Pulmonary Emphysema: Current Understanding of Disease Pathogenesis and Therapeutic Approaches
Abstract
1. Pulmonary Emphysema
2. Risk Factors
3. Hypotheses of Disease Pathogenesis
3.1. Protease–Antiprotease Imbalance
3.2. Oxidant–Antioxidant Imbalance
3.3. Vicious Cycle of Inflammation
3.4. Persistent Immunologic Response
3.5. Apoptosis
3.6. Lung Elastic Fiber Injury
3.7. Disruption of Mechanical Forces
4. Clinically Relevant Experimental Animal Models
4.1. Cigarette-Smoke-Induced Emphysema
4.2. Elastase-Induced Emphysema
4.3. Chemical-Induced Emphysema
4.4. Animal Model of Emphysema Exacerbation
4.5. Gene-Alteration-Induced Emphysema
5. Therapeutic Strategies
5.1. Non-Pharmacological Approaches
5.2. Pharmacological Approaches
5.2.1. Bronchodilators
5.2.2. β-2 Agonists
5.2.3. Anticholinergics
5.2.4. Methylxanthines
5.2.5. Corticosteroids
5.2.6. Antibiotics
5.2.7. Phosphodiesterase-4 Inhibitors
5.2.8. Mediator Antagonists
Lipid Mediator Inhibitors
Leukotriene B4 Inhibitors
Tumor Necrosis Factor-α Inhibitors
Other Cytokine Targets
Chemokine Inhibitors
5.2.9. Antioxidants
5.2.10. Signal Transduction Pathway Inhibitors
P38 MAPK Inhibitors
Phosphoinositide 3-Kinase Inhibitors
NF-kB Inhibitors
5.2.11. Proteinase Inhibitors
Neutrophil Elastase Inhibitors
Others Protease Inhibitors
5.2.12. Protective Extracellular Matrix Mimics
5.2.13. Mucoregulators
5.2.14. Pulmonary Vasodilators
6. Disease Biomarkers
7. Management and Treatment of Emphysema
8. Exploratory Approaches
8.1. Genomics and Proteomics
8.2. Microbiota
8.3. Micro- and Nanoparticle-Mediated Encapsulation of Drugs
8.4. Stem Cell Therapy
8.5. Gene Therapy
8.6. Computer Modeling
8.7. Imaging Techniques
8.8. Artificial Intelligence
9. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tuder, R.M.; Petrache, I. Pathogenesis of chronic obstructive pulmonary disease. J. Clin. Investig. 2012, 122, 2749–2755. [Google Scholar] [CrossRef]
- Hogg, J.C.; Timens, W. The pathology of chronic obstructive pulmonary disease. Annu. Rev. Pathol. 2009, 4, 435–459. [Google Scholar] [CrossRef]
- Guyot, N.; Wartelle, J.; Malleret, L.; Todorov, A.A.; Devouassoux, G.; Pacheco, Y.; Jenne, D.E.; Belaaouaj, A. Unopposed cathepsin G, neutrophil elastase, and proteinase 3 cause severe lung damage and emphysema. Am. J. Pathol. 2014, 184, 2197–2210. [Google Scholar] [CrossRef] [PubMed]
- Global Strategy for Prevention, Diagnosis And Management of COPD, 2025 Report. Available online: https://goldcopd.org/2025-gold-report (accessed on 20 August 2025).
- Sin, D.D.; Doiron, D.; Agusti, A.; Anzueto, A.; Barnes, P.J.; Celli, B.R.; Criner, G.J.; Halpin, D.; Han, M.K.; Martinez, F.J.; et al. Air pollution and COPD: GOLD 2023 committee report. Eur. Respir. J. 2023, 61, 2202469. [Google Scholar] [CrossRef] [PubMed]
- Doney, B.; Kurth, L.; Syamlal, G. Chronic bronchitis and emphysema among workers exposed to dust, vapors, or fumes by industry and occupation. Arch. Environ. Occup. Health 2022, 77, 525–529. [Google Scholar] [CrossRef] [PubMed]
- Murgia, N.; Gambelunghe, A. Occupational COPD-The most under-recognized occupational lung disease? Respirology 2022, 27, 399–410. [Google Scholar] [CrossRef]
- Yang, I.A.; Jenkins, C.R.; Salvi, S.S. Chronic obstructive pulmonary disease in never-smokers: Risk factors, pathogenesis, and implications for prevention and treatment. Lancet Respir. Med. 2022, 10, 497–511. [Google Scholar] [CrossRef]
- Agustí, A.; Melén, E.; DeMeo, D.L.; Breyer-Kohansal, R.; Faner, R. Pathogenesis of chronic obstructive pulmonary disease: Understanding the contributions of gene- environment interactions across the lifespan. Lancet Respir. Med. 2022, 10, 512–524. [Google Scholar] [CrossRef]
- Demeautis, T.; Bouyssi, A.; Chapalain, A.; Guillemot, J.; Doublet, P.; Geloen, A.; Devouassoux, G.; Bentaher, A. Chronic Exposure to Secondary Organic Aerosols Causes Lung Tissue Damage. Environ. Sci. Technol. 2023, 57, 6085–6094. [Google Scholar] [CrossRef]
- Demeautis, T.; Bouyssi, A.; Geloen, A.; George, C.; Menotti, J.; Glehen, O.; Devouassoux, G.; Bentaher, A. Weight loss and abnormal lung inflammation in mice chronically exposed to secondary organic aerosols. Environ. Sci. Process. Impacts 2023, 25, 382–388. [Google Scholar] [CrossRef]
- Cho, M.H.; Hobbs, B.D.; Silverman, E.K. Genetics of chronic obstructive pulmonary disease: Understanding the pathobiology and heterogeneity of a complex disorder. Lancet Respir. Med. 2022, 10, 485–496. [Google Scholar] [CrossRef]
- Viegi, G.; Pistelli, F.; Sherrill, D.L.; Maio, S.; Baldacci, S.; Carrozzi, L. Definition, epidemiology and natural history of COPD. Eur. Respir. J. 2007, 30, 993–1013. [Google Scholar] [CrossRef]
- Vogelmeier, C.F.; Criner, G.J.; Martinez, F.J.; Anzueto, A.; Barnes, P.J.; Bourbeau, J.; Celli, B.R.; Chen, R.; Decramer, M.; Fabbri, L.M.; et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease 2017 Report: GOLD Executive Summary. Arch. Bronconeumol. 2017, 53, 128–149. [Google Scholar] [CrossRef]
- Higham, A.; Quinn, A.M.; Cancado, J.E.D.; Singh, D. The pathology of small airways disease in COPD: Historical aspects and future directions. Respir. Res. 2019, 20, 49. [Google Scholar] [CrossRef]
- Dey, T.; Kalita, J.; Weldon, S.; Taggart, C.C. Proteases and Their Inhibitors in Chronic Obstructive Pulmonary Disease. J. Clin. Med. 2018, 7, 244. [Google Scholar] [CrossRef]
- Pandey, K.C.; De, S.; Mishra, P.K. Role of Proteases in Chronic Obstructive Pulmonary Disease. Front. Pharmacol. 2017, 8, 512. [Google Scholar] [CrossRef]
- Balbin, M.; Fueyo, A.; Tester, A.M.; Pendas, A.M.; Pitiot, A.S.; Astudillo, A.; Overall, C.M.; Shapiro, S.D.; López-Otín, C. Loss of collagenase-2 confers increased skin tumor susceptibility to male mice. Nat. Genet. 2003, 35, 252–257. [Google Scholar] [CrossRef]
- Shapiro, S.D.; Goldstein, N.M.; Houghton, A.M.; Kobayashi, D.K.; Kelley, D.; Belaaouaj, A. Neutrophil elastase contributes to cigarette smoke-induced emphysema in mice. Am. J. Pathol. 2003, 163, 2329–2335. [Google Scholar] [CrossRef] [PubMed]
- Kokturk, N.; Khodayari, N.; Lascano, J.; Riley, E.L.; Brantly, M.L. Lung Inflammation in alpha-1-antitrypsin deficient individuals with normal lung function. Respir. Res. 2023, 24, 40. [Google Scholar] [CrossRef] [PubMed]
- Molloy, K.; Hersh, C.P.; Morris, V.B.; Carroll, T.P.; O’Connor, C.A.; Lasky-Su, J.A.; Greene, C.M.; O’Neill, S.J.; Silverman, E.K.; McElvaney, N.G. Clarification of the risk of chronic obstructive pulmonary disease in alpha1-antitrypsin deficiency PiMZ heterozygotes. Am. J. Respir. Crit. Care Med. 2014, 189, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Lugrin, J.; Rosenblatt-Velin, N.; Parapanov, R.; Liaudet, L. The role of oxidative stress during inflammatory processes. Biol. Chem. 2014, 395, 203–230. [Google Scholar] [CrossRef]
- Auten, R.L.; Davis, J.M. Oxygen toxicity and reactive oxygen species: The devil is in the details. Pediatr. Res. 2009, 66, 121–127. [Google Scholar] [CrossRef]
- Villalpando-Rodriguez, G.E.; Gibson, S.B. Reactive Oxygen Species (ROS) Regulates Different Types of Cell Death by Acting as a Rheostat. Oxid. Med. Cell. Longev. 2021, 2021, 9912436. [Google Scholar] [CrossRef] [PubMed]
- Comhair, S.A.; Erzurum, S.C. Antioxidant responses to oxidant-mediated lung diseases. Am. J. Physiol. Lung Cell. Mol. Physiol. 2002, 283, L246–L255. [Google Scholar] [CrossRef] [PubMed]
- Raghunath, A.; Sundarraj, K.; Nagarajan, R.; Arfuso, F.; Bian, J.; Kumar, A.P.; Sethi, G.; Perumal, E. Antioxidant response elements: Discovery, classes, regulation and potential applications. Redox Biol. 2018, 17, 297–314. [Google Scholar] [CrossRef]
- Rangasamy, T.; Cho, C.Y.; Thimmulappa, R.K.; Zhen, L.; Srisuma, S.S.; Kensler, T.W.; Yamamoto, M.; Petrache, I.; Tuder, R.M.; Biswal, S. Genetic ablation of Nrf2 enhances susceptibility to cigarette smoke-induced emphysema in mice. J. Clin. Investig. 2004, 114, 1248–1259. [Google Scholar] [CrossRef]
- Kheradmand, F.; Zhang, Y.; Corry, D.B. Contribution of adaptive immunity to human COPD and experimental models of emphysema. Physiol. Rev. 2023, 103, 1059–1093. [Google Scholar] [CrossRef]
- Heinz, A. Elastases and elastokines: Elastin degradation and its significance in health and disease. Crit. Rev. Biochem. Mol. Biol. 2020, 55, 252–273. [Google Scholar] [CrossRef] [PubMed]
- Hiemstra, P.S. Altered macrophage function in chronic obstructive pulmonary disease. Ann. Am. Thorac. Soc. 2013, 10, S180–S185. [Google Scholar] [CrossRef]
- Hikichi, M.; Mizumura, K.; Maruoka, S.; Gon, Y. Pathogenesis of chronic obstructive pulmonary disease (COPD) induced by cigarette smoke. J. Thorac. Dis. 2019, 11 (Suppl. S17), S2129–S2140. [Google Scholar] [CrossRef]
