Personalized Response to Empagliflozin in Heart Failure: Association of BDNF and ATP2A2 Variants in a South Asian Cohort
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Inclusion and Exclusion Criteria
2.3. Clinical Parameter Assessment
2.4. Sample Collection, DNA Extraction, and Genotyping
- BDNF (rs6265):
- ATP2A2 (rs1860561):
2.5. Endpoints
2.6. Statistical Analysis
3. Results
3.1. Demographics and Clinical Characteristics
3.2. Genotypic Distribution and Ethnic Stratification
3.3. Response Based on BNP Levels
3.3.1. ATP2A2rs1860561
3.3.2. BDNFrs6265
3.4. Response Based on Ejection Fraction (EF)
3.4.1. ATP2A2rs1860561
3.4.2. BDNFrs6265
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Omar, M.; Jensen, J.; Ali, M.; Frederiksen, P.H.; Kistorp, C.; Videbæk, L.; Poulsen, M.K.; Tuxen, C.D.; Möller, S.; Gustafsson, F. Associations of empagliflozin with left ventricular volumes, mass, and function in patients with heart failure and reduced ejection fraction: A substudy of the empire HF randomized clinical trial. JAMA Cardiol. 2021, 6, 836–840. [Google Scholar] [CrossRef]
- Anker, S.D.; Butler, J.; Filippatos, G.; Ferreira, J.P.; Bocchi, E.; Böhm, M.; Brunner-La Rocca, H.-P.; Choi, D.-J.; Chopra, V.; Chuquiure-Valenzuela, E. Empagliflozin in heart failure with a preserved ejection fraction. N. Engl. J. Med. 2021, 385, 1451–1461. [Google Scholar] [CrossRef]
- Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 2015, 373, 2117–2128. [Google Scholar] [CrossRef]
- Baron, K.T.; Macha, S.; Broedl, U.C.; Nock, V.; Retlich, S.; Riggs, M. Population pharmacokinetics and exposure–response (efficacy and safety/tolerability) of empagliflozin in patients with type 2 diabetes. Diabetes Ther. 2016, 7, 455–471. [Google Scholar] [CrossRef] [PubMed]
- Januzzi Jr, J.L.; Zannad, F.; Anker, S.D.; Butler, J.; Filippatos, G.; Pocock, S.J.; Ferreira, J.P.; Sattar, N.; Verma, S.; Vedin, O. Prognostic importance of NT-proBNP and effect of empagliflozin in the EMPEROR-reduced trial. J. Am. Coll. Cardiol. 2021, 78, 1321–1332. [Google Scholar] [CrossRef] [PubMed]
- Jensen, J.; Omar, M.; Kistorp, C.; Poulsen, M.K.; Tuxen, C.; Gustafsson, I.; Køber, L.; Gustafsson, F.; Faber, J.; Fosbøl, E.L. Twelve weeks of treatment with empagliflozin in patients with heart failure and reduced ejection fraction: A double-blinded, randomized, and placebo-controlled trial. Am. Heart J. 2020, 228, 47–56. [Google Scholar] [CrossRef]
- Packer, M.; Anker, S.D.; Butler, J.; Filippatos, G.; Ferreira, J.P.; Pocock, S.J.; Sattar, N.; Brueckmann, M.; Jamal, W.; Cotton, D. Empagliflozin in patients with heart failure, reduced ejection fraction, and volume overload: EMPEROR-reduced trial. J. Am. Coll. Cardiol. 2021, 77, 1381–1392. [Google Scholar] [CrossRef] [PubMed]
- Borrego-Ruiz, A.; Borrego, J.J. Pharmacogenomic and pharmacomicrobiomic aspects of drugs of abuse. Genes 2025, 16, 403. [Google Scholar] [CrossRef]
- Ferro, A.; Segreti, A.; Crispino, S.P.; Cricco, R.; Di Cristo, A.; Ciancio, M.; Gurrieri, F.; Ussia, G.P.; Grigioni, F. Exploring the Role of Genetic and Genomic Factors in Therapeutic Response to Heart Failure: A Comprehensive Analytical Review. Genes 2025, 16, 801. [Google Scholar] [CrossRef] [PubMed]
