Mechanisms and Strategies to Overcome PD-1/PD-L1 Blockade Resistance in Triple-Negative Breast Cancer. Cancers 2022, 15, 104. [Google Scholar] [CrossRef]
- Wong, R.S.; Ong, R.J.; Lim, J.S. Immune Checkpoint Inhibitors in Breast Cancer: Development, Mechanisms of Resistance and Potential Management Strategies. Cancer Drug Resist. 2023, 6, 768–787. [Google Scholar] [CrossRef]
- Bonaventura, P.; Shekarian, T.; Alcazer, V.; Valladeau-Guilemond, J.; Valsesia-Wittmann, S.; Amigorena, S.; Caux, C.; Depil, S. Cold Tumors: A Therapeutic Challenge for Immunotherapy. Front. Immunol. 2019, 10, 168. [Google Scholar] [CrossRef]
- Liu, Z.; Li, M.; Jiang, Z.; Wang, X. A Comprehensive Immunologic Portrait of Triple-Negative Breast Cancer. Transl. Oncol. 2018, 11, 311–329. [Google Scholar] [CrossRef]
- Kumar, S.; Chatterjee, M.; Ghosh, P.; Ganguly, K.K.; Basu, M.; Ghosh, M.K. Targeting PD-1/PD-L1 in Cancer Immunotherapy: An Effective Strategy for Treatment of Triple-Negative Breast Cancer (TNBC) Patients. Genes Dis. 2023, 10, 1318–1350. [Google Scholar] [CrossRef]
- García-Teijido, P.; Cabal, M.L.; Fernández, I.P.; Pérez, Y.F. Tumor-Infiltrating Lymphocytes in Triple Negative Breast Cancer: The Future of Immune Targeting. Clin. Med. Insights Oncol. 2016, 10, 31–39. [Google Scholar] [CrossRef]
- Lopez de Rodas, M.; Villalba-Esparza, M.; Sanmamed, M.F.; Chen, L.; Rimm, D.L.; Schalper, K.A. Biological and Clinical Significance of Tumour-Infiltrating Lymphocytes in the Era of Immunotherapy: A Multidimensional Approach. Nat. Rev. Clin. Oncol. 2025, 22, 163–181. [Google Scholar] [CrossRef]
- Lu, Y.-C.; Robbins, P.F. Cancer Immunotherapy Targeting Neoantigens. Semin. Immunol. 2016, 28, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Xie, N.; Shen, G.; Gao, W.; Huang, Z.; Huang, C.; Fu, L. Neoantigens: Promising Targets for Cancer Therapy. Signal Transduct. Target. Ther. 2023, 8, 9. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, J.; Chiffelle, J.; Perez, M.A.S.; Magnin, M.; Bobisse, S.; Arnaud, M.; Genolet, R.; Cesbron, J.; Barras, D.; Navarro Rodrigo, B.; et al. Neoantigen-Specific CD8 T Cells with High Structural Avidity Preferentially Reside in and Eliminate Tumors. Nat. Commun. 2023, 14, 3188. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Pan, X.; Wang, Y.; Zhang, Y. Targeting Neoantigens for Cancer Immunotherapy. Biomark. Res. 2021, 9, 61. [Google Scholar] [CrossRef]
- Chai, Y.; Chen, Y.; Zhang, D.; Wei, Y.; Li, Z.; Li, Q.; Xu, B. Homologous Recombination Deficiency (HRD) and BRCA1/2 Gene Mutation for Predicting the Effect of Platinum-Based Neoadjuvant Chemotherapy of Early-Stage Triple-Negative Breast Cancer (TNBC): A Systematic Review and Meta-Analysis. J. Pers. Med. 2022, 12, 323. [Google Scholar] [CrossRef]
- Han, Y.; Rovella, V.; Smirnov, A.; Buonomo, O.C.; Mauriello, A.; Perretta, T.; Shi, Y.; Woodmsith, J.; Bischof, J.; CENTRE, T.; et al. A BRCA2 Germline Mutation and High Expression of Immune Checkpoints in a TNBC Patient. Cell Death Discov. 2023, 9, 370. [Google Scholar] [CrossRef]
- Malla, R.R.; Vasudevaraju, P.; Vempati, R.K.; Rakshmitha, M.; Merchant, N.; Nagaraju, G.P. Regulatory T Cells: Their Role in Triple-Negative Breast Cancer Progression and Metastasis. Cancer 2022, 128, 1171–1183. [Google Scholar] [CrossRef]
- Stovgaard, E.S.; Nielsen, D.; Hogdall, E.; Balslev, E. Triple Negative Breast Cancer—Prognostic Role of Immune-Related Factors: A Systematic Review. Acta Oncol. 2018, 57, 74–82. [Google Scholar] [CrossRef]
- Zhang, W.-J.; Wang, X.-H.; Gao, S.-T.; Chen, C.; Xu, X.-Y.; Sun, Q.; Zhou, Z.-H.; Wu, G.-Z.; Yu, Q.; Xu, G.; et al. Tumor-Associated Macrophages Correlate with Phenomenon of Epithelial-Mesenchymal Transition and Contribute to Poor Prognosis in Triple-Negative Breast Cancer Patients. J. Surg. Res. 2018, 222, 93–101. [Google Scholar] [CrossRef]
- Serrano García, L.; Jávega, B.; Llombart Cussac, A.; Gión, M.; Pérez-García, J.M.; Cortés, J.; Fernández-Murga, M.L. Patterns of Immune Evasion in Triple-Negative Breast Cancer and New Potential Therapeutic Targets: A Review. Front. Immunol. 2024, 15, 1513421. [Google Scholar] [CrossRef]
- Fan, Y.; He, S. The Characteristics of Tumor Microenvironment in Triple Negative Breast Cancer. Cancer Manag. Res. 2022, 14, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Siddharth, S.; Parida, S.; Wu, X.; Sharma, D. Tumor Microenvironment: Key Players in Triple Negative Breast Cancer Immunomodulation. Cancers 2021, 13, 3357. [Google Scholar] [CrossRef] [PubMed]
- Sahin Ozkan, H.; Ugurlu, M.U.; Yumuk, P.F.; Kaya, H. Prognostic Role of Immune Markers in Triple Negative Breast Carcinoma. Pathol. Oncol. Res. 2020, 26, 2733–2745. [Google Scholar] [CrossRef] [PubMed]
- Deepak, K.G.K.; Vempati, R.; Nagaraju, G.P.; Dasari, V.R.; S, N.; Rao, D.N.; Malla, R.R. Tumor Microenvironment: Challenges and Opportunities in Targeting Metastasis of Triple Negative Breast Cancer. Pharmacol. Res. 2020, 153, 104683. [Google Scholar] [CrossRef]
- Lehmann, B.D.; Jovanović, B.; Chen, X.; Estrada, M.V.; Johnson, K.N.; Shyr, Y.; Moses, H.L.; Sanders, M.E.; Pietenpol, J.A. Refinement of Triple-Negative Breast Cancer Molecular Subtypes: Implications for Neoadjuvant Chemotherapy Selection. PLoS ONE 2016, 11, e0157368. [Google Scholar] [CrossRef]
- Weng, L.; Zhou, J.; Guo, S.; Xu, N.; Ma, R. The Molecular Subtyping and Precision Medicine in Triple-Negative Breast Cancer—Based on Fudan TNBC Classification. Cancer Cell Int. 2024, 24, 120. [Google Scholar] [CrossRef]
- Minati, R.; Perreault, C.; Thibault, P. A Roadmap toward the Definition of Actionable Tumor-Specific Antigens. Front. Immunol. 2020, 11, 583287. [Google Scholar] [CrossRef]
- de Miguel, D.; Ramirez-Labrada, A.; Uranga, I.; Hidalgo, S.; Santiago, L.; Galvez, E.M.; Arias, M.; Pardo, J. Inflammatory Cell Death Induced by Cytotoxic Lymphocytes: A Dangerous but Necessary Liaison. FEBS J. 2022, 289, 4398–4415. [Google Scholar] [CrossRef]
- Weigelin, B.; Friedl, P. T Cell-Mediated Additive Cytotoxicity—Death by Multiple Bullets. Trends Cancer 2022, 8, 980–987. [Google Scholar] [CrossRef]
- Miller, F. Immunobiology: The Immune System in Health and Disease. Charles A. Janeway, Jr., Paul Travers, Mark Walport, J. Donald Capra. Q. Rev. Biol. 2000, 75, 224–225. [Google Scholar] [CrossRef]
- Walczak, H.; Miller, R.E.; Ariail, K.; Gliniak, B.; Griffith, T.S.; Kubin, M.; Chin, W.; Jones, J.; Woodward, A.; Le, T.; et al. Tumoricidal Activity of Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand in Vivo. Nat. Med. 1999, 5, 157–163. [Google Scholar] [CrossRef]
- Montinaro, A.; Walczak, H. Harnessing TRAIL-Induced Cell Death for Cancer Therapy: A Long Walk with Thrilling Discoveries. Cell Death Differ. 2023, 30, 237–249. [Google Scholar] [CrossRef]
- Kundu, M.; Greer, Y.E.; Lobanov, A.; Ridnour, L.; Donahue, R.N.; Ng, Y.; Ratnayake, S.; White, K.; Voeller, D.; Weltz, S.; et al. TRAIL Induces Cytokine Production via the NFkB2 Pathway Promoting Neutrophil Chemotaxis and Neutrophil-Mediated Immune-Suppression in Triple Negative Breast Cancer Cells. Cancer Lett. 2025, 620, 217692. [Google Scholar] [CrossRef]
- Zhou, Q.; Meng, Y.; Li, D.; Yao, L.; Le, J.; Liu, Y.; Sun, Y.; Zeng, F.; Chen, X.; Deng, G. Ferroptosis in Cancer: From Molecular Mechanisms to Therapeutic Strategies. Signal Transduct. Target. Ther. 2024, 9, 55. [Google Scholar] [CrossRef]
- Oshi, M.; Asaoka, M.; Tokumaru, Y.; Yan, L.; Matsuyama, R.; Ishikawa, T.; Endo, I.; Takabe, K. CD8 T Cell Score as a Prognostic Biomarker for Triple Negative Breast Cancer. Int. J. Mol. Sci. 2020, 21, 6968. [Google Scholar] [CrossRef]
- Sun, Y.-P.; Ke, Y.-L.; Li, X. Prognostic Value of CD8+ Tumor-Infiltrating T Cells in Patients with Breast Cancer: A Systematic Review and Meta-Analysis. Oncol. Lett. 2023, 25, 39. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Huang, J.; Li, H.; He, W.; Ao, X.; Xie, Z.; Chen, Y.; Lv, Z.; Zhang, L.; Zhong, Y.; et al. Spatial Proximity of CD8+ T Cells to Tumor Cells Predicts Neoadjuvant Therapy Efficacy in Breast Cancer. NPJ Breast Cancer 2025, 11, 13. [Google Scholar] [CrossRef] [PubMed]
- Egelston, C.A.; Avalos, C.; Tu, T.Y.; Rosario, A.; Wang, R.; Solomon, S.; Srinivasan, G.; Nelson, M.S.; Huang, Y.; Lim, M.H.; et al. Resident Memory CD8+ T Cells Within Cancer Islands Mediate Survival in Breast Cancer Patients. JCI Insight 2019, 4, e130000. [Google Scholar] [CrossRef] [PubMed]