- Tuder, R.M.; Zhen, L.; Cho, C.Y.; Taraseviciene-Stewart, L.; Kasahara, Y.; Salvemini, D.; Voelkel, N.F.; Flores, S.C. Oxidative stress and apoptosis interact and cause emphysema due to vascular endothelial growth factor receptor blockade. Am. J. Respir. Cell Mol. Biol. 2003, 29, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Siganaki, M.; Koutsopoulos, A.V.; Neofytou, E.; Vlachaki, E.; Psarrou, M.; Soulitzis, N.; Pentilas, N.; Schiza, S.; Siafakas, N.M.; Tzortzaki, E.G. Deregulation of apoptosis mediators’ p53 and bcl2 in lung tissue of COPD patients. Respir. Res. 2010, 11, 46. [Google Scholar] [CrossRef] [PubMed]
- Demedts, I.K.; Demoor, T.; Bracke, K.R.; Joos, G.F.; Brusselle, G.G. Role of apoptosis in the pathogenesis of COPD and pulmonary emphysema. Respir. Res. 2006, 7, 53. [Google Scholar] [CrossRef]
- Hautamaki, R.D.; Kobayashi, D.K.; Senior, R.M.; Shapiro, S.D. Requirement for macrophage elastase for cigarette smoke-induced emphysema in mice. Science 1997, 277, 2002–2004. [Google Scholar] [CrossRef]
- Kuhn, C., 3rd. The biochemical pathogenesis of chronic obstructive pulmonary diseases: Protease-antiprotease imbalance in emphysema and diseases of the airways. J. Thorac. Imaging 1986, 1, 1–6. [Google Scholar] [CrossRef]
- Suki, B.; Sato, S.; Parameswaran, H.; Szabari, M.V.; Takahashi, A.; Bartolák-Suki, E. Emphysema and mechanical stress-induced lung remodeling. Physiology 2013, 28, 404–413. [Google Scholar] [CrossRef]
- Suki, B.; Bates, J.H.T.; Bartolák-Suki, E. Remodeling of the Aged and Emphysematous Lungs: Roles of Microenvironmental Cues. Compr. Physiol. 2022, 12, 3559–3574. [Google Scholar] [CrossRef]
- Tuder, R.M.; Yoshida, T.; Arap, W.; Pasqualini, R.; Petrache, I. State of the art. Cellular and molecular mechanisms of alveolar destruction in emphysema: An evolutionary perspective. Proc. Am. Thorac. Soc. 2006, 3, 503–510. [Google Scholar] [CrossRef]
- Taraseviciene-Stewart, L.; Voelkel, N.F. Molecular pathogenesis of emphysema. J. Clin. Investig. 2008, 118, 394–402. [Google Scholar] [CrossRef]
- Wright, J.L.; Churg, A. Effect of long-term cigarette smoke exposure on pulmonary vascular structure and function in the guinea pig. Exp. Lung Res. 1991, 17, 997–1009. [Google Scholar] [CrossRef] [PubMed]
- Shu, J.; Li, D.; Ouyang, H.; Huang, J.; Long, Z.; Liang, Z.; Chen, Y.; Chen, Y.; Zheng, Q.; Kuang, M.; et al. Comparison and evaluation of two different methods to establish the cigarette smoke exposure mouse model of COPD. Sci. Rep. 2017, 7, 15454. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, M.; Maes, K.; De Vleeschauwer, S.; Thomas, D.; Verbeken, E.K.; Decramer, M.; Janssens, W.; Gayan-Ramirez, G.N. Long-term nose-only cigarette smoke exposure induces emphysema and mild skeletal muscle dysfunction in mice. Dis. Model. Mech. 2012, 5, 333–341. [Google Scholar] [CrossRef]
- Stevenson, C.S.; Birrell, M.A. Moving towards a new generation of animal models for asthma and COPD with improved clinical relevance. Pharmacol. Ther. 2011, 130, 93–105. [Google Scholar] [CrossRef]
- Nishi, Y.; Boswell, V.; Ansari, T.; Piprawala, F.; Satchi, S.; Page, C.P. Elastase-induced changes in lung function: Relationship to morphometry and effect of drugs. Pulm. Pharmacol. Ther. 2003, 16, 221–229. [Google Scholar] [CrossRef]
- Stone, P.J.; Lucey, E.C.; Calore, J.D.; McMahon, M.P.; Snider, G.L.; Franzblau, C. Defenses of the hamster lung against human neutrophil and porcine pancreatic elastase. Respiration 1988, 54, 1–15. [Google Scholar] [CrossRef]
- Lucattelli, M.; Bartalesi, B.; Cavarra, E.; Fineschi, S.; Lunghi, B.; Martorana, P.A.; Lungarella, G. Is neutrophil elastase the missing link between emphysema and fibrosis? Evidence from two mouse models. Respir. Res. 2005, 6, 83. [Google Scholar] [CrossRef]
- Blank, J.; Glasgow, J.E.; Pietra, G.G.; Burdette, L.; Weinbaum, G. Nitrogen-dioxide-induced emphysema in rats. Lack of worsening by beta-aminopropionitrile treatment. Am. Rev. Respir. Dis. 1988, 137, 376–379. [Google Scholar] [CrossRef]
- Li, F.; Wiegman, C.; Seiffert, J.M.; Zhu, J.; Clarke, C.; Chang, Y.; Bhavsar, P.; Adcock, I.; Zhang, J.; Zhou, X.; et al. Effects of N-acetylcysteine in ozone-induced chronic obstructive pulmonary disease model. PLoS ONE 2013, 8, e80782. [Google Scholar] [CrossRef]
- Galli, T.T.; de Campos, E.C.; do Nascimento Camargo, L.; Fukuzaki, S.; Dos Santos, T.M.; Hamaguchi, S.S.S.; Bezerra, S.K.M.; Silva, F.J.A.; Rezende, B.G.; Dos Santos Lopes, F.T.Q.; et al. Effects of environmental exposure to iron powder on healthy and elastase-exposed mice. Sci. Rep. 2024, 14, 9134. [Google Scholar] [CrossRef] [PubMed]
- Wagner, U.; Staats, P.; Fehmann, H.C.; Fischer, A.; Welte, T.; Groneberg, D.A. Analysis of airway secretions in a model of sulfur dioxide induced chronic obstructive pulmonary disease (COPD). J. Occup. Med. Toxicol. 2006, 1, 12. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.; Donovan, C.; Liu, G.; Gomez, H.M.; Chimankar, V.; Harrison, C.L.; Wiegman, C.H.; Adcock, I.M.; Knight, D.A.; Hirota, J.A.; et al. Animal models of COPD: What do they tell us? Respirology 2017, 22, 21–32. [Google Scholar] [CrossRef]
- Gaschler, G.J.; Bauer, C.M.T.; Zavitz, C.C.J.; Stampfli, M.R. Animal models of chronic obstructive pulmonary disease exacerbations. Contrib. Microbiol. 2007, 14, 126–141. [Google Scholar]
- Papi, A.; Contoli, M.; Caramori, G.; Mallia, P.; Johnston, S.L. Models of infection and exacerbations in COPD. Curr. Opin. Pharmacol. 2007, 7, 259–265, Erratum in Curr. Opin. Pharmacol. 2007, 7, 451. [Google Scholar] [CrossRef] [PubMed]
- Zeng, F.; Hong, W.; Zha, R.; Li, Y.; Jin, C.; Liu, Y.; Liu, H.; Liu, M.; Liu, M.; Xu, F.; et al. Smoking related attention alteration in chronic obstructive pulmonary disease-smoking comorbidity. BMC Pulm. Med. 2022, 22, 182. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Qian, D.C.; Diao, J.A.; Cho, M.H.; Silverman, E.K.; Gusev, A.; Manrai, A.K.; Martin, A.R.; Patel, C.J. Prediction and stratification of longitudinal risk for chronic obstructive pulmonary disease across smoking behaviors. Nat. Commun. 2023, 14, 8297. [Google Scholar] [CrossRef]
- Barnes, P.J. Alveolar macrophages as orchestrators of COPD. COPD J. Chronic Obstr. Pulm. Dis. 2004, 1, 59–70. [Google Scholar] [CrossRef]
- Anzueto, A. Impact of exacerbations on COPD. Eur. Respir. Rev. 2010, 19, 113–118. [Google Scholar] [CrossRef]
- Gharib, S.A.; Manicone, A.M.; Parks, W.C. Matrix metalloproteinases in emphysema. Matrix Biol. 2018, 73, 34–51. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, J.J.; Lutey, B.A.; Suzuki, Y.; Toennies, H.M.; Kelley, D.G.; Kobayashi, D.K.; Ijem, W.G.; Deslee, G.; Moore, C.H.; Jacobs, M.E.; et al. The role of matrix metalloproteinase-9 in cigarette smoke-induced emphysema. Am. J. Respir. Crit. Care Med. 2011, 183, 876–884. [Google Scholar] [CrossRef]
- Saad, M.I.; McLeod, L.; Hodges, C.; Vlahos, R.; Rose-John, S.; Ruwanpura, S.; Jenkins, B.J. ADAM17 Deficiency Protects against Pulmonary Emphysema. Am. J. Respir. Cell Mol. Biol. 2021, 64, 183–195. [Google Scholar] [CrossRef]
- Borel, F.; Sun, H.; Zieger, M.; Cox, A.; Cardozo, B.; Li, W.; Oliveira, G.; Davis, A.; Gruntman, A.; Flotte, T.R.; et al. Editing out five Serpina1 paralogs to create a mouse model of genetic emphysema. Proc. Natl. Acad. Sci. USA 2018, 115, 2788–2793. [Google Scholar] [CrossRef] [PubMed]
- Leco, K.J.; Waterhouse, P.; Sanchez, O.H.; Gowing, K.L.; Poole, A.R.; Wakeham, A.; Mak, T.W.; Khokha, R. Spontaneous air space enlargement in the lungs of mice lacking tissue inhibitor of metalloproteinases-3 (TIMP-3). J. Clin. Investig. 2001, 108, 817–829. [Google Scholar] [CrossRef]
- Churg, A.; Wang, R.D.; Wang, X.; Onnervik, P.O.; Thim, K.; Wright, J.L. Tumor necrosis factor-α drives 70% of cigarette smoke-induced emphysema in the mouse. Am. J. Respir. Crit. Care Med. 2004, 170, 492–498. [Google Scholar] [CrossRef]
- Zheng, T.; Zhu, Z.; Wang, Z.; Homer, R.J.; Ma, B.; Riese, R.J., Jr.; Chapman, H.A., Jr.; Shapiro, S.D.; Elias, J.A. Inducible targeting of IL-13 to the adult lung causes matrix metalloproteinase- and cathepsin-dependent emphysema. J. Clin. Investig. 2000, 106, 1081–1093. [Google Scholar] [CrossRef]
- Wang, Z.; Zheng, T.; Zhu, Z.; Homer, R.J.; Riese, R.J.; Chapman, H.A., Jr.; Shapiro, S.D.; Elias, J.A. Interferon gamma induction of pulmonary emphysema in the adult murine lung. J. Exp. Med. 2000, 192, 1587–1600. [Google Scholar] [CrossRef]
- Churg, A.; Zhou, S.; Wang, X.; Wang, R.; Wright, J.L. The role of interleukin-1beta in murine cigarette smoke-induced emphysema and small airway remodeling. Am. J. Respir. Cell Mol. Biol. 2009, 40, 482–490. [Google Scholar] [CrossRef]