- Bogen, B.; Fauskanger, M.; Haabeth, O.A.; Tveita, A. CD4+ T Cells Indirectly Kill Tumor Cells via Induction of Cytotoxic Macrophages in Mouse Models. Cancer Immunol. Immunother. 2019, 68, 1865–1873. [Google Scholar] [CrossRef]
- Pawlak, M.; Ho, A.W.; Kuchroo, V.K. Cytokines and Transcription Factors in the Differentiation of CD4+ T Helper Cell Subsets and Induction of Tissue Inflammation and Autoimmunity. Curr. Opin. Immunol. 2020, 67, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Qin, G.; Yu, H.; Han, X.; Zhu, S. Comprehensive Genomic and Immunophenotypic Analysis of CD4 T Cell Infiltrating Human Triple-Negative Breast Cancer. Cancer Immunol. Immunother. 2021, 70, 1649–1665. [Google Scholar] [CrossRef] [PubMed]
- Barroso-Sousa, R.; Pacífico, J.P.; Sammons, S.; Tolaney, S.M. Tumor Mutational Burden in Breast Cancer: Current Evidence, Challenges, and Opportunities. Cancers 2023, 15, 3997. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Li, H.; Liu, C.; Xu, X.; Zhuang, J.; Zhou, C.; Liu, L.; Feng, F.; Sun, C. Tumor Mutation Burden and Immune Invasion Characteristics in Triple Negative Breast Cancer: Genome High-Throughput Data Analysis. Front. Immunol. 2021, 12, 650491. [Google Scholar] [CrossRef]
- Lee, H.; Lee, H.J.; Song, I.H.; Bang, W.S.; Heo, S.-H.; Gong, G.; Park, I.A. CD11c-Positive Dendritic Cells in Triple-Negative Breast Cancer. In Vivo 2018, 32, 1561–1569. [Google Scholar] [CrossRef]
- Sebastião, A.I.; Simões, G.; Oliveira, F.; Mateus, D.; Falcão, A.; Carrascal, M.A.; Gomes, C.; Neves, B.; Cruz, M.T. Dendritic Cells in Triple-Negative Breast Cancer: From Pathophysiology to Therapeutic Applications. Cancer Treat. Rev. 2025, 133, 102884. [Google Scholar] [CrossRef]
- Heras-Murillo, I.; Adán-Barrientos, I.; Galán, M.; Wculek, S.K.; Sancho, D. Dendritic Cells as Orchestrators of Anticancer Immunity and Immunotherapy. Nat. Rev. Clin. Oncol. 2024, 21, 257–277. [Google Scholar] [CrossRef]
- Nguyen, K.B.; Roerden, M.; Copeland, C.J.; Backlund, C.M.; Klop-Packel, N.G.; Remba, T.; Kim, B.; Singh, N.K.; Birnbaum, M.E.; Irvine, D.J.; et al. Decoupled Neoantigen Cross-Presentation by Dendritic Cells Limits Anti-Tumor Immunity against Tumors with Heterogeneous Neoantigen Expression. eLife 2023, 12, e85263. [Google Scholar] [CrossRef]
- Peng, S.; Lin, A.; Jiang, A.; Zhang, C.; Zhang, J.; Cheng, Q.; Luo, P.; Bai, Y. CTLs Heterogeneity and Plasticity: Implications for Cancer Immunotherapy. Mol. Cancer 2024, 23, 58. [Google Scholar] [CrossRef]
- Paierhati, P.; Ma, B.; Abudukeremu, M. Exosomal ITGB2 Mediates Immune Evasion in Triple-Negative Breast Cancer by Suppressing Dendritic Cell Activation via TLR4. Iran. J. Public Health 2025, 54, 1252–1262. [Google Scholar] [CrossRef]
- Pellegrino, B.; David, K.; Rabani, S.; Lampert, B.; Tran, T.; Doherty, E.; Piecychna, M.; Meza-Romero, R.; Leng, L.; Hershkovitz, D.; et al. CD74 Promotes the Formation of an Immunosuppressive Tumor Microenvironment in Triple-Negative Breast Cancer in Mice by Inducing the Expansion of Tolerogenic Dendritic Cells and Regulatory B Cells. PLoS Biol. 2024, 22, e3002905. [Google Scholar] [CrossRef]
- Huang, P.; Zhou, X.; Zheng, M.; Yu, Y.; Jin, G.; Zhang, S. Regulatory T Cells Are Associated with the Tumor Immune Microenvironment and Immunotherapy Response in Triple-Negative Breast Cancer. Front. Immunol. 2023, 14, 1263537. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Gu, S.; Wang, L.; Zhao, L.; Li, T.; Zhao, X.; Zhang, L. M2 Macrophages Promote PD-L1 Expression in Triple-Negative Breast Cancer via Secreting CXCL1. Pathol. Res. Pract. 2024, 260, 155458. [Google Scholar] [CrossRef] [PubMed]
- Mittal, S.K.; Cho, K.-J.; Ishido, S.; Roche, P.A. Interleukin 10 (IL-10)-Mediated Immunosuppression: MARCH-I INDUCTION REGULATES ANTIGEN PRESENTATION BY MACROPHAGES BUT NOT DENDRITIC CELLS. J. Biol. Chem. 2015, 290, 27158–27167. [Google Scholar] [CrossRef] [PubMed]
- Bonnal, R.J.P.; Rossetti, G.; Lugli, E.; De Simone, M.; Gruarin, P.; Brummelman, J.; Drufuca, L.; Passaro, M.; Bason, R.; Gervasoni, F.; et al. Clonally Expanded EOMES+ Tr1-like Cells in Primary and Metastatic Tumors Are Associated with Disease Progression. Nat. Immunol. 2021, 22, 735–745. [Google Scholar] [CrossRef]
- Costa, A.; Kieffer, Y.; Scholer-Dahirel, A.; Pelon, F.; Bourachot, B.; Cardon, M.; Sirven, P.; Magagna, I.; Fuhrmann, L.; Bernard, C.; et al. Fibroblast Heterogeneity and Immunosuppressive Environment in Human Breast Cancer. Cancer Cell 2018, 33, 463–479.e10. [Google Scholar] [CrossRef]
- Moon, C.Y.; Belabed, M.; Park, M.D.; Mattiuz, R.; Puleston, D.; Merad, M. Dendritic Cell Maturation in Cancer. Nat. Rev. Cancer 2025, 25, 225–248. [Google Scholar] [CrossRef]
- Thumkeo, D.; Punyawatthananukool, S.; Prasongtanakij, S.; Matsuura, R.; Arima, K.; Nie, H.; Yamamoto, R.; Aoyama, N.; Hamaguchi, H.; Sugahara, S.; et al. PGE2-EP2/EP4 Signaling Elicits Immunosuppression by Driving the mregDC-Treg Axis in Inflammatory Tumor Microenvironment. Cell Rep. 2022, 39, 110914. [Google Scholar] [CrossRef]
- Zhang, N.-N.; Qu, F.-J.; Liu, H.; Li, Z.-J.; Zhang, Y.-C.; Han, X.; Zhu, Z.-Y.; Lv, Y. Prognostic Impact of Tertiary Lymphoid Structures in Breast Cancer Prognosis: A Systematic Review and Meta-Analysis. Cancer Cell Int. 2021, 21, 536. [Google Scholar] [CrossRef]
- Wu, Y.; Yi, M.; Niu, M.; Mei, Q.; Wu, K. Myeloid-Derived Suppressor Cells: An Emerging Target for Anticancer Immunotherapy. Mol. Cancer 2022, 21, 184. [Google Scholar] [CrossRef]
- Shang, L.; Zhong, Y.; Yao, Y.; Liu, C.; Wang, L.; Zhang, W.; Liu, J.; Wang, X.; Sun, C. Subverted Macrophages in the Triple-Negative Breast Cancer Ecosystem. Biomed. Pharmacother. 2023, 166, 115414. [Google Scholar] [CrossRef]
- Ribeiro, A.R.S.; Neuper, T.; Horejs-Hoeck, J. The Role of STING-Mediated Activation of Dendritic Cells in Cancer Immunotherapy. Int. J. Nanomed. 2024, 19, 10685–10697. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Zhao, X.; Zheng, Z.; Zhang, H.; Wu, Y.; Shen, Y.; Chen, Q. cGAS-STING Pathway Mediates Activation of Dendritic Cell Sensing of Immunogenic Tumors. Cell. Mol. Life Sci. 2024, 81, 149. [Google Scholar] [CrossRef] [PubMed]
- Mantooth, S.M.; Abdou, Y.; Saez-Ibañez, A.R.; Upadhaya, S.; Zaharoff, D.A. Intratumoral Delivery of Immunotherapy to Treat Breast Cancer: Current Development in Clinical and Preclinical Studies. Front. Immunol. 2024, 15, 1385484. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Sugiyama, D.; Koseki, J.; Kojima, Y.; Hattori, S.; Sone, K.; Nishinakamura, H.; Ishikawa, T.; Ishikawa, Y.; Kato, T.; et al. Sustained Inhibition of CSF1R Signaling Augments Antitumor Immunity through Inhibiting Tumor-Associated Macrophages. JCI Insight 2025, 10, e178146. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, J.; Xu, K.; Luo, Z. Targeting the CSF1/CSF1R Signaling Pathway: An Innovative Strategy for Ultrasound Combined with Macrophage Exhaustion in Pancreatic Cancer Therapy. Front. Immunol. 2024, 15, 1481247. [Google Scholar] [CrossRef]
- Shintani, Y.; Kimura, T.; Funaki, S.; Ose, N.; Kanou, T.; Fukui, E. Therapeutic Targeting of Cancer-Associated Fibroblasts in the Non-Small Cell Lung Cancer Tumor Microenvironment. Cancers 2023, 15, 335. [Google Scholar] [CrossRef]
- Chen, M.; Chen, F.; Gao, Z.; Li, X.; Hu, L.; Yang, S.; Zhao, S.; Song, Z. CAFs and T Cells Interplay: The Emergence of a New Arena in Cancer Combat. Biomed. Pharmacother. 2024, 177, 117045. [Google Scholar] [CrossRef]
- Mardis, E.R. Neoantigens and Genome Instability: Impact on Immunogenomic Phenotypes and Immunotherapy Response. Genome Med. 2019, 11, 71. [Google Scholar] [CrossRef]
- Capietto, A.-H.; Hoshyar, R.; Delamarre, L. Sources of Cancer Neoantigens beyond Single-Nucleotide Variants. Int. J. Mol. Sci. 2022, 23, 10131. [Google Scholar] [CrossRef]
- Brueffer, C.; Gladchuk, S.; Winter, C.; Vallon-Christersson, J.; Hegardt, C.; Häkkinen, J.; George, A.M.; Chen, Y.; Ehinger, A.; Larsson, C.; et al. The Mutational Landscape of the SCAN-B Real-World Primary Breast Cancer Transcriptome. EMBO Mol. Med. 2020, 12, e12118. [Google Scholar] [CrossRef] [PubMed]
- Kahles, A.; Lehmann, K.-V.; Toussaint, N.C.; Hüser, M.; Stark, S.G.; Sachsenberg, T.; Stegle, O.; Kohlbacher, O.; Sander, C.; Cancer Genome Atlas Research Network; et al. Comprehensive Analysis of Alternative Splicing across Tumors from 8705 Patients. Cancer Cell 2018, 34, 211–224.e6. [Google Scholar] [CrossRef] [PubMed]
- Oka, M.; Xu, L.; Suzuki, T.; Yoshikawa, T.; Sakamoto, H.; Uemura, H.; Yoshizawa, A.C.; Suzuki, Y.; Nakatsura, T.; Ishihama, Y.; et al. Aberrant Splicing Isoforms Detected by Full-Length Transcriptome Sequencing as Transcripts of Potential Neoantigens in Non-Small Cell Lung Cancer. Genome Biol. 2021, 22, 9. [Google Scholar] [CrossRef] [PubMed]
- Laumont, C.M.; Vincent, K.; Hesnard, L.; Audemard, É.; Bonneil, É.; Laverdure, J.-P.; Gendron, P.; Courcelles, M.; Hardy, M.-P.; Côté, C.; et al. Noncoding Regions Are the Main Source of Targetable Tumor-Specific Antigens. Sci. Transl. Med. 2018, 10, eaau5516. [Google Scholar] [CrossRef]
- RodrÍguez, E.; Schetters, S.T.T.; van Kooyk, Y. The Tumour Glyco-Code as a Novel Immune Checkpoint for Immunotherapy. Nat. Rev. Immunol. 2018, 18, 204–211. [Google Scholar] [CrossRef]
- Zhang, Z.; Rohweder, P.J.; Ongpipattanakul, C.; Basu, K.; Bohn, M.-F.; Dugan, E.J.; Steri, V.; Hann, B.; Shokat, K.M.; Craik, C.S. A Covalent Inhibitor of K-Ras(G12C) Induces MHC Class I Presentation of Haptenated Peptide Neoepitopes Targetable by Immunotherapy. Cancer Cell 2022, 40, 1060–1069.e7. [Google Scholar] [CrossRef]
- De Plaen, E.; Lurquin, C.; Van Pel, A.; Mariamé, B.; Szikora, J.P.; Wölfel, T.; Sibille, C.; Chomez, P.; Boon, T. Immunogenic (tum-) Variants of Mouse Tumor P815: Cloning of the Gene of Tum- Antigen P91A and Identification of the Tum- Mutation. Proc. Natl. Acad. Sci. USA 1988, 85, 2274–2278. [Google Scholar] [CrossRef]
- Kvistborg, P.; Clynes, R.; Song, W.; Yuan, J. Immune Monitoring Technology Primer: Whole Exome Sequencing for Neoantigen Discovery and Precision Oncology. J. Immunother. Cancer 2016, 4, 22. [Google Scholar] [CrossRef]
- Shah, R.K.; Cygan, E.; Kozlik, T.; Colina, A.; Zamora, A.E. Utilizing Immunogenomic Approaches to Prioritize Targetable Neoantigens for Personalized Cancer Immunotherapy. Front. Immunol. 2023, 14, 1301100. [Google Scholar] [CrossRef]
- Luo, R.; Chong, W.; Wei, Q.; Zhang, Z.; Wang, C.; Ye, Z.; Abu-Khalaf, M.M.; Silver, D.P.; Stapp, R.T.; Jiang, W.; et al. Whole-Exome Sequencing Identifies Somatic Mutations and Intratumor Heterogeneity in Inflammatory Breast Cancer. NPJ Breast Cancer 2021, 7, 72. [Google Scholar] [CrossRef]
- Omilian, A.R.; Wei, L.; Hong, C.-C.; Bandera, E.V.; Liu, S.; Khoury, T.; Ambrosone, C.B.; Yao, S. Somatic Mutations of Triple-Negative Breast Cancer: A Comparison between Black and White Women. Breast Cancer Res. Treat. 2020, 182, 503–509. [Google Scholar] [CrossRef]
- Staaf, J.; Glodzik, D.; Bosch, A.; Vallon-Christersson, J.; Reuterswärd, C.; Häkkinen, J.; Degasperi, A.; Amarante, T.D.; Saal, L.H.; Hegardt, C.; et al. Whole-Genome Sequencing of Triple-Negative Breast Cancers in a Population-Based Clinical Study. Nat. Med. 2019, 25, 1526–1533. [Google Scholar] [CrossRef]
- Battaglia, S. Neoantigen Prediction from Genomic and Transcriptomic Data. Methods Enzymol. 2020, 635, 267–281. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, Y.; Gao, Y.; Zhang, R.; Hou, W.; Cao, Z.; Jiang, Y.-Z.; Zheng, Y.; Shi, L.; Ma, D.; et al. A Comprehensive Genomic and Transcriptomic Dataset of Triple-Negative Breast Cancers. Sci. Data 2022, 9, 587. [Google Scholar] [CrossRef]
- Dameri, M.; Ferrando, L.; Cirmena, G.; Vernieri, C.; Pruneri, G.; Ballestrero, A.; Zoppoli, G. Multi-Gene Testing Overview with a Clinical Perspective in Metastatic Triple-Negative Breast Cancer. Int. J. Mol. Sci. 2021, 22, 7154. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, S.; Noguchi, E.; Bando, H.; Miyadera, H.; Morii, W.; Nakamura, T.; Hara, H. Neoantigen Prediction in Human Breast Cancer Using RNA Sequencing Data. Cancer Sci. 2021, 112, 465–475. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhou, C.; Tang, L.; Gong, Y.; Wei, Z.; Zhang, G.; Wang, F.; Liu, Q.; Yu, J. ASNEO: Identification of Personalized Alternative Splicing Based Neoantigens with RNA-Seq. Aging 2020, 12, 14633–14648. [Google Scholar] [CrossRef] [PubMed]
- Fotakis, G.; Rieder, D.; Haider, M.; Trajanoski, Z.; Finotello, F. NeoFuse: Predicting Fusion Neoantigens from RNA Sequencing Data. Bioinformatics 2020, 36, 2260–2261. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Jin, W.; Bao, D.; He, T.; Wang, W.; Li, Z.; Yang, X.; Tong, Y.; Shu, M.; Wang, Y.; et al. DIPAN: Detecting Personalized Intronic Polyadenylation Derived Neoantigens from RNA Sequencing Data. Comput. Struct. Biotechnol. J. 2024, 23, 2057–2066. [Google Scholar] [CrossRef]
- Tretter, C.; de Andrade Krätzig, N.; Pecoraro, M.; Lange, S.; Seifert, P.; von Frankenberg, C.; Untch, J.; Zuleger, G.; Wilhelm, M.; Zolg, D.P.; et al. Proteogenomic Analysis Reveals RNA as a Source for Tumor-Agnostic Neoantigen Identification. Nat. Commun. 2023, 14, 4632. [Google Scholar] [CrossRef]
- Nguyen, B.Q.T.; Tran, T.P.D.; Nguyen, H.T.; Nguyen, T.N.; Pham, T.M.Q.; Nguyen, H.T.P.; Tran, D.H.; Nguyen, V.; Tran, T.S.; Pham, T.-V.N.; et al. Improvement in Neoantigen Prediction via Integration of RNA Sequencing Data for Variant Calling. Front. Immunol. 2023, 14, 1251603. [Google Scholar] [CrossRef] [PubMed]
- Wagutu, G.; Gitau, J.; Mwangi, K.; Murithi, M.; Melly, E.; Harris, A.R.; Sayed, S.; Ambs, S.; Makokha, F. Whole Exome-Seq and RNA-Seq Data Reveal Unique Neoantigen Profiles in Kenyan Breast Cancer Patients. Front. Oncol. 2024, 14, 1444327. [Google Scholar] [CrossRef] [PubMed]
- Parkhurst, M.R.; Robbins, P.F.; Tran, E.; Prickett, T.D.; Gartner, J.J.; Jia, L.; Ivey, G.; Li, Y.F.; El-Gamil, M.; Lalani, A.; et al. Unique Neoantigens Arise from Somatic Mutations in Patients with Gastrointestinal Cancers. Cancer Discov. 2019, 9, 1022–1035. [Google Scholar] [CrossRef] [PubMed]
- Yossef, R.; Tran, E.; Deniger, D.C.; Gros, A.; Pasetto, A.; Parkhurst, M.R.; Gartner, J.J.; Prickett, T.D.; Cafri, G.; Robbins, P.F.; et al. Enhanced Detection of Neoantigen-Reactive T Cells Targeting Unique and Shared Oncogenes for Personalized Cancer Immunotherapy. JCI Insight 2018, 3, e122467. [Google Scholar] [CrossRef]
- Tran, E.; Ahmadzadeh, M.; Lu, Y.-C.; Gros, A.; Turcotte, S.; Robbins, P.F.; Gartner, J.J.; Zheng, Z.; Li, Y.F.; Ray, S.; et al. Immunogenicity of Somatic Mutations in Human Gastrointestinal Cancers. Science 2015, 350, 1387–1390. [Google Scholar] [CrossRef]
- Andreatta, M.; Nielsen, M. Gapped Sequence Alignment Using Artificial Neural Networks: Application to the MHC Class I System. Bioinformatics 2016, 32, 511–517. [Google Scholar] [CrossRef]
- Chang, S.T.; Ghosh, D.; Kirschner, D.E.; Linderman, J.J. Peptide Length-Based Prediction of Peptide-MHC Class II Binding. Bioinformatics 2006, 22, 2761–2767. [Google Scholar] [CrossRef]
- Duan, F.; Duitama, J.; Al Seesi, S.; Ayres, C.M.; Corcelli, S.A.; Pawashe, A.P.; Blanchard, T.; McMahon, D.; Sidney, J.; Sette, A.; et al. Genomic and Bioinformatic Profiling of Mutational Neoepitopes Reveals New Rules to Predict Anticancer Immunogenicity. J. Exp. Med. 2014, 211, 2231–2248. [Google Scholar] [CrossRef]
- Bais, P.; Namburi, S.; Gatti, D.M.; Zhang, X.; Chuang, J.H. CloudNeo: A Cloud Pipeline for Identifying Patient-Specific Tumor Neoantigens. Bioinformatics 2017, 33, 3110–3112. [Google Scholar] [CrossRef]
- Bjerregaard, A.-M.; Nielsen, M.; Hadrup, S.R.; Szallasi, Z.; Eklund, A.C. MuPeXI: Prediction of Neo-Epitopes from Tumor Sequencing Data. Cancer Immunol. Immunother. 2017, 66, 1123–1130. [Google Scholar] [CrossRef]
- Hundal, J.; Kiwala, S.; McMichael, J.; Miller, C.A.; Xia, H.; Wollam, A.T.; Liu, C.J.; Zhao, S.; Feng, Y.-Y.; Graubert, A.P.; et al. PVACtools: A Computational Toolkit to Identify and Visualize Cancer Neoantigens. Cancer Immunol. Res. 2020, 8, 409–420. [Google Scholar] [CrossRef]
- Xia, H.; Hoang, M.H.; Schmidt, E.; Kiwala, S.; McMichael, J.; Skidmore, Z.L.; Fisk, B.; Song, J.J.; Hundal, J.; Mooney, T.; et al. pVACview: An Interactive Visualization Tool for Efficient Neoantigen Prioritization and Selection. Genome Med. 2024, 16, 132. [Google Scholar] [CrossRef]
- Huber, F.; Arnaud, M.; Stevenson, B.J.; Michaux, J.; Benedetti, F.; Thevenet, J.; Bobisse, S.; Chiffelle, J.; Gehert, T.; Müller, M.; et al. A Comprehensive Proteogenomic Pipeline for Neoantigen Discovery to Advance Personalized Cancer Immunotherapy. Nat. Biotechnol. 2024, 43, 1360–13721. [Google Scholar] [CrossRef]