- Bracke, K.R.; D’hulst, A.I.; Maes, T.; Moerloose, K.B.; Demedts, I.K.; Lebecque, S.; Joos, G.F.; Brusselle, G.G. Cigarette smoke-induced pulmonary inflammation and emphysema are attenuated in CCR6-deficient mice. J. Immunol. 2006, 177, 4350–4359. [Google Scholar] [CrossRef]
- Zhang, X.; Shan, P.; Jiang, G.; Cohn, L.; Lee, P.J. Toll-like receptor 4 deficiency causes pulmonary emphysema. J. Clin. Investig. 2006, 116, 3050–3059. [Google Scholar] [CrossRef]
- Berg, J.T.; Breen, E.C.; Fu, Z.; Mathieu-Costello, O.; West, J.B. Alveolar hypoxia increases gene expression of extracellular matrix proteins and platelet-derived growth factor-B in lung parenchyma. Am. J. Respir. Crit. Care Med. 1998, 158, 1920–1928. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Edirisinghe, I.; Yang, S.R.; Rajendrasozhan, S.; Kode, A.; Caito, S.; Adenuga, D.; Rahman, I. Genetic ablation of NADPH oxidase enhances susceptibility to cigarette smoke-induced lung inflammation and emphysema in mice. Am. J. Pathol. 2008, 172, 1222–1237. [Google Scholar] [CrossRef] [PubMed]
- Wendel, D.P.; Taylor, D.G.; Albertine, K.H.; Keating, M.T.; Li, D.Y. Impaired distal airway development in mice lacking elastin. Am. J. Respir. Cell Mol. Biol. 2000, 23, 320–326. [Google Scholar] [CrossRef]
- Wert, S.E.; Yoshida, M.; LeVine, A.M.; Ikegami, M.; Jones, T.; Ross, G.F.; Fisher, J.H.; Korfhagen, T.R.; Whitsett, J.A. Increased metalloproteinase activity, oxidant production, and emphysema in surfactant protein D gene-inactivated mice. Proc. Natl. Acad. Sci. USA 2000, 97, 5972–5977. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Lozano, P.R.; Ikeda, Y.; Iwanaga, Y.; Hinek, A.; Minamisawa, S.; Cheng, C.F.; Kobuke, K.; Dalton, N.; Takada, Y.; et al. Fibulin-5/DANCE is essential for elastogenesis in vivo. Nature 2002, 415, 171–175. [Google Scholar] [CrossRef]
- Liang, G.B.; He, Z.H. Animal models of emphysema. Chin. Med. J. 2019, 132, 2465–2475. [Google Scholar] [CrossRef] [PubMed]
- Radder, J.E.; Gregory, A.D.; Leme, A.S.; Cho, M.H.; Chu, Y.; Kelly, N.J.; Bakke, P.; Gulsvik, A.; Litonjua, A.A.; Sparrow, D.; et al. Variable Susceptibility to Cigarette Smoke-Induced Emphysema in 34 Inbred Strains of Mice Implicates Abi3bp in Emphysema Susceptibility. Am. J. Respir. Cell Mol. Biol. 2017, 57, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Fu, Y.; Ji, Q.; Deng, X.; Fang, X. The effectiveness of theory-based smoking cessation interventions in patients with chronic obstructive pulmonary disease: A meta-analysis. BMC Public Health 2023, 23, 1510. [Google Scholar] [CrossRef]
- Decramer, M.L.; Hanania, N.A.; Lotvall, J.O.; Yawn, B.P. The safety of long-acting beta2-agonists in the treatment of stable chronic obstructive pulmonary disease. Int. J. Chronic Obstr. Pulm. Dis. 2013, 8, 53–64. [Google Scholar] [CrossRef]
- Barnes, P.J. Future treatments for chronic obstructive pulmonary disease and its comorbidities. Lancet 2011, 378, 1800–1809. [Google Scholar] [CrossRef]
- Rabe, K.F.; Watz, H. Chronic obstructive pulmonary disease. Lancet 2017, 389, 1931–1940. [Google Scholar] [CrossRef]
- Cazzola, M.; Page, C.P.; Rogliani, P.; Matera, M.G. Beta2-agonist therapy in lung disease. Am. J. Respir. Crit. Care Med. 2012, 187, 690–696. [Google Scholar] [CrossRef]
- Tashkin, D.P.; Celli, B.; Senn, S.; Burkhart, D.; Kesten, S.; Menjoge, S.; Decramer, M.; UPLIFT Study Investigators. A 4-year trial of tiotropium in chronic obstructive pulmonary disease. N. Engl. J. Med. 2008, 359, 1543–1554. [Google Scholar] [CrossRef]
- Maleki-Yazdi, M.R.; Kaelin, T.; Richard, N.; Zvarich, M.; Church, A. Efficacy and safety of umeclidinium/vilanterol 62.5/25 mcg and tiotropium 18 mcg in chronic obstructive pulmonary disease: Results of a 24-week, randomized, controlled trial. Respir. Med. 2014, 108, 1752–1760. [Google Scholar] [CrossRef]
- Chanez, P.; Burge, P.S.; Dahl, R.; Creemers, J.; Chuchalin, A.; Lamarca, R.; Garcia Gil, E. Aclidinium bromide provides long-acting bronchodilation in patients with COPD. Pulm. Pharmacol. Ther. 2010, 23, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Tashkin, D.P.; Martinez, F.J.; Rodriguez-Roisin, R.; Fogarty, C.; Gotfried, M.; Denenberg, M.; Gottschlich, G.; Donohue, J.F.; Orevillo, C.; Darken, P.; et al. A multicenter, randomized, double-blind dose-ranging study of glycopyrrolate/formoterol fumarate fixed-dose combination metered dose inhaler compared to the monocomponents and open-label tiotropium dry powder inhaler in patients with moderate-to-severe COPD. Respir. Med. 2016, 120, 16–24. [Google Scholar] [PubMed]
- Donohue, J.F.; Kerwin, E.; Sethi, S.; Haumann, B.; Pendyala, S.; Dean, L.; Barnes, C.N.; Moran, E.J.; Crater, G. Revefenacin, a once-daily, lung-selective, long-acting muscarinic antagonist for nebulized therapy: Safety and tolerability results of a 52-week phase 3 trial in moderate to very severe chronic obstructive pulmonary disease. Respir. Med. 2019, 153, 38–43. [Google Scholar] [CrossRef]
- Donohue, J.F. Combination therapy for chronic obstructive pulmonary disease: Clinical aspects. Proc. Am. Thorac. Soc. 2005, 2, 272–281; discussion 290–291. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Singhera, G.K.; Yan, Y.X.; Pieper, M.P.; Leung, J.M.; Sin, D.D.; Dorscheid, D.R. Olodaterol exerts anti-inflammatory effects on COPD airway epithelial cells. Respir. Res. 2021, 22, 65. [Google Scholar] [CrossRef]
- Scurek, M.; Brat, K. A narrative review of theophylline: Is there still a place for an old friend? J. Thorac. Dis. 2024, 16, 3450–3460. [Google Scholar] [CrossRef]
- Nannini, L.J.; Poole, P.; Milan, S.J.; Kesterton, A. Combined corticosteroid and long-acting beta(2)-agonist in one inhaler versus inhaled corticosteroids alone for chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2013, 2013, CD006826. [Google Scholar]
- Nasreen, N.; Gonzalves, L.; Peruvemba, S.; Mohammed, K.A. Fluticasone furoate is more effective than mometasone furoate in restoring tobacco smoke inhibited SOCS-3 expression in airway epithelial cells. Int. Immunopharmacol. 2014, 19, 153–160. [Google Scholar] [CrossRef]
- Calverley, P.M.; Rennard, S.; Nelson, H.S.; Karpel, J.P.; Abbate, E.H.; Stryszak, P.; Staudinger, H. One-year treatment with mometasone furoate in chronic obstructive pulmonary disease. Respir. Res. 2008, 9, 73. [Google Scholar] [CrossRef]
- Singh, D.; Corradi, M.; Spinola, M.; Petruzzelli, S.; Papi, A. Extrafine beclometasone diproprionate/formoterol fumarate: A review of its effects in chronic obstructive pulmonary disease. NPJ Prim. Care Respir. Med. 2016, 26, 16030. [Google Scholar] [CrossRef]
- Rogliani, P.; Ora, J.; Puxeddu, E.; Calzetta, L.; Cavalli, F.; Matera, M.G.; Cazzola, M. Effect of adding roflumilast or ciclesonide to glycopyrronium on lung volumes and exercise tolerance in patients with severe COPD: A pilot study. Pulm. Pharmacol. Ther. 2018, 49, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.J. Corticosteroid resistance in patients with asthma and chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 2013, 131, 636–645. [Google Scholar] [CrossRef]
- Janson, C. Treatment with inhaled corticosteroids in chronic obstructive pulmonary disease. J. Thorac. Dis. 2020, 12, 1561–1569. [Google Scholar] [CrossRef]
- Celli, B.R.; Barnes, P.J. Exacerbations of chronic obstructive pulmonary disease. Eur. Respir. J. 2007, 29, 1224–1238. [Google Scholar] [CrossRef] [PubMed]
- Pollock, J.; Chalmers, J.D. The immunomodulatory effects of macrolide antibiotics in respiratory disease. Pulm. Pharmacol. Ther. 2021, 71, 102095. [Google Scholar] [CrossRef]
- Candel, F.J.; Peñuelas, M. Delafloxacin: Design, development and potential place in therapy. Drug Des. Dev. Ther. 2017, 11, 881–891. [Google Scholar] [CrossRef]
- Hafner, M.; Paukner, S.; Wicha, W.W.; Hrvačić, B.; Cedilak, M.; Faraho, I.; Gelone, S.P. Anti-inflammatory activity of lefamulin versus azithromycin and dexamethasone in vivo and in vitro in a lipopolysaccharide-induced lung neutrophilia mouse model. PLoS ONE 2021, 16, e0237659. [Google Scholar] [CrossRef] [PubMed]
- Lob, S.H.; DePestel, D.D.; DeRyke, C.A.; Kazmierczak, K.M.; Young, K.; Motyl, M.R.; Sahm, D.F. Ceftolozane/Tazobactam and Imipenem/Relebactam Cross-Susceptibility Among Clinical Isolates of Pseudomonas aeruginosa From Patients With Respiratory Tract Infections in ICU and Non-ICU Wards-SMART United States 2017–2019. Open Forum Infect. Dis. 2021, 8, ofab320. [Google Scholar] [CrossRef] [PubMed]
- Halpin, D.M. ABCD of the phosphodiesterase family: Interaction and differential activity in COPD. Int. J. Chronic Obstr. Pulm. Dis. 2008, 3, 543–561. [Google Scholar] [CrossRef]
- Chong, J.; Leung, B.; Poole, P. Phosphodiesterase 4 inhibitors for chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2017, 9, CD002309. [Google Scholar] [CrossRef]
- Faruqi, M.A.; Khan, M.; Mannino, D.M. Perspectives on Ensifentrine and Its Therapeutic Potential in the Treatment of COPD: Evidence to Date. Int. J. Chronic Obstr. Pulm. Dis. 2024, 19, 11–16. [Google Scholar] [CrossRef]
- Montuschi, P.; Kharitonov, S.A.; Ciabattoni, G.; Barnes, P.J. Exhaled leukotrienes and prostaglandins in COPD. Thorax 2003, 58, 585–588. [Google Scholar] [CrossRef]
- Rhee, C.K. Phenotype of asthma-chronic obstructive pulmonary disease overlap syndrome. Korean J. Intern. Med. 2015, 30, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.A.; Thomas, S.Y.; Hess, C.; Medoff, B.D.; Means, T.K.; Brander, C.; Lilly, C.M.; Tager, A.M.; Luster, A.D. The leukotriene B4 lipid chemoattractant receptor BLT1 defines antigen-primed T cells in humans. Blood 2006, 107, 444–453. [Google Scholar] [CrossRef] [PubMed]
- Biernacki, W.A.; Kharitonov, S.A.; Barnes, P.J. Increased leukotriene B4 and 8-isoprostane in exhaled breath condensate of patients with exacerbations of COPD. Thorax 2003, 58, 294–298. [Google Scholar] [CrossRef] [PubMed]
- Konstan, M.W.; Doring, G.; Heltshe, S.L.; Lands, L.C.; Hilliard, K.A.; Koker, P.; Hattacharya, S.; Staab, A.; Hamilton, A.; Investigators and Coordinators of BI Trial 543.45. A randomized double blind, placebo-controlled phase 2 trial of BIIL 284 BS (an LTB4 receptor antagonist) for the treatment of lung disease in children and adults with cystic fibrosis. J. Cyst. Fibros. 2014, 13, 148–155. [Google Scholar] [CrossRef]
- Gur, Z.T.; Caliskan, B.; Banoglu, E. Drug discovery approaches targeting 5-lipoxygenase-activating protein (FLAP) for inhibition of cellular leukotriene biosynthesis. Eur. J. Med. Chem. 2018, 153, 34–48. [Google Scholar] [CrossRef]
- Malaviya, R.; Laskin, J.D.; Laskin, D.L. Anti-TNFalpha therapy in inflammatory lung diseases. Pharmacol. Ther. 2017, 180, 90–98. [Google Scholar] [CrossRef]
- Plichta, J.; Kuna, P.; Panek, M. Biologic drugs in the treatment of chronic inflammatory pulmonary diseases: Recent developments and future perspectives. Front. Immunol. 2023, 14, 1207641. [Google Scholar] [CrossRef]
- Aaron, S.D.; Vandemheen, K.L.; Maltais, F.; Field, S.K.; Sin, D.D.; Bourbeau, J.; Marciniuk, D.D.; FitzGerald, J.M.; Nair, P.; Mallick, R. TNFalpha antagonists for acute exacerbations of COPD: A randomised double-blind controlled trial. Thorax 2013, 68, 142–148. [Google Scholar] [CrossRef]
- Garth, J.; Barnes, J.W.; Krick, S. Targeting Cytokines as Evolving Treatment Strategies in Chronic Inflammatory Airway Diseases. Int. J. Mol. Sci. 2018, 19, 3402. [Google Scholar] [CrossRef]
- Henrot, P.; Prevel, R.; Berger, P.; Dupin, I. Chemokines in COPD: From Implication to Therapeutic Use. Int. J. Mol. Sci. 2019, 20, 2785. [Google Scholar] [CrossRef]
- Zhang, J.; Bai, C. The Significance of Serum Interleukin-8 in Acute Exacerbations of Chronic Obstructive Pulmonary Disease. Tanaffos 2018, 17, 13–21. [Google Scholar] [PubMed]
- Mahler, D.A.; Huang, S.; Tabrizi, M.; Bell, G.M. Efficacy and safety of a monoclonal antibody recognizing interleukin-8 in COPD: A pilot study. Chest 2004, 126, 926–934. [Google Scholar] [CrossRef] [PubMed]
- Mattos, M.S.; Ferrero, M.R.; Kraemer, L.; Lopes, G.A.O.; Reis, D.C.; Cassali, G.D.; Oliveira, F.M.S.; Brandolini, L.; Allegretti, M.; Garcia, C.C.; et al. CXCR1 and CXCR2 Inhibition by Ladarixin Improves Neutrophil-Dependent Airway Inflammation in Mice. Front Immunol. 2020, 11, 566953. [Google Scholar] [CrossRef] [PubMed]
- O’Byrne, P.M.; Metev, H.; Puu, M.; Richter, K.; Keen, C.; Uddin, M.; Larsson, B.; Cullberg, M.; Nair, P. Efficacy and safety of a CXCR2 antagonist, AZD5069, in patients with uncontrolled persistent asthma: A randomised, double-blind, placebo-controlled trial. Lancet Respir. Med. 2016, 4, 797–806. [Google Scholar] [CrossRef] [PubMed]
- Xia, M.; Sui, Z. Recent developments in CCR2 antagonists. Expert Opin. Ther. Pat. 2009, 19, 295–303. [Google Scholar] [CrossRef]
- Barnes, P.J. Oxidative stress-based therapeutics in COPD. Redox Biol. 2020, 33, 101544. [Google Scholar] [CrossRef]
- Huang, C.; Kuo, S.; Lin, L.; Yang, Y. The efficacy of N-acetylcysteine in chronic obstructive pulmonary disease patients: A meta-analysis. Ther. Adv. Respir. Dis. 2023, 17, 17534666231158563. [Google Scholar] [CrossRef]
- Rahman, I.; Kinnula, V.L. Strategies to decrease ongoing oxidant burden in chronic obstructive pulmonary disease. Expert Rev. Clin. Pharmacol. 2012, 5, 293–309. [Google Scholar] [CrossRef] [PubMed]
- Culpitt, S.V.; Rogers, D.F.; Fenwick, P.S.; Shah, P.; De Matos, C.; Russell, R.E.; Barnes, P.J.; Donnelly, L.E. Inhibition by red wine extract, resveratrol, of cytokine release by alveolar macrophages in COPD. Thorax 2003, 58, 942–946. [Google Scholar] [CrossRef] [PubMed]
- Szabo, C. Multiple pathways of peroxynitrite cytotoxicity. Toxicol. Lett. 2003, 140–141, 105–112. [Google Scholar] [CrossRef]
- Barnes, P.J. Chronic obstructive pulmonary disease * 12: New treatments for COPD. Thorax 2003, 58, 803–808. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Eroglu, A. The Promising Effects of Astaxanthin on Lung Diseases. Adv. Nutr. 2021, 12, 850–864. [Google Scholar] [CrossRef]
- Fekete, M.; Csipo, T.; Fazekas-Pongor, V.; Feher, A.; Szarvas, Z.; Kaposvari, C.; Horváth, K.; Lehoczki, A.; Tarantini, S.; Varga, J.T. The Effectiveness of Supplementation with Key Vitamins, Minerals, Antioxidants and Specific Nutritional Supplements in COPD-A Review. Nutrients 2023, 15, 2741. [Google Scholar] [CrossRef]
- He, Y.; Yue, Y.; Zheng, X.; Zhang, K.; Chen, S.; Du, Z. Curcumin, inflammation, and chronic diseases: How are they linked? Molecules 2015, 20, 9183–9213. [Google Scholar] [CrossRef]
- Lin, C.R.; Bahmed, K.; Kosmider, B. Dysregulated Cell Signaling in Pulmonary Emphysema. Front. Med. 2021, 8, 762878. [Google Scholar] [CrossRef]
- Moens, U.; Kostenko, S.; Sveinbjornsson, B. The Role of Mitogen-Activated Protein Kinase-Activated Protein Kinases (MAPKAPKs) in Inflammation. Genes 2013, 4, 101–133. [Google Scholar] [CrossRef]
- Ahmadi, A.; Ahrari, S.; Salimian, J.; Salehi, Z.; Karimi, M.; Emamvirdizadeh, A.; Jamalkandi, S.A.; Ghanei, M. p38 MAPK signaling in chronic obstructive pulmonary disease pathogenesis and inhibitor therapeutics. Cell Commun. Signal. 2023, 21, 314. [Google Scholar] [CrossRef]
- Cahn, A.; Hamblin, J.N.; Robertson, J.; Begg, M.; Jarvis, E.; Wilson, R.; Dear, G.; Leemereise, C.; Cui, Y.; Mizuma, M.; et al. An Inhaled PI3Kdelta Inhibitor Improves Recovery in Acutely Exacerbating COPD Patients: A Randomized Trial. Int. J. Chronic Obstr. Pulm. Dis. 2021, 16, 1607–1619. [Google Scholar] [CrossRef]
- Cazzola, M.; Hanania, N.A.; Page, C.P.; Matera, M.G. Novel Anti-Inflammatory Approaches to COPD. Int. J. Chronic Obstr. Pulm. Dis. 2023, 18, 1333–1352. [Google Scholar] [CrossRef]
- Chung, K.F.; Adcock, I.M. Multifaceted mechanisms in COPD: Inflammation, immunity, and tissue repair and destruction. Eur. Respir. J. 2008, 31, 1334–1356. [Google Scholar] [CrossRef]
- Rajendrasozhan, S.; Chung, S.; Sundar, I.K.; Yao, H.; Rahman, I. Targeted disruption of NF-kappaB1 (p50) augments cigarette smoke-induced lung inflammation and emphysema in mice: A critical role of p50 in chromatin remodeling. Am. J. Physiol. Lung Cell. Mol. Physiol. 2010, 298, L197–L209. [Google Scholar] [CrossRef]
- Rajendrasozhan, S.; Hwang, J.W.; Yao, H.; Kishore, N.; Rahman, I. Anti-inflammatory effect of a selective IkappaB kinase-beta inhibitor in rat lung in response to LPS and cigarette smoke. Pulm. Pharmacol. Ther. 2010, 23, 172–181. [Google Scholar] [CrossRef]
- Demkow, U.; van Overveld, F.J. Role of elastases in the pathogenesis of chronic obstructive pulmonary disease: Implications for treatment. Eur. J. Med. Res. 2010, 15 (Suppl. S2), 27–35. [Google Scholar] [CrossRef] [PubMed]
- Feitosa, P.H. Diagnosis and augmentation therapy for alpha-1 antitrypsin deficiency: Current knowledge and future potential. Drugs Context. 2023, 12, 2023-3-1. [Google Scholar] [CrossRef] [PubMed]
- Stolk, J.; Tov, N.; Chapman, K.R.; Fernandez, P.; MacNee, W.; Hopkinson, N.S.; Piitulainen, E.; Seersholm, N.; Vogelmeier, C.F.; Bals, R.; et al. Efficacy and safety of inhaled alpha1-antitrypsin in patients with severe alpha1-antitrypsin deficiency and frequent exacerbations of COPD. Eur. Respir. J. 2019, 54, 1900673. [Google Scholar] [CrossRef]