- Ma, T.; Zhao, Z.; Li, H.; Wei, L.; Zhang, X. NeoHunter: Flexible Software for Systematically Detecting Neoantigens from Sequencing Data. Quant. Biol. 2024, 12, 70–84. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, T.-T.; Li, X.; Lan, A.-L.; Ji, P.-F.; Zhu, Y.-J.; Ma, X.-Y. Advances and Challenges in Neoantigen Prediction for Cancer Immunotherapy. Front. Immunol. 2025, 16, 1617654. [Google Scholar] [CrossRef] [PubMed]
- Hoof, I.; Peters, B.; Sidney, J.; Pedersen, L.E.; Sette, A.; Lund, O.; Buus, S.; Nielsen, M. NetMHCpan, a Method for MHC Class I Binding Prediction beyond Humans. Immunogenetics 2009, 61, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, M.; Lundegaard, C.; Blicher, T.; Peters, B.; Sette, A.; Justesen, S.; Buus, S.; Lund, O. Quantitative Predictions of Peptide Binding to Any HLA-DR Molecule of Known Sequence: NetMHCIIpan. PLoS Comput. Biol. 2008, 4, e1000107. [Google Scholar] [CrossRef]
- O’Donnell, T.J.; Rubinsteyn, A.; Bonsack, M.; Riemer, A.B.; Laserson, U.; Hammerbacher, J. MHCflurry: Open-Source Class I MHC Binding Affinity Prediction. Cell Syst. 2018, 7, 129–132.e4. [Google Scholar] [CrossRef]
- Shao, X.M.; Bhattacharya, R.; Huang, J.; Sivakumar, I.K.A.; Tokheim, C.; Zheng, L.; Hirsch, D.; Kaminow, B.; Omdahl, A.; Bonsack, M.; et al. High-Throughput Prediction of MHC Class I and II Neoantigens with MHCnuggets. Cancer Immunol. Res. 2020, 8, 396–408. [Google Scholar] [CrossRef]
- Reynisson, B.; Alvarez, B.; Paul, S.; Peters, B.; Nielsen, M. NetMHCpan-4.1 and NetMHCIIpan-4.0: Improved Predictions of MHC Antigen Presentation by Concurrent Motif Deconvolution and Integration of MS MHC Eluted Ligand Data. Nucleic Acids Res. 2020, 48, W449–W454. [Google Scholar] [CrossRef]
- Kathuria, K.R.; Chen, B.; Khodadoust, M.S.; Olsson, N.; Davis, M.M.; Elias, J.E.; Levy, R.; Altman, R.B.; Alizadeh, A.A. Maria-I: A Deep-Learning Approach for Accurate Prediction of MHC Class I Tumor Neoantigen Presentation. Blood 2019, 134, 84. [Google Scholar] [CrossRef]
- Chen, B.; Khodadoust, M.S.; Olsson, N.; Wagar, L.E.; Fast, E.; Liu, C.L.; Muftuoglu, Y.; Sworder, B.J.; Diehn, M.; Levy, R.; et al. Predicting HLA Class II Antigen Presentation through Integrated Deep Learning. Nat. Biotechnol. 2019, 37, 1332–1343. [Google Scholar] [CrossRef]
- Gopanenko, A.V.; Kosobokova, E.N.; Kosorukov, V.S. Main Strategies for the Identification of Neoantigens. Cancers 2020, 12, 2879. [Google Scholar] [CrossRef]
- Bassani-Sternberg, M.; Bräunlein, E.; Klar, R.; Engleitner, T.; Sinitcyn, P.; Audehm, S.; Straub, M.; Weber, J.; Slotta-Huspenina, J.; Specht, K.; et al. Direct Identification of Clinically Relevant Neoepitopes Presented on Native Human Melanoma Tissue by Mass Spectrometry. Nat. Commun. 2016, 7, 13404. [Google Scholar] [CrossRef]
- Xu, S.; Wang, X.; Fei, C. A Highly Effective System for Predicting MHC-II Epitopes with Immunogenicity. Front. Oncol. 2022, 12, 888556. [Google Scholar] [CrossRef] [PubMed]
- Koşaloğlu-Yalçın, Z.; Lee, J.; Greenbaum, J.; Schoenberger, S.P.; Miller, A.; Kim, Y.J.; Sette, A.; Nielsen, M.; Peters, B. Combined Assessment of MHC Binding and Antigen Abundance Improves T Cell Epitope Predictions. iScience 2022, 25, 103850. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, N.P.; Heeke, C.; Tvingsholm, S.A.; Borch, A.; Draghi, A.; Crowther, M.D.; Carri, I.; Munk, K.K.; Holm, J.S.; Bjerregaard, A.-M.; et al. Neoantigen-Reactive CD8+ T Cells Affect Clinical Outcome of Adoptive Cell Therapy with Tumor-Infiltrating Lymphocytes in Melanoma. J. Clin. Investig. 2022, 132, e150535. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, V.; Yang, C.; Klippel, K.; Yegorov, O.; von Roemeling, C.; Hoang-Minh, L.; Fenton, G.; Ogando-Rivas, E.; Castillo, P.; Moore, G.; et al. mRNA-Based Precision Targeting of Neoantigens and Tumor-Associated Antigens in Malignant Brain Tumors. Genome Med. 2024, 16, 17. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, Y.; Wang, J.; Li, M.; Peng, L.; Wei, G.; Zhang, Y.; Li, J.; Gao, Z. TruNeo: An Integrated Pipeline Improves Personalized True Tumor Neoantigen Identification. BMC Bioinform. 2020, 21, 532. [Google Scholar] [CrossRef]
- Chang, K.; McAllister, F.; Vilar, E. Transcriptomic-Assisted Immune and Neoantigen Profiling in Premalignancy. Methods Mol. Biol. 2022, 2435, 95–105. [Google Scholar] [CrossRef]
- Danilova, L.; Anagnostou, V.; Caushi, J.X.; Sidhom, J.-W.; Guo, H.; Chan, H.Y.; Suri, P.; Tam, A.; Zhang, J.; Asmar, M.E.; et al. The Mutation-Associated Neoantigen Functional Expansion of Specific T Cells (MANAFEST) Assay: A Sensitive Platform for Monitoring Antitumor Immunity. Cancer Immunol. Res. 2018, 6, 888–899. [Google Scholar] [CrossRef]
- Pai, J.A.; Satpathy, A.T. High-Throughput and Single-Cell T Cell Receptor Sequencing Technologies. Nat. Methods 2021, 18, 881–892. [Google Scholar] [CrossRef]
- Lu, Y.-C.; Zheng, Z.; Robbins, P.F.; Tran, E.; Prickett, T.D.; Gartner, J.J.; Li, Y.F.; Ray, S.; Franco, Z.; Bliskovsky, V.; et al. An Efficient Single-Cell RNA-Seq Approach to Identify Neoantigen-Specific T Cell Receptors. Mol. Ther. 2018, 26, 379–389. [Google Scholar] [CrossRef]
- Zhang, X.; Kim, S.; Hundal, J.; Herndon, J.M.; Li, S.; Petti, A.A.; Soysal, S.D.; Li, L.; McLellan, M.D.; Hoog, J.; et al. Breast Cancer Neoantigens Can Induce CD8+ T-Cell Responses and Antitumor Immunity. Cancer Immunol. Res. 2017, 5, 516–523. [Google Scholar] [CrossRef]
- Morisaki, T.; Kubo, M.; Umebayashi, M.; Yew, P.Y.; Yoshimura, S.; Park, J.-H.; Kiyotani, K.; Kai, M.; Yamada, M.; Oda, Y.; et al. Neoantigens Elicit T Cell Responses in Breast Cancer. Sci. Rep. 2021, 11, 13590. [Google Scholar] [CrossRef]
- Narang, P.; Chen, M.; Sharma, A.A.; Anderson, K.S.; Wilson, M.A. The Neoepitope Landscape of Breast Cancer: Implications for Immunotherapy. BMC Cancer 2019, 19, 200. [Google Scholar] [CrossRef]
- Karn, T.; Denkert, C.; Weber, K.E.; Holtrich, U.; Hanusch, C.; Sinn, B.V.; Higgs, B.W.; Jank, P.; Sinn, H.P.; Huober, J.; et al. Tumor Mutational Burden and Immune Infiltration as Independent Predictors of Response to Neoadjuvant Immune Checkpoint Inhibition in Early TNBC in GeparNuevo. Ann. Oncol. 2020, 31, 1216–1222. [Google Scholar] [CrossRef]
- Barroso-Sousa, R.; Jain, E.; Cohen, O.; Kim, D.; Buendia-Buendia, J.; Winer, E.; Lin, N.; Tolaney, S.M.; Wagle, N. Prevalence and Mutational Determinants of High Tumor Mutation Burden in Breast Cancer. Ann. Oncol. 2020, 31, 387–394. [Google Scholar] [CrossRef]
- Wang, X.; Collet, L.; Rediti, M.; Debien, V.; De Caluwé, A.; Venet, D.; Romano, E.; Rothé, F.; Sotiriou, C.; Buisseret, L. Predictive Biomarkers for Response to Immunotherapy in Triple Negative Breast Cancer: Promises and Challenges. J. Clin. Med. 2023, 12, 953. [Google Scholar] [CrossRef]
- Emens, L.A.; Molinero, L.; Adams, S.; Rugo, H.S.; Schneeweiss, A.; Diéras, V.; Iwata, H.; Barrios, C.H.; Nechaeva, M.; Winer, E.P.; et al. 296P Tumour Mutational Burden and Clinical Outcomes with First-Line Atezolizumab and Nab-Paclitaxel in Triple-Negative Breast Cancer: Exploratory Analysis of the Phase III IMpassion130 Trial. Ann. Oncol. 2020, 31, S360–S361. [Google Scholar] [CrossRef]
- Winer, E.P.; Lipatov, O.; Im, S.-A.; Goncalves, A.; Muñoz-Couselo, E.; Lee, K.S.; Schmid, P.; Testa, L.; Witzel, I.; Ohtani, S.; et al. Association of Tumor Mutational Burden (TMB) and Clinical Outcomes with Pembrolizumab (pembro) versus Chemotherapy (chemo) in Patients with Metastatic Triple-Negative Breast Cancer (mTNBC) from KEYNOTE-119. J. Clin. Oncol. 2020, 38, 1013. [Google Scholar] [CrossRef]
- Aparicio, B.; Repáraz, D.; Ruiz, M.; Llopiz, D.; Silva, L.; Vercher, E.; Theunissen, P.; Tamayo, I.; Smerdou, C.; Igea, A.; et al. Identification of HLA Class I-Restricted Immunogenic Neoantigens in Triple Negative Breast Cancer. Front. Immunol. 2022, 13, 985886. [Google Scholar] [CrossRef]
- Nik-Zainal, S.; Davies, H.; Staaf, J.; Ramakrishna, M.; Glodzik, D.; Zou, X.; Martincorena, I.; Alexandrov, L.B.; Martin, S.; Wedge, D.C.; et al. Landscape of Somatic Mutations in 560 Breast Cancer Whole-Genome Sequences. Nature 2016, 534, 47–54. [Google Scholar] [CrossRef]
- Zhang, X.; Goedegebuure, S.P.; Chen, M.Y.; Mishra, R.; Zhang, F.; Yu, Y.Y.; Singhal, K.; Li, L.; Gao, F.; Myers, N.B.; et al. Neoantigen DNA Vaccines Are Safe, Feasible, and Induce Neoantigen-Specific Immune Responses in Triple-Negative Breast Cancer Patients. Genome Med. 2024, 16, 131. [Google Scholar] [CrossRef] [PubMed]
- Barroso-Sousa, R.; Keenan, T.E.; Pernas, S.; Exman, P.; Jain, E.; Garrido-Castro, A.C.; Hughes, M.; Bychkovsky, B.; Umeton, R.; Files, J.L.; et al. Tumor Mutational Burden and PTEN Alterations as Molecular Correlates of Response to PD-1/L1 Blockade in Metastatic Triple-Negative Breast Cancer. Clin. Cancer Res. 2020, 26, 2565–2572. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.-Z.; Liu, Y.; Xiao, Y.; Hu, X.; Jiang, L.; Zuo, W.-J.; Ma, D.; Ding, J.; Zhu, X.; Zou, J.; et al. Molecular Subtyping and Genomic Profiling Expand Precision Medicine in Refractory Metastatic Triple-Negative Breast Cancer: The FUTURE Trial. Cell Res. 2021, 31, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Liu, S.; Zhao, L.; Sun, H.-X. A Comprehensive Survey of Genomic Mutations in Breast Cancer Reveals Recurrent Neoantigens as Potential Therapeutic Targets. Front. Oncol. 2022, 12, 786438. [Google Scholar] [CrossRef]
- Kim, S.-B.; Dent, R.; Im, S.-A.; Espié, M.; Blau, S.; Tan, A.R.; Isakoff, S.J.; Oliveira, M.; Saura, C.; Wongchenko, M.J.; et al. Ipatasertib plus Paclitaxel versus Placebo plus Paclitaxel as First-Line Therapy for Metastatic Triple-Negative Breast Cancer (LOTUS): A Multicentre, Randomised, Double-Blind, Placebo-Controlled, Phase 2 Trial. Lancet Oncol. 2017, 18, 1360–1372. [Google Scholar] [CrossRef]
- Ibrahim, E.; Diab, E.; Hayek, R.; Hoyek, K.; Kourie, H. Triple-Negative Breast Cancer: Tumor Immunogenicity and Beyond. Int. J. Breast Cancer 2024, 2024, 2097920. [Google Scholar] [CrossRef]
- Wilson, T.R.; Udyavar, A.R.; Chang, C.-W.; Spoerke, J.M.; Aimi, J.; Savage, H.M.; Daemen, A.; O’Shaughnessy, J.A.; Bourgon, R.; Lackner, M.R. Genomic Alterations Associated with Recurrence and TNBC Subtype in High-Risk Early Breast Cancers. Mol. Cancer Res. 2019, 17, 97–108. [Google Scholar] [CrossRef]
- Saravia, C.H.; Flores, C.; Schwarz, L.J.; Bravo, L.; Zavaleta, J.; Araujo, J.; Neciosup, S.; Pinto, J.A. Patterns of Mutation Enrichment in Metastatic Triple-Negative Breast Cancer. Clin. Med. Insights Oncol. 2019, 13, 1179554919868482. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Wang, Y.; Tang, J.; Liu, X.; Wang, J.; Song, G.; Li, H. Comprehensive Analysis of Oncogenic Somatic Alterations of Mismatch Repair Gene in Breast Cancer Patients. Bioengineering 2025, 12, 426. [Google Scholar] [CrossRef]
- Benvenuto, M.; Focaccetti, C.; Izzi, V.; Masuelli, L.; Modesti, A.; Bei, R. Tumor Antigens Heterogeneity and Immune Response-Targeting Neoantigens in Breast Cancer. Semin. Cancer Biol. 2021, 72, 65–75. [Google Scholar] [CrossRef]
- Turajlic, S.; Litchfield, K.; Xu, H.; Rosenthal, R.; McGranahan, N.; Reading, J.L.; Wong, Y.N.S.; Rowan, A.; Kanu, N.; Al Bakir, M.; et al. Insertion-and-Deletion-Derived Tumour-Specific Neoantigens and the Immunogenic Phenotype: A Pan-Cancer Analysis. Lancet Oncol. 2017, 18, 1009–1021. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Wen, F.; Tuerhong, N.; Yang, Y.; Li, Q. Neoantigens in Cancer Immunotherapy: Focusing on Alternative Splicing. Front. Immunol. 2024, 15, 1437774. [Google Scholar] [CrossRef] [PubMed]
- Katayama, H.; Kobayashi, M.; Irajizad, E.; Sevillarno, A.; Patel, N.; Mao, X.; Rusling, L.; Vykoukal, J.; Cai, Y.; Hsiao, F.; et al. Protein Citrullination as a Source of Cancer Neoantigens. J. Immunother. Cancer 2021, 9, e002549. [Google Scholar] [CrossRef]
- Di Cosimo, S.; Appierto, V.; Silvestri, M.; Pruneri, G.; Vingiani, A.; Perrone, F.; Busico, A.; Folli, S.; Scaperrotta, G.; de Braud, F.G.; et al. Targeted-Gene Sequencing to Catch Triple Negative Breast Cancer Heterogeneity before and after Neoadjuvant Chemotherapy. Cancers 2019, 11, 1753. [Google Scholar] [CrossRef]
- Ruangapirom, L.; Sutivijit, N.; Teerapakpinyo, C.; Mutirangura, A.; Doungkamchan, C. Identification of Shared Neoantigens in BRCA1-Related Breast Cancer. Vaccines 2022, 10, 1597. [Google Scholar] [CrossRef]
- Sun, W.Y.; Lee, J.; Kim, B.K.; Kim, J.O.; Park, J. Distinct Somatic Alteration Features Identified by Gene Panel Sequencing in Korean Triple-Negative Breast Cancer with High Ki67 Expression. Diagnostics 2021, 11, 416. [Google Scholar] [CrossRef]
- Ragone, C.; Cavalluzzo, B.; Mauriello, A.; Tagliamonte, M.; Buonaguro, L. Lack of Shared Neoantigens in Prevalent Mutations in Cancer. J. Transl. Med. 2024, 22, 344. [Google Scholar] [CrossRef]
- Sennino, B.; Mathur, J.; Huang, E.; Conroy, A.; Ting, M.; Yuen, B.; Pan, Z.; Stawiski, E.; Mandl, S. Abstract 563: Circulating Tumor-Specific T Cells Preferentially Recognize Patient-Specific Mutational Neoantigens and Infrequently Recognize Shared Cancer Driver Mutations. Cancer Res. 2022, 82, 563. [Google Scholar] [CrossRef]
- Rosenberg, S.A.; Restifo, N.P. Adoptive Cell Transfer as Personalized Immunotherapy for Human Cancer. Science 2015, 348, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Bluestone, J.A.; Burnett, B.K.; Crute, C.E.; Fellows, M.D.; Levings, M.; Lebrec, H.; Pereira Mouriès, L.; Rice, J.; Rohan, P.; Roncarolo, M.G.; et al. Regulatory T Cell Therapies to Treat Autoimmune Diseases and Transplant Rejection. Nat. Immunol. 2025, 26, 819–824. [Google Scholar] [CrossRef] [PubMed]
- Rohaan, M.W.; Wilgenhof, S.; Haanen, J.B.A.G. Adoptive Cellular Therapies: The Current Landscape. Virchows Arch. 2019, 474, 449–461. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zhang, G.; Wan, X. Challenges and New Technologies in Adoptive Cell Therapy. J. Hematol. Oncol. 2023, 16, 97. [Google Scholar] [CrossRef]
- Li, R.; Cao, L. The Role of Tumor-Infiltrating Lymphocytes in Triple-Negative Breast Cancer and the Research Progress of Adoptive Cell Therapy. Front. Immunol. 2023, 14, 1194020. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Sabatino, M.; Somerville, R.; Wilson, J.R.; Dudley, M.E.; Stroncek, D.F.; Rosenberg, S.A. Simplified Method of the Growth of Human Tumor Infiltrating Lymphocytes in Gas-Permeable Flasks to Numbers Needed for Patient Treatment. J. Immunother. 2012, 35, 283–292. [Google Scholar] [CrossRef]
- Kazemi, M.H.; Sadri, M.; Najafi, A.; Rahimi, A.; Baghernejadan, Z.; Khorramdelazad, H.; Falak, R. Tumor-Infiltrating Lymphocytes for Treatment of Solid Tumors: It Takes Two to Tango? Front. Immunol. 2022, 13, 1018962. [Google Scholar] [CrossRef]
- Pedros, C.; Pikor, L.; Fritzsche, A.; Jilesen, Z.K.; Macleod, B.; Khojandi, N.; Thompson, B.; Thayer, M.; Bryan, N.; Carron, E.; et al. Abstract 4052: Direct Selection of PD1+ CD39+ Tumor Infiltrating Lymphocytes (TIL) from Tumor Dissociates Enrich for Functional Tumor-Reactive Cells. Cancer Res. 2023, 83, 4052. [Google Scholar] [CrossRef]
- Kochenderfer, J.N. FDA Approval of the First Cellular Therapy for a Solid (non-Hematologic) Cancer. Mol. Ther. 2024, 32, 857–858. [Google Scholar] [CrossRef]
- Albarrán, V.; San Román, M.; Pozas, J.; Chamorro, J.; Rosero, D.I.; Guerrero, P.; Calvo, J.C.; González, C.; García de Quevedo, C.; Pérez de Aguado, P.; et al. Adoptive T Cell Therapy for Solid Tumors: Current Landscape and Future Challenges. Front. Immunol. 2024, 15, 1352805. [Google Scholar] [CrossRef]
- Monberg, T.J.; Borch, T.H.; Svane, I.M.; Donia, M. TIL Therapy: Facts and Hopes. Clin. Cancer Res. 2023, 29, 3275–3283. [Google Scholar] [CrossRef] [PubMed]
- Zacharakis, N.; Chinnasamy, H.; Black, M.; Xu, H.; Lu, Y.-C.; Zheng, Z.; Pasetto, A.; Langhan, M.; Shelton, T.; Prickett, T.; et al. Immune Recognition of Somatic Mutations Leading to Complete Durable Regression in Metastatic Breast Cancer. Nat. Med. 2018, 24, 724–730. [Google Scholar] [CrossRef] [PubMed]
- Zacharakis, N.; Huq, L.M.; Seitter, S.J.; Kim, S.P.; Gartner, J.J.; Sindiri, S.; Hill, V.K.; Li, Y.F.; Paria, B.C.; Ray, S.; et al. Breast Cancers Are Immunogenic: Immunologic Analyses and a Phase II Pilot Clinical Trial Using Mutation-Reactive Autologous Lymphocytes. J. Clin. Oncol. 2022, 40, 1741–1754. [Google Scholar] [CrossRef] [PubMed]
- Chun, B.; Lutz, E.R.; Rudraraju, L.; DeOliveira, E.; Seiz, A.; Shah, M.; Borrello, I.; Fredrich, N.E.; Noonan, K.; Page, D.B. Abstract P2-14-07: Marrow-Infiltrating Lymphocytes as Adoptive Immunotherapy for Breast Cancer. Cancer Res. 2022, 82, P2-14-07. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. Available online: https://clinicaltrials.gov/study/NCT04111510 (accessed on 30 June 2025).