- Korkmaz, B.; Horwitz, M.S.; Jenne, D.E.; Gauthier, F. Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases. Pharmacol. Rev. 2010, 62, 726–759. [Google Scholar] [CrossRef] [PubMed]
- Lucas, S.D.; Costa, E.; Guedes, R.C.; Moreira, R. Targeting COPD: Advances on low- molecular-weight inhibitors of human neutrophil elastase. Med. Res. Rev. 2013, 33 (Suppl. S1), E73–E101. [Google Scholar] [CrossRef]
- Stevens, T.; Ekholm, K.; Gränse, M.; Lindahl, M.; Kozma, V.; Jungar, C.; Ottosson, T.; Falk-Håkansson, H.; Churg, A.; Wright, J.L.; et al. AZD9668: Pharmacological characterization of a novel oral inhibitor of neutrophil elastase. J. Pharmacol. Exp. Ther. 2011, 339, 313–320. [Google Scholar] [CrossRef]
- Traclet, J.; Delaval, P.; Terrioux, P.; Mornex, J.F. Augmentation therapy of alpha-1 antitrypsin deficiency associated emphysema. Rev. Mal. Respir. 2015, 32, 435–446. [Google Scholar] [CrossRef]
- Guarnieri, F.; Spencer, J.L.; Lucey, E.C.; Nugent, M.A.; Stone, P.J. A human surfactant peptide-elastase inhibitor construct as a treatment for emphysema. Proc. Natl. Acad. Sci. USA 2010, 107, 10661–10666. [Google Scholar] [CrossRef]
- von Nussbaum, F.; Li, V.M. Neutrophil elastase inhibitors for the treatment of (cardio)pulmonary diseases: Into clinical testing with pre-adaptive pharmacophores. Bioorg. Med. Chem. Lett. 2015, 25, 4370–4381. [Google Scholar] [CrossRef]
- Katunuma, N. Structure-based development of specific inhibitors for individual cathepsins and their medical applications. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2011, 87, 29–39. [Google Scholar] [CrossRef]
- Djekic, U.V.; Gaggar, A.; Weathington, N.M. Attacking the multi-tiered proteolytic pathology of COPD: New insights from basic and translational studies. Pharmacol. Ther. 2009, 121, 132–146. [Google Scholar] [CrossRef]
- Dahl, R.; Titlestad, I.; Lindqvist, A.; Wielders, P.; Wray, H.; Wang, M.; Samuelsson, V.; Mo, J.; Holt, A. Effects of an oral MMP-9 and -12 inhibitor, AZD1236, on biomarkers in moderate/severe COPD: A randomised controlled trial. Pulm. Pharmacol. Ther. 2012, 25, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Golovatch, P.; Mercer, B.A.; Lemaître, V.; Wallace, A.; Foronjy, R.F.; D’Armiento, J. Role for cathepsin K in emphysema in smoke-exposed guinea pigs. Exp. Lung Res. 2009, 35, 631–645. [Google Scholar] [CrossRef] [PubMed]
- Zheng, T.; Kang, M.J.; Crothers, K.; Zhu, Z.; Liu, W.; Lee, C.G.; Rabach, L.A.; Chapman, H.A.; Homer, R.J.; Aldous, D.; et al. Role of cathepsin S-dependent epithelial cell apoptosis in IFN-gamma induced alveolar remodeling and pulmonary emphysema. J. Immunol. 2005, 174, 8106–8115. [Google Scholar] [CrossRef] [PubMed]
- Lemaire, F.; Audonnet, S.; Perotin, J.M.; Gaudry, P.; Dury, S.; Ancel, J.; Lebargy, F.; Antonicelli, F.; Deslée, G.; Le Naour, R. The elastin peptide VGVAPG increases CD4+ T-cell IL-4 production in patients with chronic obstructive pulmonary disease. Respir. Res. 2021, 22, 14. [Google Scholar] [CrossRef]
- Cantor, J.O.; Cerreta, J.N.; Armand, G.; Turino, G.M. Further investigation of the use of intratracheally administered hyaluronic acid to ameliorate elastase-induced emphysema. Exp. Lung Res. 1997, 23, 229–244. [Google Scholar] [CrossRef]
- Cantor, J. The Role of the Extracellular Matrix in the Pathogenesis and Treatment of Pulmonary Emphysema. Int. J. Mol. Sci. 2024, 25, 10613. [Google Scholar] [CrossRef] [PubMed]
- Hamakawa, H.; Bartolák-Suki, E.; Parameswaran, H.; Majumdar, A.; Lutchen, K.R.; Suki, B. Structure-function relations in an elastase-induced mouse model of emphysema. Am. J. Respir. Cell Mol. Biol. 2011, 45, 517–524. [Google Scholar] [CrossRef]
- Garantziotis, S.; Brezina, M.; Castelnuovo, P.; Drago, L. The role of hyaluronan in the pathobiology and treatment of respiratory disease. Am. J. Physiol. Lung Cell. Mol. Physiol. 2016, 310, L785–L795. [Google Scholar] [CrossRef] [PubMed]
- Galdi, F.; Pedone, C.; McGee, C.A.; George, M.; Rice, A.B.; Hussain, S.S.; Vijaykumar, K.; Boitet, E.R.; Tearney, G.J.; McGrath, J.A.; et al. Inhaled high molecular weight hyaluronan ameliorates respiratory failure in acute COPD exacerbation: A pilot study. Respir. Res. 2021, 22, 30. [Google Scholar] [CrossRef]
- Cantor, J.O.; Ma, S.; Liu, X.; Campos, M.A.; Strange, C.; Stocks, J.M.; Devine, M.S.; El Bayadi, S.G.; Lipchik, R.J.; Sandhaus, R.A.; et al. A 28-day clinical trial of aerosolized hyaluronan in alpha-1 antiprotease deficiency COPD using desmosine as a surrogate marker for drug efficacy. Respir. Med. 2021, 182, 106402. [Google Scholar] [CrossRef]
- Tian, P.W.; Wen, F.Q. Clinical significance of airway mucus hypersecretion in chronic obstructive pulmonary disease. J. Transl. Int. Med. 2015, 3, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Nadel, J.A. Role of neutrophils in mucus hypersecretion in COPD and implications for therapy. Treat. Respir. Med. 2004, 3, 147–159. [Google Scholar] [CrossRef]
- Yang, R.; Wu, X.; Gounni, A.S.; Xie, J. Mucus hypersecretion in chronic obstructive pulmonary disease: From molecular mechanisms to treatment. J. Transl. Int. Med. 2023, 11, 312–315. [Google Scholar] [CrossRef]
- Liu, C.L.; Shi, G.P. Calcium-activated chloride channel regulator 1 (CLCA1): More than a regulator of chloride transport and mucus production. World Allergy Organ. J. 2019, 12, 100077. [Google Scholar] [CrossRef]
- Zhou, Y.; Shapiro, M.; Dong, Q.; Louahed, J.; Weiss, C.; Wan, S.; Chen, Q.; Dragwa, C.; Savio, D.; Huang, M.; et al. A calcium-activated chloride channel blocker inhibits goblet cell metaplasia and mucus overproduction. Novartis Found. Symp. 2002, 248, 150–165; discussion 165–170, 277–282. [Google Scholar] [PubMed]
- Schanz, O.; Criner, G.J.; Rali, P.; Gayen, S. Pulmonary Vasodilator Therapy Is Associated with Decreased Mortality in Patients with Chronic Lung Disease and Severe Pulmonary Hypertension. J. Cardiovasc. Dev. Dis. 2024, 11, 89. [Google Scholar] [CrossRef]
- Yamakami, T.; Taguchi, O.; Gabazza, E.C.; Yoshida, M.; Kobayashi, T.; Kobayashi, H.; Yasui, H.; Ibata, H.; Adachi, Y. Arterial endothelin-1 level in pulmonary emphysema and interstitial lung disease. Relation with pulmonary hypertension during exercise. Eur. Respir. J. 1997, 10, 2055–2060. [Google Scholar] [CrossRef]
- Alqarni, A.A.; Aldhahir, A.M.; Bintalib, H.M.; Alqahtani, J.S.; Siraj, R.A.; Majrshi, M.; AlGarni, A.A.; Naser, A.Y.; Alghamdi, S.A.; Alwafi, H. Inhaled therapies targeting prostacyclin pathway in pulmonary hypertension due to COPD: Systematic review. Front. Med. 2023, 10, 1217156. [Google Scholar] [CrossRef] [PubMed]
- Seimetz, M.; Parajuli, N.; Pichl, A.; Bednorz, M.; Ghofrani, H.A.; Schermuly, R.T.; Seeger, W.; Grimminger, F.; Weissmann, N. Cigarette Smoke-Induced Emphysema and Pulmonary Hypertension Can Be Prevented by Phosphodiesterase 4 and 5 Inhibition in Mice. PLoS ONE 2015, 10, e0129327. [Google Scholar] [CrossRef] [PubMed]
- Regan, E.A.; Hersh, C.P.; Castaldi, P.J.; DeMeo, D.L.; Silverman, E.K.; Crapo, J.D.; Bowler, R.P. Omics and the Search for Blood Biomarkers in Chronic Obstructive Pulmonary Disease. Insights from COPDGene. Am. J. Respir. Cell Mol. Biol. 2019, 61, 143149. [Google Scholar] [CrossRef] [PubMed]
- Cantor, J. Desmosine as a biomarker for the emergent properties of pulmonary emphysema. Front. Med. 2023, 10, 1322283. [Google Scholar] [CrossRef]
- Baltazar-García, E.A.; Vargas-Guerrero, B.; Gasca-Lozano, L.E.; Gurrola-Díaz, C.M. Molecular changes underlying pulmonary emphysema and chronic bronchitis in Chronic Obstructive Pulmonary Disease: An updated review. Histol. Histopathol. 2024, 39, 805–816. [Google Scholar]
- Suryadevara, R.; Gregory, A.; Lu, R.; Xu, Z.; Masoomi, A.; Lutz, S.M.; Berman, S.; Yun, J.H.; Saferali, A.; Ryu, M.H.; et al. COPDGene investigators. Blood-based Transcriptomic and Proteomic Biomarkers of Emphysema. Am. J. Respir. Crit. Care Med. 2024, 209, 273–287. [Google Scholar] [CrossRef]
- Yoshikawa, H.; Sato, T.; Horikoshi, K.; Komura, M.; Nitta, N.A.; Mitsui, A.; Koike, K.; Kodama, Y.; Takahashi, K. miR-146a regulates emphysema formation and abnormal inflammation in the lungs of two mouse models. Am. J. Physiol. Lung Cell. Mol. Physiol. 2024, 326, L98–L110. [Google Scholar] [CrossRef] [PubMed]
- Hayek, H.; Kosmider, B.; Bahmed, K. The role of miRNAs in alveolar epithelial cells in emphysema. Biomed. Pharmacother. 2021, 143, 112216. [Google Scholar] [CrossRef]
- Clinical Practice Guidelines, Statements & Reports. Available online: https://site.thoracic.org/clinicians-researchers/clinical-practice-guidelines-statements-reports (accessed on 20 August 2025).