- O’Malley, D.; Lee, S.; Psyrri, A.; Sukari, A.; Thomas, S.; Wenham, R.; Gogas, H.; Jazaeri, A.; Monk, B.; Rose, P.; et al. 492 Phase 2 Efficacy and Safety of Autologous Tumor-Infiltrating Lymphocyte (TIL) Cell Therapy in Combination with Pembrolizumab in Immune Checkpoint Inhibitor-Naïve Patients with Advanced Cancers. J. Immunother. Cancer 2021, 9, A523–A524. [Google Scholar] [CrossRef]
- Betof Warner, A.; Hamid, O.; Komanduri, K.; Amaria, R.; Butler, M.O.; Haanen, J.; Nikiforow, S.; Puzanov, I.; Sarnaik, A.; Bishop, M.R.; et al. Expert Consensus Guidelines on Management and Best Practices for Tumor-Infiltrating Lymphocyte Cell Therapy. J. Immunother. Cancer 2024, 12, e008735. [Google Scholar] [CrossRef]
- Palomero, J.; Galvao, V.; Creus, I.; Lostes, J.; Aylagas, M.; Marín-Bayo, A.; Rotxés, M.; Sanz, M.; Lozano-Rabella, M.; Garcia-Garijo, A.; et al. Preclinical Data and Design of a Phase I Clinical Trial of Neoantigen-Reactive TILs for Advanced Epithelial or ICB-Resistant Solid Cancers. Immuno-Oncol. Technol. 2025, 25, 101030. [Google Scholar] [CrossRef]
- Coman, M.M.; Pusztai, L.; Hooley, R.; Andreveja, L.; Kim, L.; Joshi, N.; Bersenev, A.; Krause, D.; Park, T.S. Core Needle Biopsies as an Alternative Source for Ex Vivo Expanded TIL for Adoptive Cell Therapy in Triple-Negative Breast Cancer. J. Immunother. 2024, 47, 49–53. [Google Scholar] [CrossRef]
- Feins, S.; Kong, W.; Williams, E.F.; Milone, M.C.; Fraietta, J.A. An Introduction to Chimeric Antigen Receptor (CAR) T-Cell Immunotherapy for Human Cancer. Am. J. Hematol. 2019, 94, S3–S9. [Google Scholar] [CrossRef]
- Brudno, J.N.; Maus, M.V.; Hinrichs, C.S. CAR T Cells and T-Cell Therapies for Cancer: A Translational Science Review. JAMA 2024, 332, 1924–1935. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, P.; Zeng, X.; Guo, J.; Zhang, C.; Fan, Z.; Wang, Z.; Zhu, P.; Chen, Z. CAR-T Therapy Dilemma and Innovative Design Strategies for next Generation. Cell Death Dis. 2025, 16, 211. [Google Scholar] [CrossRef] [PubMed]
- Du, B.; Qin, J.; Lin, B.; Zhang, J.; Li, D.; Liu, M. CAR-T Therapy in Solid Tumors. Cancer Cell 2025, 43, 665–679. [Google Scholar] [CrossRef] [PubMed]
- Szulc, A.; Woźniak, M. Targeting Pivotal Hallmarks of Cancer for Enhanced Therapeutic Strategies in Triple-Negative Breast Cancer Treatment-In Vitro, In Vivo and Clinical Trials Literature Review. Cancers 2024, 16, 1483. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.; Zheng, Z.-Z.; Liu, J.-Y.; Chen, Y.-J.; Ding, J.-C.; Xia, N.-S.; Luo, W.-X.; Liu, W. EGFR-Targeted CAR-T Cells Are Potent and Specific in Suppressing Triple-Negative Breast Cancer Both in Vitro and in Vivo. Clin. Transl. Immunol. 2020, 9, e01135. [Google Scholar] [CrossRef]
- Zhou, M.; Chen, M.; Shi, B.; Di, S.; Sun, R.; Jiang, H.; Li, Z. Radiation Enhances the Efficacy of EGFR-Targeted CAR-T Cells against Triple-Negative Breast Cancer by Activating NF-κB/Icam1 Signaling. Mol. Ther. 2022, 30, 3379–3393. [Google Scholar] [CrossRef]
- Subham, S.; Jeppson, J.D.; Worcester, C.; Schatmeyer, B.; Zhao, J.; Madan, R.; Lakis, N.S.; Kimler, B.F.; McGuirk, J.P.; Chen, R.C.; et al. EGFR as a Potent CAR T Target in Triple Negative Breast Cancer Brain Metastases. Breast Cancer Res. Treat. 2023, 197, 57–69. [Google Scholar] [CrossRef]
- Aniogo, E.; Kujawski, M.; Awuah, D.; Cha, S.E.; Espinosa, R.; Hui, S.; Ghimire, H.; Yazaki, P.J.; Brown, C.E.; Wang, X.; et al. Targeting CEA in Metastatic Triple Negative Breast Cancer with Image-Guided Radiation Followed by Fab-Mediated Chimeric Antigen Receptor (CAR) T-Cell Therapy. Front. Immunol. 2024, 15, 1499471. [Google Scholar] [CrossRef]
- Byrd, T.T.; Fousek, K.; Pignata, A.; Szot, C.; Samaha, H.; Seaman, S.; Dobrolecki, L.; Salsman, V.S.; Oo, H.Z.; Bielamowicz, K.; et al. TEM8/ANTXR1-Specific CAR T Cells as a Targeted Therapy for Triple-Negative Breast Cancer. Cancer Res. 2018, 78, 489–500. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. Available online: https://clinicaltrials.gov/study/NCT03060356 (accessed on 10 July 2025).
- Tchou, J.; Zhao, Y.; Levine, B.L.; Zhang, P.J.; Davis, M.M.; Melenhorst, J.J.; Kulikovskaya, I.; Brennan, A.L.; Liu, X.; Lacey, S.F.; et al. Safety and Efficacy of Intratumoral Injections of Chimeric Antigen Receptor (CAR) T Cells in Metastatic Breast Cancer. Cancer Immunol. Res. 2017, 5, 1152–1161. [Google Scholar] [CrossRef]
- Stüber, T.; Monjezi, R.; Wallstabe, L.; Kühnemundt, J.; Nietzer, S.L.; Dandekar, G.; Wöckel, A.; Einsele, H.; Wischhusen, J.; Hudecek, M. Inhibition of TGF-β-Receptor Signaling Augments the Antitumor Function of ROR1-Specific CAR T-Cells Against Triple-Negative Breast Cancer. J. Immunother. Cancer 2020, 8, e000676. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.gov. Available online: https://clinicaltrials.gov/study/NCT02706392 (accessed on 10 July 2025).
- ClinicalTrials.gov. Available online: https://clinicaltrials.gov/study/NCT05274451 (accessed on 10 July 2025).
- Saliu, M.A.; Wang, Q.; Salisu, M.D.; Ren, Y.; Zhang, P.; Suleiman, R.B.; Cao, B.; Xu, Y.; Liu, X.; Lluis, F.; et al. Mesothelin-Targeted CAR-T Cells Secreting NKG2D-BiTEs Exhibit Potent Efficacy against Triple-Negative Breast Cancer. Exp. Hematol. Oncol. 2025, 14, 27. [Google Scholar] [CrossRef] [PubMed]
- Erler, P.; Kurcon, T.; Cho, H.; Skinner, J.; Dixon, C.; Grudman, S.; Rozlan, S.; Dessez, E.; Mumford, B.; Jo, S.; et al. Multi-Armored Allogeneic MUC1 CAR T Cells Enhance Efficacy and Safety in Triple-Negative Breast Cancer. Sci. Adv. 2024, 10, eadn9857. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.gov. Available online: https://clinicaltrials.gov/study/NCT05812326 (accessed on 10 July 2025).
- Bahmanyar, M.; Vakil, M.K.; Al-Awsi, G.R.L.; Kouhpayeh, S.A.; Mansoori, Y.; Mansoori, B.; Moravej, A.; Mazarzaei, A.; Ghasemian, A. Anticancer Traits of Chimeric Antigen Receptors (CARs)-Natural Killer (NK) Cells as Novel Approaches for Melanoma Treatment. BMC Cancer 2022, 22, 1220. [Google Scholar] [CrossRef]
- Gong, Y.; Klein Wolterink, R.G.J.; Wang, J.; Bos, G.M.J.; Germeraad, W.T.V. Chimeric Antigen Receptor Natural Killer (CAR-NK) Cell Design and Engineering for Cancer Therapy. J. Hematol. Oncol. 2021, 14, 73. [Google Scholar] [CrossRef]
- Hu, Z. Tissue Factor as a New Target for CAR-NK Cell Immunotherapy of Triple-Negative Breast Cancer. Sci. Rep. 2020, 10, 2815. [Google Scholar] [CrossRef]
- Eitler, J.; Rackwitz, W.; Wotschel, N.; Gudipati, V.; Murali Shankar, N.; Sidorenkova, A.; Huppa, J.B.; Ortiz-Montero, P.; Opitz, C.; Künzel, S.R.; et al. CAR-Mediated Targeting of NK Cells Overcomes Tumor Immune Escape Caused by ICAM-1 Downregulation. J. Immunother. Cancer 2024, 12, e008155. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, J.; Tian, J.; Hao, Y.; Ma, X.; Zhou, Y.; Feng, L. Engineered CAR-NK Cells with Tolerance to H2O2 and Hypoxia Can Suppress Postoperative Relapse of Triple-Negative Breast Cancers. Cancer Immunol. Res. 2024, 12, 1574–1588. [Google Scholar] [CrossRef]
- Shafer, P.; Kelly, L.M.; Hoyos, V. Cancer Therapy with TCR-Engineered T Cells: Current Strategies, Challenges, and Prospects. Front. Immunol. 2022, 13, 835762. [Google Scholar] [CrossRef]
- Kortleve, D.; Hammerl, D.; van Brakel, M.; Wijers, R.; Roelofs, D.; Kroese, K.; Timmermans, M.M.; Liao, C.-Y.; Huang, S.; Trapman-Jansen, A.; et al. TCR-Engineered T Cells Directed against Ropporin-1 Constitute a Safe and Effective Treatment for Triple-Negative Breast Cancer. Cancer Discov. 2024, 14, 2450–2470. [Google Scholar] [CrossRef]
- Somes, L.K.; Lei, J.T.; Yi, X.; Chamorro, D.F.; Shafer, P.; Gad, A.Z.; Dobrolecki, L.E.; Madaras, E.; Ahmed, N.; Lewis, M.T.; et al. ZP4: A Novel Target for CAR-T Cell Therapy in Triple Negative Breast Cancer. Mol. Ther. 2025, 33, 1621–1641. [Google Scholar] [CrossRef]
- Skwarczynski, M.; Toth, I. Peptide-Based Synthetic Vaccines. Chem. Sci. 2016, 7, 842–854. [Google Scholar] [CrossRef] [PubMed]
- Qin, F.; Xia, F.; Chen, H.; Cui, B.; Feng, Y.; Zhang, P.; Chen, J.; Luo, M. A Guide to Nucleic Acid Vaccines in the Prevention and Treatment of Infectious Diseases and Cancers: From Basic Principles to Current Applications. Front. Cell Dev. Biol. 2021, 9, 633776. [Google Scholar] [CrossRef] [PubMed]
- Kramps, T. Introduction to RNA Vaccines Post COVID-19. Methods Mol. Biol. 2024, 2786, 1–22. [Google Scholar] [CrossRef]
- Lee, K.-W.; Yam, J.W.P.; Mao, X. Dendritic Cell Vaccines: A Shift from Conventional Approach to New Generations. Cells 2023, 12, 2147. [Google Scholar] [CrossRef] [PubMed]
- Novakova, A.; Morris, S.A.; Vaiarelli, L.; Frank, S. Manufacturing and Financial Evaluation of Peptide-Based Neoantigen Cancer Vaccines for Triple-Negative Breast Cancer in the United Kingdom: Opportunities and Challenges. Vaccines 2025, 13, 144. [Google Scholar] [CrossRef]
- Takahashi, R.; Toh, U.; Iwakuma, N.; Takenaka, M.; Otsuka, H.; Furukawa, M.; Fujii, T.; Seki, N.; Kawahara, A.; Kage, M.; et al. Feasibility Study of Personalized Peptide Vaccination for Metastatic Recurrent Triple-Negative Breast Cancer Patients. Breast Cancer Res. 2014, 16, R70. [Google Scholar] [CrossRef]
- Toh, U.; Sakurai, S.; Saku, S.; Takao, Y.; Okabe, M.; Iwakuma, N.; Shichijo, S.; Yamada, A.; Itoh, K.; Akagi, Y. Early Phase II Study of Mixed 19-Peptide Vaccine Monotherapy for Refractory Triple-Negative Breast Cancer. Cancer Sci. 2020, 111, 2760–2769. [Google Scholar] [CrossRef]
- Lou, Y.; Chumsri, S.; Asmann, Y.W.; Shi, Q.; Reynolds, J.; Necela, B.; Norton, N.; Gustafson, M.; Tan, W.; Manochakian, R.; et al. A Phase I Pilot Study of Personalized Neoantigen Peptide-Based Vaccine in Combination with Pembrolizumab in Advanced Solid Tumors (PNeoVCA). J. Clin. Oncol. 2024, 42, TPS2700. [Google Scholar] [CrossRef]
- Chumsri, S.; Lou, Y.; Shi, Q.; Reynolds, J.; Necela, B.; Norton, N.; Rao, R.; Advani, P.; Sideras, K.; Gustafson, M.; et al. Abstract P3-10-16: Phase I/II of Personalized Neoantigen Peptide-Based Vaccine (PNeoVCA) in Combination with Pembrolizumab in Patients with Early-Stage Triple-Negative Breast Cancer with Residual Disease after Neoadjuvant Chemotherapy. Clin. Cancer Res. 2025, 31, P3-10-16. [Google Scholar] [CrossRef]
- Hernandez-Aya, L.F.; Gao, F.; Goedegebuure, P.S.; Ma, C.X.; Ademuyiwa, F.O.; Park, H.; Peterson, L.L.; Bagegni, N.A.; Bose, R.; Gillanders, W.E. A Randomized Phase II Study of Nab-Paclitaxel + Durvalumab + Neoantigen Vaccine versus Nab-Paclitaxel + Durvalumab in Metastatic Triple-Negative Breast Cancer (mTNBC). J. Clin. Oncol. 2019, 37, TPS1114. [Google Scholar] [CrossRef]
- Ottensmeier, C.H.H.; Pinato, D.J.J.; Armstrong, A.C.; Symeonides, S.N.; Patel, P.M.; Danson, S.; Korolewicz, J.; Cameron, D.; Miller, R.M.; Master, F.; et al. Modi-1, Anti-Citrullinated Neoepitope Vaccine, Alone and Combined with Checkpoint Inhibitors in Patients with Head and Neck, Breast, Renal, and Ovarian Cancers: ModiFy Phase I/II Basket Clinical trial—Report after Completion of Monotherapy Dose-Finding. J. Clin. Oncol. 2023, 41, 2566. [Google Scholar] [CrossRef]
- Pardi, N.; Hogan, M.J.; Porter, F.W.; Weissman, D. mRNA Vaccines—A New Era in Vaccinology. Nat. Rev. Drug Discov. 2018, 17, 261–279. [Google Scholar] [CrossRef]
- Sahin, U.; Türeci, Ö. Personalized Vaccines for Cancer Immunotherapy. Science 2018, 359, 1355–1360. [Google Scholar] [CrossRef] [PubMed]
- Karikó, K.; Buckstein, M.; Ni, H.; Weissman, D. Suppression of RNA Recognition by Toll-like Receptors: The Impact of Nucleoside Modification and the Evolutionary Origin of RNA. Immunity 2005, 23, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Lopez, J.; Powles, T.; Braiteh, F.; Siu, L.L.; LoRusso, P.; Friedman, C.F.; Balmanoukian, A.S.; Gordon, M.; Yachnin, J.; Rottey, S.; et al. Autogene Cevumeran with or without Atezolizumab in Advanced Solid Tumors: A Phase 1 Trial. Nat. Med. 2025, 31, 152–164. [Google Scholar] [CrossRef] [PubMed]
- Palucka, A.K.; Ueno, H.; Fay, J.W.; Banchereau, J. Taming Cancer by Inducing Immunity via Dendritic Cells. Immunol. Rev. 2007, 220, 129–150. [Google Scholar] [CrossRef]
- Hosseini, M.; Seyedpour, S.; Khodaei, B.; Loghman, A.-H.; Seyedpour, N.; Yazdi, M.-H.; Rezaei, N. Cancer Vaccines for Triple-Negative Breast Cancer: A Systematic Review. Vaccines 2023, 11, 146. [Google Scholar] [CrossRef]
- Kantoff, P.W.; Higano, C.S.; Shore, N.D.; Berger, E.R.; Small, E.J.; Penson, D.F.; Redfern, C.H.; Ferrari, A.C.; Dreicer, R.; Sims, R.B.; et al. Sipuleucel-T Immunotherapy for Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2010, 363, 411–422. [Google Scholar] [CrossRef]
- Kamigaki, T.; Takimoto, R.; Okada, S.; Ibe, H.; Oguma, E.; Goto, S. Personalized Dendritic-Cell-Based Vaccines Targeting Cancer Neoantigens. Anticancer. Res. 2024, 44, 3713–3724. [Google Scholar] [CrossRef]
- Parra-Lopez, C.A.; Martínez, L.C.; Bernal-Estevez, D.A.; Alzate-Guitiérrez, D. 710 Case Report and Proof of Concept: Use of Dendritic Cells Pulsed with Tumor Neoantigens for Immunotherapy of Patients with Persistent Triple-Negative-Breast-Cancer after Neoadjuvant Chemotherapy. J. Immunother. Cancer 2024, 12, A812. [Google Scholar]
- ClinicalTrials.gov. Available online: https://clinicaltrials.gov/study/NCT04348747 (accessed on 17 July 2025).
- ClinicalTrials.gov. Available online: https://clinicaltrials.gov/study/NCT05504707 (accessed on 17 July 2025).