- Chronic Obstructive Pulmonary Disease in over 16s: Diagnosis and Management. Available online: https://www.nice.org.uk/guidance/ng115 (accessed on 20 August 2025).
- The Canadian Thoracic Society (CTS). Available online: https://cts-sct.ca/guideline-library/ (accessed on 20 August 2025).
- Ceulemans, L.J.; Esendagli, D.; Cardillo, G.; Migliore, M. Lung volume reduction: Surgery versus endobronchial valves. Breathe 2024, 20, 240107. [Google Scholar] [CrossRef]
- Halpin, D.M.G.; Singh, D. What’s new in the 2025 GOLD report. J. Bras. Pneumol. 2025, 51, e20240412. [Google Scholar] [CrossRef] [PubMed]
- Czarnecka-Chrebelska, K.H.; Mukherjee, D.; Maryanchik, S.V.; Rudzinska-Radecka, M. Biological and Genetic Mechanisms of COPD, Its Diagnosis, Treatment, and Relationship with Lung Cancer. Biomedicines 2023, 11, 448. [Google Scholar] [CrossRef]
- Obeidat, M.; Nie, Y.; Fishbane, N.; Li, X.; Bosse, Y.; Joubert, P.; Nickle, D.C.; Hao, K.; Postma, D.S.; Timens, W.; et al. Integrative Genomics of Emphysema-Associated Genes Reveals Potential Disease Biomarkers. Am. J. Respir. Cell Mol. Biol. 2017, 57, 411–418. [Google Scholar] [CrossRef]
- Wang, X.; Chorley, B.N.; Pittman, G.S.; Kleeberger, S.R.; Brothers, J., 2nd; Liu, G.; Spira, A.; Bell, D.A. Genetic variation and antioxidant response gene expression in the bronchial airway epithelium of smokers at risk for lung cancer. PLoS ONE 2010, 5, e11934. [Google Scholar] [CrossRef]
- Norman, K.C.; Moore, B.B.; Arnold, K.B.; O’Dwyer, D.N. Proteomics: Clinical and research applications in respiratory diseases. Respirology 2018, 23, 993–1003. [Google Scholar] [CrossRef]
- Russo, C.; Colaianni, V.; Ielo, G.; Valle, M.S.; Spicuzza, L.; Malaguarnera, L. Impact of Lung Microbiota on COPD. Biomedicines 2022, 10, 1337. [Google Scholar] [CrossRef]
- Yuksel, N.; Gelmez, B.; Yildiz-Pekoz, A. Lung Microbiota: Its Relationship to Respiratory System Diseases and Approaches for Lung-Targeted Probiotic Bacteria Delivery. Mol. Pharm. 2023, 20, 3320–3337. [Google Scholar] [CrossRef] [PubMed]
- Virk, M.S.; Virk, M.A.; He, Y.; Tufail, T.; Gul, M.; Qayum, A.; Rehman, A.; Rashid, A.; Ekumah, J.N.; Han, X.; et al. The Anti-Inflammatory and Curative Exponent of Probiotics: A Comprehensive and Authentic Ingredient for the Sustained Functioning of Major Human Organs. Nutrients 2024, 16, 546. [Google Scholar] [CrossRef]
- Shen, J.; Wang, S.; Huang, Y.; Wu, Z.; Han, S.; Xia, H.; Chen, H.; Li, L. Lactobacillus reuteri Ameliorates Lipopolysaccharide-Induced Acute Lung Injury by Modulating the Gut Microbiota in Mice. Nutrients 2023, 15, 4256. [Google Scholar] [CrossRef]
- Chen, J.; Chen, X.; Ho, C.L. Recent Development of Probiotic Bifidobacteria for Treating Human Diseases. Front. Bioeng. Biotechnol. 2021, 9, 770248. [Google Scholar] [CrossRef]
- Farabegoli, F.; Santaclara, F.J.; Costas, D.; Alonso, M.; Abril, A.G.; Espiñeira, M.; Ortea, I.; Costas, C. Exploring the Anti-Inflammatory Effect of Inulin by Integrating Transcriptomic and Proteomic Analyses in a Murine Macrophage Cell Model. Nutrients 2023, 8, 859. [Google Scholar] [CrossRef] [PubMed]
- Smolinska, S.; Popescu, F.D.; Zemelka-Wiacek, M. A Review of the Influence of Prebiotics, Probiotics, Synbiotics, and Postbiotics on the Human Gut Microbiome and Intestinal Integrity. J. Clin. Med. 2025, 14, 3673. [Google Scholar] [CrossRef] [PubMed]
- Budden, K.F.; Shukla, S.D.; Bowerman, K.L.; Vaughan, A.; Gellatly, S.L.; Wood, D.L.A.; Lachner, N.; Idrees, S.; Rehman, S.F.; Faiz, A.; et al. Faecal microbial transfer and complex carbohydrates mediate protection against COPD. Gut 2024, 73, 751–769. [Google Scholar] [CrossRef]
- Jessamine, V.; Mehndiratta, S.; De Rubis, G.; Paudel, K.R.; Shetty, S.; Suares, D.; Chellappan, D.K.; Oliver, B.G.; Hansbro, P.M.; Dua, K. The application of nanoparticles as advanced drug delivery systems in attenuating COPD. Heliyon 2024, 10, e25393. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Bajaj, N.; Xu, P.; Ohn, K.; Tsifansky, M.D.; Yeo, Y. Development of highly porous large PLGA microparticles for pulmonary drug delivery. Biomaterials 2009, 30, 1947–1953. [Google Scholar] [CrossRef]
- Healy, A.M.; Amaro, M.I.; Paluch, K.J.; Tajber, L. Dry powders for oral inhalation free of lactose carrier particles. Adv. Drug Deliv. Rev. 2014, 75, 32–52. [Google Scholar] [CrossRef]
- Mansour, H.M.; Rhee, Y.S.; Wu, X. Nanomedicine in pulmonary delivery. Int. J. Nanomed. 2009, 4, 299–319. [Google Scholar] [CrossRef]
- Kokkinis, S.; De Rubis, G.; Paudel, K.R.; Patel, V.K.; Yeung, S.; Jessamine, V.; MacLoughlin, R.; Hansbro, P.M.; Oliver, B.; Dua, K. Liposomal curcumin inhibits cigarette smoke induced senescence and inflammation in human bronchial epithelial cells. Pathol. Res. Pract. 2024, 260, 155423. [Google Scholar] [CrossRef]
- Wang, C.; Hu, X.Y.; Ji, R.; Lu, Y.F.; Shen, X.; Wang, Z.; Wang, F.; Shi, G.C.; Feng, Y. Inhaled PAMAM-based nano-formulation prolonged lung retention for alleviating pulmonary inflammation of COPD. Mater. Today Bio 2025, 32, 101845. [Google Scholar] [CrossRef]
- Uskoković, V. Lessons from the history of inorganic nanoparticles for inhalable diagnostics and therapeutics. Adv. Colloid Interface Sci. 2023, 315, 102903. [Google Scholar] [CrossRef] [PubMed]
- Slomkowski, S.; Basinska, T.; Gadzinowski, M.; Mickiewicz, D. Polyesters and Polyester Nano- and Microcarriers for Drug Delivery. Polymers 2024, 16, 2503. [Google Scholar] [CrossRef]
- Wang, J.; Wang, P.; Liao, K.; He, D. Hydrogel applications: A promising frontier in pneumonia therapy. Front. Bioeng. Biotechnol. 2025, 13, 1602259. [Google Scholar] [CrossRef]
- Nagar, L.; Gulati, N.; Saini, A.; Singh, S.K.; Gupta, G.; MacLoughlin, R.; Chellappan, D.K.; Dua, K.; Dureja, H. Recent Trends and Applications of Nanostructure-based Drug Delivery in Alleviating Chronic Obstructive Pulmonary Disease (COPD). Curr. Drug Deliv. 2025, 22, 708–720. [Google Scholar] [CrossRef]
- Pontes, J.F.; Grenha, A. Multifunctional Nanocarriers for Lung Drug Delivery. Nanomaterials 2020, 10, 183. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Shi, Y.; Su, Y.; Pang, C.; Yang, Y.; Wang, W. Research advances of extracellular vesicles in lung diseases. Cell Transplant. 2025, 34, 9636897251362031. [Google Scholar] [CrossRef] [PubMed]
- Saxena, J.; Bisen, M.; Misra, A.; Srivastava, V.K.; Kaushik, S.; Siddiqui, A.J.; Mishra, N.; Singh, A.; Jyoti, A. Targeting COPD with PLGA-Based Nanoparticles: Current Status and Prospects. BioMed Res. Int. 2022, 2022, 5058121. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, H.; Song, L. Novel drug delivery systems targeting oxidative stress in chronic obstructive pulmonary disease: A review. J. Nanobiotechnol. 2020, 18, 145. [Google Scholar] [CrossRef]
- Cheng, X.; Xie, Q.; Sun, Y. Advances in nanomaterial-based targeted drug delivery systems. Front. Bioeng. Biotechnol. 2023, 11, 1177151. [Google Scholar] [CrossRef]
- Khan, I.; Sabu, M.; Hussein, N.; Omer, H.; Houacine, C.; Khan, W.; Elhissi, A.; Yousaf, S. Trans-resveratrol-loaded nanostructured lipid carrier formulations for pulmonary drug delivery using medical nebulizers. J. Pharm. Sci. 2025, 114, 103713. [Google Scholar] [CrossRef]
- Kotta, S.; Aldawsari, H.M.; Badr-Eldin, S.M.; Binmahfouz, L.S.; Bakhaidar, R.B.; Sreeharsha, N.; Nair, A.B.; Ramnarayanan, C. Lung Targeted Lipopolymeric Microspheres of Dexamethasone for the Treatment of ARDS. Pharmaceutics 2021, 13, 1347. [Google Scholar] [CrossRef]
- SreeHarsha, N.; Venugopala, K.N.; Nair, A.B.; Roopashree, T.S.; Attimarad, M.; Hiremath, J.G.; Al-Dhubiab, B.E.; Ramnarayanan, C.; Shinu, P.; Handral, M.; et al. An Efficient, Lung-Targeted, Drug-Delivery System To Treat Asthma Via Microparticles. Drug Des. Dev. Ther. 2019, 13, 4389–4403. [Google Scholar] [CrossRef] [PubMed]
- Leong, E.W.X.; Ge, R. Lipid Nanoparticles as Delivery Vehicles for Inhaled Therapeutics. Biomedicines 2022, 10, 2179. [Google Scholar] [CrossRef] [PubMed]
- Vallorz, E.L.; Encinas-Basurto, D.; Schnellmann, R.G.; Mansour, H.M. Design, Development, Physicochemical Characterization, and In Vitro Drug Release of Formoterol PEGylated PLGA Polymeric Nanoparticles. Pharmaceutics 2022, 14, 638. [Google Scholar] [CrossRef] [PubMed]
- Agostini, C. Stem cell therapy for chronic lung diseases: Hope and reality. Respir. Med. 2010, 104 (Suppl. S1), S86–S91. [Google Scholar] [CrossRef]
- Singh, P.V.; Singh, P.V.; Anjankar, A. Harnessing the Therapeutic Potential of Stem Cells in the Management of Chronic Obstructive Pulmonary Disease: A Comprehensive Review. Cureus 2023, 15, e44498. [Google Scholar] [CrossRef]
- Coppolino, I.; Ruggeri, P.; Nucera, F.; Cannavo, M.F.; Adcock, I.; Girbino, G.; Caramori, G. Role of Stem Cells in the Pathogenesis of Chronic Obstructive Pulmonary Disease and Pulmonary Emphysema. COPD J. Chronic Obstr. Pulm. Dis. 2018, 15, 536–556. [Google Scholar] [CrossRef]
- Jin, H.J.; Bae, Y.K.; Kim, M.; Kwon, S.J.; Jeon, H.B.; Choi, S.J.; Kim, S.W.; Yang, Y.S.; Oh, W.; Chang, J.W. Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy. Int. J. Mol. Sci. 2013, 14, 17986–18001. [Google Scholar] [CrossRef]
- Hurley, K.; Ding, J.; Villacorta-Martin, C.; Herriges, M.J.; Jacob, A.; Vedaie, M.; Alysandratos, K.D.; Lin, C.; Werder, R.B.; Huang, J.; et al. Reconstructed Single-Cell Fate Trajectories Define Lineage Plasticity Windows during Differentiation of Human PSC-Derived Distal Lung Progenitors. Cell Stem Cell 2020, 26, 593–608 e8. [Google Scholar] [CrossRef]
- Toledo-Pons, N.; Noell, G.; Jahn, A.; Iglesias, A.; Duran, M.A.; Iglesias, J.; Rios, A.; Scrimini, S.; Faner, R.; Gigirey, O.; et al. Bone marrow characterization in COPD: A multi-level network analysis. Respir. Res. 2018, 19, 118. [Google Scholar] [CrossRef]
- Huang, S.X.; Islam, M.N.; O’Neill, J.; Hu, Z.; Yang, Y.G.; Chen, Y.W.; Mumau, M.; Green, M.D.; Vunjak-Novakovic, G.; Bhattacharya, J.; et al. Efficient generation of lung and airway epithelial cells from human pluripotent stem cells. Nat. Biotechnol. 2014, 32, 84–91. [Google Scholar] [CrossRef]
- Barbera, J.A.; Peinado, V.I. Vascular progenitor cells in chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc. 2011, 8, 528–534. [Google Scholar] [CrossRef] [PubMed]
- Banuls, L.; Pellicer, D.; Castillo, S.; Navarro-Garcia, M.M.; Magallon, M.; Gonzalez, C.; Dasí, F. Gene Therapy in Rare Respiratory Diseases: What Have We Learned So Far? J. Clin. Med. 2020, 9, 2577. [Google Scholar] [CrossRef] [PubMed]
- Torres-Duran, M.; Lopez-Campos, J.L.; Barrecheguren, M.; Miravitlles, M.; Martinez-Delgado, B.; Castillo, S.; Escribano, A.; Baloira, A.; Navarro-Garcia, M.M.; Pellicer, D.; et al. Alpha-1 antitrypsin deficiency: Outstanding questions and future directions. Orphanet J. Rare Dis. 2018, 13, 114. [Google Scholar] [CrossRef]
- Birch, J.; Barnes, P.J.; Passos, J.F. Mitochondria, telomeres and cell senescence: Implications for lung ageing and disease. Pharmacol. Ther. 2018, 183, 34–49. [Google Scholar] [CrossRef]
- D’Alessandro-Gabazza, C.N.; Kobayashi, T.; Boveda-Ruiz, D.; Takagi, T.; Toda, M.; Gil-Bernabe, P.; Miyake, Y.; Yasukawa, A.; Matsuda, Y.; Suzuki, N.; et al. Development and preclinical efficacy of novel transforming growth factor-β1 short interfering RNAs for pulmonary fibrosis. Am. J. Respir. Cell. Mol. Biol. 2012, 46, 397–406. [Google Scholar] [CrossRef]
- Minter, R.M.; Rectenwald, J.E.; Fukuzuka, K.; Tannahill, C.L.; La Face, D.; Tsai, V.; Ahmed, I.; Hutchins, E.; Moyer, R.; Copeland, E.M., 3rd; et al. TNF-alpha receptor signaling and IL-10 gene therapy regulate the innate and humoral immune responses to recombinant adenovirus in the lung. J. Immunol. 2000, 164, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Suki, B.; Lutchen, K.R.; Ingenito, E.P. On the progressive nature of emphysema: Roles of proteases, inflammation, and mechanical forces. Am. J. Respir. Crit. Care Med. 2003, 168, 516–521. [Google Scholar] [CrossRef]
- Suki, B.; Jesudason, R.; Sato, S.; Parameswaran, H.; Araujo, A.D.; Majumdar, A.; Allen, P.G.; Bartolák-Suki, E. Mechanical failure, stress redistribution, elastase activity and binding site availability on elastin during the progression of emphysema. Pulm. Pharmacol. Ther. 2012, 25, 268–275. [Google Scholar] [CrossRef]
- Jugniot, N.; Duttagupta, I.; Rivot, A.; Massot, P.; Cardiet, C.; Pizzoccaro, A.; Jean, M.; Vanthuyne, N.; Franconi, J.M.; Voisin, P.; et al. An elastase activity reporter for Electronic Paramagnetic Resonance (EPR) and Overhauser-enhanced Magnetic Resonance Imaging (OMRI) as a line-shifting nitroxide. Free Radic. Biol. Med. 2018, 126, 101–112. [Google Scholar] [CrossRef]
- Wu, Y.; Xia, S.; Liang, Z.; Chen, R.; Qi, S. Artificial intelligence in COPD CT images: Identification, staging, and quantitation. Respir. Res. 2024, 25, 319. [Google Scholar] [CrossRef]
- Robertson, N.M.; Centner, C.S.; Siddharthan, T. Integrating Artificial Intelligence in the Diagnosis of COPD Globally: A Way Forward. Chronic Obstr. Pulm. Dis. 2024, 11, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Corrias, G.; Micheletti, G.; Barberini, L.; Suri, J.S.; Saba, L. Texture analysis imaging “what a clinical radiologist needs to know”. Eur. J. Radiol. 2022, 146, 110055. [Google Scholar] [CrossRef] [PubMed]
- Wiedbrauck, D.; Karczewski, M.; Schoenberg, S.O.; Fink, C.; Kayed, H. Artificial Intelligence-Based Emphysema Quantification in Routine Chest Computed Tomography: Correlation With Spirometry and Visual Emphysema Grading. J. Comput. Assist. Tomogr. 2024, 48, 388–393. [Google Scholar] [CrossRef]
- Liao, K.M.; Cheng, K.C.; Sung, M.I.; Shen, Y.T.; Chiu, C.C.; Liu, C.F.; Ko, S.C. Machine learning approaches for practical predicting outpatient near-future AECOPD based on nationwide electronic medical records. iScience 2024, 27, 109542. [Google Scholar] [CrossRef] [PubMed]
- Almeida, S.D.; Norajitra, T.; Lüth, C.T.; Wald, T.; Weru, V.; Nolden, M.; Jäger, P.F.; von Stackelberg, O.; Heußel, C.P.; Weinheimer, O.; et al. Prediction of disease severity in COPD: A deep learning approach for anomaly- based quantitative assessment of chest CT. Eur. Radiol. 2024, 34, 4379–4392. [Google Scholar] [CrossRef] [PubMed]
- Alowais, S.A.; Alghamdi, S.S.; Alsuhebany, N.; Alqahtani, T.; Alshaya, A.I.; Almohareb, S.N.; Aldairem, A.; Alrashed, M.; Bin Saleh, K.; Badreldin, H.A.; et al. Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Med. Educ. 2023, 23, 689. [Google Scholar] [CrossRef]
- Fang, C.; Arango Argoty, G.A.; Kagiampakis, I.; Khalid, M.H.; Jacob, E.; Bulusu, K.C.; Markuzon, N. Integrating knowledge graphs into machine learning models for survival prediction and biomarker discovery in patients with non-small-cell lung cancer. J. Transl. Med. 2024, 22, 726. [Google Scholar] [CrossRef]
- Abdelhalim, H.; Berber, A.; Lodi, M.; Jain, R.; Nair, A.; Pappu, A.; Patel, K.; Venkat, V.; Venkatesan, C.; Wable, R.; et al. Artificial Intelligence, Healthcare, Clinical Genomics, and Pharmacogenomics Approaches in Precision Medicine. Front. Genet. 2022, 13, 929736. [Google Scholar] [CrossRef] [PubMed]
- Vadapalli, S.; Abdelhalim, H.; Zeeshan, S.; Ahmed, Z. Artificial intelligence and machine learning approaches using gene expression and variant data for personalized medicine. Brief Bioinform. 2022, 23, bbac191. [Google Scholar] [CrossRef] [PubMed]
Risk Factor | References | References | References | ||
---|---|---|---|---|---|
Smoking Passive smoking | [4] [5,6] | Air pollution Industrial fumes | [6,10] [6,7,11] | Occupational exposures Dust inhalation at work | [7] [6] |
Alpha-1 antitrypsin deficiency Genetics | [4,12] [4,9,12] | Age Lung development | [8] [8] | Asthma Repeated respiratory infections | [13] [14] |
Trigger | Method | Advantages | Disadvantages | References |
---|---|---|---|---|
Cigarette smoke | Whole body exposure, nose exposure, or intranasal/intratracheal instillation of cigarette smoke extract | Straightforward manipulation Tissue injury in short period of time (several weeks to few months) | Does not fully mimic human emphysema. Short period of exposure (days) versus chronic exposure (years in humans) | [41,42,43,44] |