- Kaufman, H.L.; Kohlhapp, F.J.; Zloza, A. Oncolytic Viruses: A New Class of Immunotherapy Drugs. Nat. Rev. Drug Discov. 2015, 14, 642–662. [Google Scholar] [CrossRef] [PubMed]
- Gujar, S.; Pol, J.G.; Kim, Y.; Lee, P.W.; Kroemer, G. Antitumor Benefits of Antiviral Immunity: An Underappreciated Aspect of Oncolytic Virotherapies. Trends Immunol. 2018, 39, 209–221. [Google Scholar] [CrossRef] [PubMed]
- Marelli, G.; Howells, A.; Lemoine, N.R.; Wang, Y. Oncolytic Viral Therapy and the Immune System: A Double-Edged Sword against Cancer. Front. Immunol. 2018, 9, 866. [Google Scholar] [CrossRef] [PubMed]
- Russell, L.; Peng, K.-W. The Emerging Role of Oncolytic Virus Therapy against Cancer. Chin. Clin. Oncol. 2018, 7, 16. [Google Scholar] [CrossRef]
- Yoo, S.Y. Abstract 3561: Pan-Cancer-Specific Engineered Oncolytic Vaccinia Virus. Cancer Res. 2022, 82, 3561. [Google Scholar] [CrossRef]
- Parato, K.A.; Breitbach, C.J.; Le Boeuf, F.; Wang, J.; Storbeck, C.; Ilkow, C.; Diallo, J.-S.; Falls, T.; Burns, J.; Garcia, V.; et al. The Oncolytic Poxvirus JX-594 Selectively Replicates in and Destroys Cancer Cells Driven by Genetic Pathways Commonly Activated in Cancers. Mol. Ther. 2012, 20, 749–758. [Google Scholar] [CrossRef]
- Guo, Z.S.; Lu, B.; Guo, Z.; Giehl, E.; Feist, M.; Dai, E.; Liu, W.; Storkus, W.J.; He, Y.; Liu, Z.; et al. Vaccinia Virus-Mediated Cancer Immunotherapy: Cancer Vaccines and Oncolytics. J. Immunother. Cancer 2019, 7, 6. [Google Scholar] [CrossRef]
- Wang, C.; Shi, Y.; Zhang, D.; Sun, Y.; Xie, J.; Wu, B.; Zhang, C.; Liu, X. Generalization of Neoantigen-Based Tumor Vaccine by Delivering Peptide-MHC Complex via Oncolytic Virus. EMBO Mol. Med. 2025, 17, 1118–1152. [Google Scholar] [CrossRef]
- Brito Baleeiro, R.; Liu, P.; Chard Dunmall, L.S.; Di Gioia, C.; Nagano, A.; Cutmore, L.; Wang, J.; Chelala, C.; Nyambura, L.W.; Walden, P.; et al. Personalized Neoantigen Viro-Immunotherapy Platform for Triple-Negative Breast Cancer. J. Immunother. Cancer 2023, 11, e007336. [Google Scholar] [CrossRef]
- Cambien, B.; Lebrigand, K.; Baeri, A.; Nottet, N.; Compin, C.; Lamit, A.; Ferraris, O.; Peyrefitte, C.N.; Magnone, V.; Henriques, J.; et al. Identification of Oncolytic Vaccinia Restriction Factors in Canine High-Grade Mammary Tumor Cells Using Single-Cell Transcriptomics. PLoS Pathog. 2020, 16, e1008660. [Google Scholar] [CrossRef]
- Tang, S.; Yong, L.; Cui, Y.; Li, H.; Bischof, E.; Cai, F. Harnessing Oncolytic Viruses for Targeted Therapy in Triple-Negative Breast Cancer. Int. J. Med. Sci. 2025, 22, 2186–2207. [Google Scholar] [CrossRef]
- Chen, B.; Du, Y.; Wu, Y.; Yu, C.; Zhuang, B. An Approach to Increase Efficacy against Triple Negative Breast Cancer Using an Engineered Multigenic Vaccinia Virus Combined with CAR T-Cell Therapy. Theor. Nat. Sci. 2024, 67, 201–214. [Google Scholar] [CrossRef]
- Kim, H.-S.; Youn, Y.H.; Kim, H.-J.; Koo, Y.-H.; Lee, J.; Kwon, I.K.; Do, S.H. Enhanced Antitumor Efficacy of Oncolytic Vaccinia Virus Therapy through Keratin-Mediated Delivery in Triple-Negative Breast Cancer. Int. J. Mol. Sci. 2024, 25, 11470. [Google Scholar] [CrossRef]
Group | Gene(s)/Mutation(s) | Frequency/Features | Neoantigen/Immunogenic Potential | References |
---|---|---|---|---|
I. Driver mutations | TP53 | ~70–80% of TNBC; higher than in other BC subtypes | Frequent candidate neoantigens; recurrent variants: R175H, Y220C, R196*; immunogenicity confirmed only in a minority of cases | [143,144,145,146,147,157,158,159] |
PIK3CA | 20–40% of TNBC; mutually exclusive with TP53 | Shared immunogenic variants: H1047R, N345K, E542K; variable immunogenicity | [147,148,149,157,158,159] | |
PTEN, AKT1, BRCA1, BRCA2, ATM, KRAS | Less frequent than TP53/PIK3CA but repeatedly reported; KRAS recurrent in ≤2 cases | May contribute to neoantigens; especially relevant in BRCA1-associated TNBC | [92,149,150,157] | |
II. Non-driver mutations | TTN, HMCN1, RELN, PKHD1L1, DMD, FRAS1, RYR3 | Mutated in up to 30% of metastatic TNBC; linked to ECM and signaling | Reflect TME remodeling; distinct neoantigen landscapes in metastases | [151] |
MMR genes (MLH1, MSH2, MSH6, PMS2, etc.) | ~3% of TNBC; higher than in other BCs but low overall | Strong contribution to neoantigen load when mutated | [152] | |
Indels | Less frequent than SNVs but more immunogenic; enriched in BRCA1-mutated TNBC | Broaden neoepitope diversity; high immunogenicity | [153,154] | |
III. Post-genomic alterations | Aberrant splicing, post-translational modifications (PTMs) | Still understudied | Potential additional source of novel neoepitopes | [155,156] |
Modality | Trial/ID | Phase | Design/Combo | Neoantigen Strategy | Key Outcomes (TNBC) | Refs. |
---|---|---|---|---|---|---|
DNA neoantigen vaccine | NCT02348320 | I | Personalized plasmid DNA vaccine (average 11 neoantigens per patient), (intramuscular via electroporation) | Patient-specific mutated epitopes (WES/RNA-seq → prediction) | Neoantigen-specific T-cell responses in 14/18; 36-months RFS 87.5% | [144] |
mRNA neoantigen vaccine + anti-PD-L1 | NCT03289962 (Autogene cevumeran) | I a/b | Individualized RNA-lipoplex vaccine ± atezolizumab | Patient-specific mutated epitopes encoded in RNA | PR reported in 1 TNBC pt; robust neoantigen T-cell responses | [221] |
Peptide neoantigen vaccine + anti-PD-1 | NCT05269381 (PNeoVCA) | I | Up to 20 long peptides per patient + pembrolizumab | Patient-specific long peptides | No TNBC-specific outcomes posted yet | [214,215] |
Peptide neoantigen vaccine + ICI + chemo | NCT03606967 | I | Personalized long-peptide vaccine + durvalumab + tremelimumab + nab-paclitaxel | Patient-specific long peptides | Not yet reported | [216] |
Autologous DC vaccine pulsed with neoantigen peptides | NCT04105582/NCT04879888 | I | Patient-specific neoantigenic peptide-pulsed DCs | Ex vivo–loaded DCs with predicted patient mutations | Restored T-cell responsiveness | [226] |
Neoantigen-reactive TIL therapy | NCT01174121 | II (basket) | Selection/expansion of mutation-reactive TILs + lymphodepletion + IL-2 | Ex vivo selection of TIL clones reactive to patient-specific mutated epitopes | Across BC, tumor regression in 3/6 in one series; TNBC-specific outcomes not isolated | [173,174,175] |
Immuno-Therapy Approach | Subtype | Advantages | Disadvantages | Therapeutic Effects | Mechanism |
---|---|---|---|---|---|
Adoptive Cell Therapies (ACT) | TIL Therapy | Personalized, uses patient’s own immune cells; proven efficacy in melanoma; potential in other solid tumors | Variable efficacy outside melanoma; labor-intensive; limited by tumor accessibility | Tumor regression in select cases; ongoing trials in BC/TNBC | Expansion of tumor-reactive TILs ex vivo → reinfusion → targeted killing of tumor cells |
CAR-T Therapy | Strong, MHC-independent cytotoxicity; FDA-approved for hematologic cancers; flexible antigen targeting | Severe toxicity risks; limited efficacy in solid tumors due to immunosuppressive TME | Promising in preclinical TNBC models; some early clinical attempts | Engineered T-cells with synthetic receptors directly recognizing tumor antigens | |
CAR-NK Therapy | “Off-the-shelf” potential; lower toxicity risk; combine innate and engineered immunity | Early stage of development; durability and persistence challenges | Preclinical efficacy in TNBC; promising safety profile | Engineered NK cells with CARs → direct killing, cytokine release, ADCC | |
TCR-T Therapy | High specificity to intracellular tumor antigens; broad target repertoire beyond surface proteins | HLA-restricted; risk of off-target reactivity; complex personalization | Potent preclinical activity in TNBC; no mature clinical data yet | TCR-engineered T-cells recognize tumor antigens presented by MHC molecules | |
Neoantigen-Based Vaccines | Peptide-Based Vaccines | Simple design; established platform; relatively safe | Limited efficacy as monotherapy; high cost for personalization | Induces antigen-specific immune responses; modest clinical benefit in TNBC | Synthetic peptides stimulate T-cell activation, often with adjuvants |
DNA/RNA Vaccines | Rapidly customizable; can encode multiple antigens; strong immunogenicity | Variable clinical efficacy; manufacturing/logistics issues | Induce neoantigen-specific T-cell responses; some early success in TNBC | Delivery of nucleic acids → in situ antigen production → T-cell activation | |
Dendritic Cell Vaccines | Potent immune activation via APCs; versatile | Labor- and cost-intensive; mixed clinical results | Ongoing TNBC trials; limited success so far | Ex vivo loaded DCs present tumor antigens → activate T-cell responses | |
Oncolytic Immunotherapies | Oncolytic Viruses | Dual effect: tumor lysis + in situ vaccination; can be engineered to carry antigens | Delivery barriers; immune clearance of virus; variable efficacy | Preclinical TNBC studies show immune activation and tumor inhibition | Viral infection of tumor cells → lysis + release of neoantigens → immune priming |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shatalov, P.A.; Bukaeva, A.A.; Veselovsky, E.M.; Traspov, A.A.; Bagdasarova, D.V.; Leukhina, I.A.; Shinkarkina, A.P.; Raygorodskaya, M.P.; Murzaeva, A.V.; Mechenici, Y.A.; et al. Neoantigen-Driven Immunotherapy in Triple-Negative Breast Cancer: Emerging Strategies and Clinical Potential. Biomedicines 2025, 13, 2213. https://doi.org/10.3390/biomedicines13092213
Shatalov PA, Bukaeva AA, Veselovsky EM, Traspov AA, Bagdasarova DV, Leukhina IA, Shinkarkina AP, Raygorodskaya MP, Murzaeva AV, Mechenici YA, et al. Neoantigen-Driven Immunotherapy in Triple-Negative Breast Cancer: Emerging Strategies and Clinical Potential. Biomedicines. 2025; 13(9):2213. https://doi.org/10.3390/biomedicines13092213
Chicago/Turabian StyleShatalov, Peter A., Anna A. Bukaeva, Egor M. Veselovsky, Alexey A. Traspov, Daria V. Bagdasarova, Irina A. Leukhina, Anna P. Shinkarkina, Maria P. Raygorodskaya, Alena V. Murzaeva, Yulia A. Mechenici, and et al. 2025. "Neoantigen-Driven Immunotherapy in Triple-Negative Breast Cancer: Emerging Strategies and Clinical Potential" Biomedicines 13, no. 9: 2213. https://doi.org/10.3390/biomedicines13092213
APA StyleShatalov, P. A., Bukaeva, A. A., Veselovsky, E. M., Traspov, A. A., Bagdasarova, D. V., Leukhina, I. A., Shinkarkina, A. P., Raygorodskaya, M. P., Murzaeva, A. V., Mechenici, Y. A., Revkova, M. A., Kaprin, A. D., & Shegai, P. V. (2025). Neoantigen-Driven Immunotherapy in Triple-Negative Breast Cancer: Emerging Strategies and Clinical Potential. Biomedicines, 13(9), 2213. https://doi.org/10.3390/biomedicines13092213