Elastase (e.g., papain, porcine pancreatic elastase, neutrophil elastase) | Intranasal/intratracheal instillation of purified protease(s) | Single instillation-mediated tissue injury Less costly | Does not fully mimic human emphysema. Acute injury that does not translate chronic injury seen in emphysema | [45,46,47] |
Chemicals (e.g., ozone, nitrogen dioxide, or sulfur dioxide) | Intranasal/intratracheal instillation of purified chemicals | Effects of specific toxics on the development of emphysema Less costly | Does not fully mimic human emphysema. Acute injury that does not translate chronic injury seen in emphysema | [10,11,48,49,50,51] |
Exacerbation (e.g., bacterial infection with Heamophilus influenzae) | Intranasal/intratracheal instillation of bacterial strains following chronic exposure to cigarette smoke | Exacerbation of characteristic features of cigarette-smoke-induced emphysema | Does not fully mimic exacerbation phase of human emphysema Does not translate the frequency of episodic phases of emphysema exacerbation | [52,53,54] |
Targeted Gene | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Enzyme/ Protease | Ref. | Physiologic Inhibitor | Ref. | Chemokines/ Cytokines | Ref. | Receptors | Ref. | Oxidative System | Ref. | Structural Protein | Ref. |
NE MMP-12 MMP-9 ADAM17 | [19] [35] [60] [61] | AAT TIMP-3 | [62] [63] | TNF-a IL-13 IFNg | [64] [65] [66] | TNFR IL-1bR CCR6 TLR4 | [67] [67] [68] [69] | Nrf 2 SOD/GPx NADPH oxidase | [27] [70] [71] | Elastin SP-D Fibulin-5 | [72] [73] [74] |
β2-Adrenergic Agonist | Mechanism | Advantages | References |
---|---|---|---|
Indacaterol | Ultra-long-acting agonist with once-daily dosing | Rapid onset of action with sustained bronchodilation | [79] |
Olodaterol | Ultra-long-acting agonist with once-daily dosing | Rapid onset of action with sustained bronchodilation; often combined with other bronchodilators | [80] |
Vilanterol | Long-acting agonist, combined with inhaled corticosteroids or long-acting muscarinic antagonists | Once-daily dosing with a rapid onset and sustained effect | [81] |
Muscaniric Antagonist | Mechanism | Advantages | References |
---|---|---|---|
Tiotropium | Prolonged bronchodilation | Long-acting duration of effect (once-daily dosing); lower risk of systemic side effects | [81,82] |
Umeclidinium | Specific reduction smooth muscle contraction in the lungs | Long-lasting effect (once-daily dosing; effective use in dual or triple inhaler therapy (e.g., with LABAs and inhaled corticosteroids)) | [83] |
Aclidinium | Bronchodilation | Twice-daily dosing; but reduced systemic side effects | [84] |
Glycopyrrolate | Reduced bronchoconstriction | Once-daily dosing; highly selective in the lungs; minimal side effects | [85] |
Revefenacin | Reduced bronchoconstriction | Once-daily use; minimal anticholinergic side effects | [86] |
Corticosteroids | Mechanism | Advantages | References |
---|---|---|---|
Fluticasone Furoate | Longer duration of anti-inflammatory action compared to fluticasone propionate | Once-daily dosing; lower systemic absorption reducing side effects | [90,91] |
Mometasone Furoate | Originally for asthma, it has been explored for emphysema treatment | Once-daily dosing; potent at lower doses; reduced risk of systemic side effects | [92] |
Qvar (Extrafine Particles) | Reformulated version of beclomethasone | Deeper reach into the lungs | [93] |
Ciclesonide | Prodrug activated in the lungs that has been explored for emphysema treatment | Minimal systemic exposure and reduced side effects | [94] |
Antibiotic (Class) | Mechanism | Advantages | References |
---|---|---|---|
Delafloxacin (Fluoroquinolone) | Inhibits bacterial growth | Broad-spectrum activity; treatment of acute bacterial exacerbations; useful against multidrug-resistant strains | [99] |
Lefamulin (Pleuromutilin) | Bactericidal activity | Covers pathogens implicated in exacerbation (e.g., Haemophilus influenzae); effective against atypical bacteria and multidrug-resistant strains | [100] |
Relebactam (β-lactamase inhibitor) | Bactericidal activity | Useful in severe exacerbations caused by multidrug-resistant Gram-negative bacteria | [101] |
NE Inhibitor | Purpose | References |
---|---|---|
Sivelestat (ONO-5046) | Selective and specific inhibitor of NE; reduced inflammation and tissue damage | [141] |
AZD9668 | Selective neutrophil elastase inhibitor; treatment of emphysema | [142] |
Alpha-1 Antitrypsin Enhancers | Research in AAT efficacy continues for emphysema treatment | [143] |
Elafin | Small protein with inhibitory activity | [16] |
Neutrophil Elastase Inhibitor Peptides | Specifically designed to target NE | [144] |
Biological Agents | Target NE pathway | [145] |
Protease Inhibitor | Purpose | References |
---|---|---|
Marimastat | Broad-spectrum MMP inhibitor; reduced matrix degradation and inflammation | [147] |
Batimastat | Broad-spectrum MMP inhibitor; modulation of tissue remodeling | [148] |
AZD1236 | Selective targeting of MMP-12 | [149] |
Cathepsin S Inhibitor | Reduced inflammation and tissue remodeling | [16] |
Cathepsin K Inhibitor | A selective inhibitor, reduced lung tissue damage and inflammation. | [150] |
E-64 Inhibitor | Broad-spectrum cysteine protease inhibitor | [151] |
Carrier | Type | Size (Diameter) | Purpose | References |
---|---|---|---|---|
Microparticles | PLGA, DPI, | 1–5 µm | Controlled release, deposition in the bronchi and alveoli | [192,193] |
Nanoparticles | Polymers, lipids | 10–500 nm | Controlled drug release, deposition in the alveoli | [194] |
Liposomes | Uni- or multi-lamellar vesicles | ≥100 nm | Deeper penetration | [195] |
Dendrimers | PAMAM | 10–100 nm | Penetration through biological barriers, specific lung tissue targeting | [196] |
Inorganic nanoparticles | Gold, silica, magnetic | 10–100 nm | Imaging and drug delivery to specific lung regions | [197] |
Micelles | Polymers, Oil-in-water or water-in-oil | 10–100 nm | Better distribution in lung tissue | [198] |
Hydrogels | Chitosan, alginate, synthetic polymers | 100 nm to few µm | Sustained release, tunable degradation, and drug release profiles | [199] |
Nanosuspensions | Pure drug particles | 100 to 1000 nm | Improved solubility and lung retention | [200] |
Protein-Based Carriers | Albumin or Silk Fibroin Nanoparticles | 50 to 500 nm | Biocompatible, biodegradable, and suitable for deep lung delivery and prolonged retention | [201] |
Exosomes | Small extracellular vesicles naturally derived from cells | 30 to 150 nm | Targeting specific lung cells | [202] |
Encapsulated Drugs | Formulation | Advantages | References |
---|---|---|---|
Resveratrol | PGA-co-PDL or solid lipid nanoparticles | Pulmonary delivery; mitigated inflammation and oxidative damage | [206] |
Dexamethasone | Polymeric or lipid-based nanoparticles | Enhanced delivery to the lungs; sustained release; reduced side effects | [207] |
Salbutamol | PLGA nanoparticles | Improved lung deposition and controlled release | [208] |
Tiotropium | Solid lipid nanoparticles | Better deposition in the lungs; prolonged drug release | [209] |
Formoterol | Polymer-Based Nanoparticles | Delivery to the lungs; improved therapeutic effect and reduced side effects | [210] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bentaher, A.; Glehen, O.; Degobert, G. Pulmonary Emphysema: Current Understanding of Disease Pathogenesis and Therapeutic Approaches. Biomedicines 2025, 13, 2120. https://doi.org/10.3390/biomedicines13092120
Bentaher A, Glehen O, Degobert G. Pulmonary Emphysema: Current Understanding of Disease Pathogenesis and Therapeutic Approaches. Biomedicines. 2025; 13(9):2120. https://doi.org/10.3390/biomedicines13092120
Chicago/Turabian StyleBentaher, Abderrazzak, Olivier Glehen, and Ghania Degobert. 2025. "Pulmonary Emphysema: Current Understanding of Disease Pathogenesis and Therapeutic Approaches" Biomedicines 13, no. 9: 2120. https://doi.org/10.3390/biomedicines13092120
APA StyleBentaher, A., Glehen, O., & Degobert, G. (2025). Pulmonary Emphysema: Current Understanding of Disease Pathogenesis and Therapeutic Approaches. Biomedicines, 13(9), 2120. https://doi.org/10.3390/biomedicines13092120