- Abou Warda, A.E.; Flohr, R.M.; Sarhan, R.M.; Salem, M.N.; Salem, H.F.; Moharram, A.N.; Alanazi, A.S.; Lteif, C.; Gawronski, B.E.; Dumeny, L. Genetic polymorphisms in SLC5A2 are associated with clinical outcomes and dapagliflozin response in heart failure patients. Front. Pharmacol. 2025, 16, 1539870. [Google Scholar] [CrossRef]
- Tonin, G.; Goričar, K.; Blagus, T.; Janež, A.; Dolžan, V.; Klen, J. Genetic variability in sodium-glucose cotransporter 2 and glucagon-like peptide 1 receptor effect on glycemic and pressure control in type 2 diabetes patients treated with SGLT2 inhibitors and GLP-1RA in the everyday clinical practice. Front. Endocrinol. 2025, 16, 1547920. [Google Scholar] [CrossRef]
- Engwa, G.A.; Nweke, F.N.; Karngong, G.N.; Afiukwa, C.A.; Nwagu, K.E. Understanding the pathogenesis, therapeutic targets/drug action and pharmacogenetics of type 2 diabetes: Is there a future for personalised medicine? Endocr. Metab. Immune Disord.-Drug Targets 2020, 20, 1569–1589. [Google Scholar] [CrossRef]
- Xu, B.; Li, S.; Kang, B.; Fan, S.; Chen, C.; Li, W.; Chen, J.; He, Z.; Tang, F.; Zhou, J. Role of SLC5A2 polymorphisms and effects of genetic polymorphism on sodium glucose cotransporter 2 inhibitors response. Mol. Biol. Rep. 2023, 50, 9637–9647. [Google Scholar] [CrossRef]
- Negron, M.; Kristensen, J.; Nguyen, V.T.; Gansereit, L.E.; Raucci, F.J.; Chariker, J.L.; Heck, A.; Brula, I.; Kitchen, G.; Awgulewitsch, C.P. Sex-based differences in cardiac gene expression and function in BDNF Val66Met mice. Int. J. Mol. Sci. 2021, 22, 7002. [Google Scholar] [CrossRef] [PubMed]
- Leisz, S.; Fritzsche, S.; Strauss, C.; Scheller, C. The Protective Effect of Nimodipine in Schwann Cells Is Related to the Upregulation of LMO4 and SERCA3 Accompanied by the Fine-Tuning of Intracellular Calcium Levels. Int. J. Mol. Sci. 2025, 26, 864. [Google Scholar] [CrossRef]
- Sandrini, L.; Castiglioni, L.; Amadio, P.; Werba, J.P.; Eligini, S.; Fiorelli, S.; Zarà, M.; Castiglioni, S.; Bellosta, S.; Lee, F.S. Impact of BDNF Val66Met polymorphism on myocardial infarction: Exploring the macrophage phenotype. Cells 2020, 9, 1084. [Google Scholar] [CrossRef] [PubMed]
- Chyrek-Tomaszewska, A.; Popiołek, A.K.; Linkowska, K.; Kozakiewicz, M.; Szelągowski, A.; Budzyński, J.; Bieliński, M.K. Brain-derived neurotrophic factor serum concentration and BDNF Val66Met polymorphism in patients with peripheral artery disease: The importance of heart failure. Med. Res. J. 2023, 8, 203–207. [Google Scholar] [CrossRef]
- Dowling, P.; Swandulla, D.; Ohlendieck, K. Biochemical and proteomic insights into sarcoplasmic reticulum Ca2+-ATPase complexes in skeletal muscles. Expert Rev. Proteom. 2023, 20, 125–142. [Google Scholar] [CrossRef]
- Kiec-Wilk, B.; Dembinska-Kiec, A.; Olszanecka, A.; Bodzioch, M.; Schmitz, G.; Kawecka-Jaszcz, K. A724A polymorphism of sarco (endo) plasmic reticulum Ca2+-ATPase 2 (SERCA2) in hypertensive patients. Clin. Chem. Lab. Med. 2007, 45, 467–470. [Google Scholar] [CrossRef]
- Packer, M.; Anker, S.D.; Butler, J.; Filippatos, G.; Pocock, S.J.; Carson, P.; Januzzi, J.; Verma, S.; Tsutsui, H.; Brueckmann, M. Cardiovascular and renal outcomes with empagliflozin in heart failure. N. Engl. J. Med. 2020, 383, 1413–1424. [Google Scholar] [CrossRef]
- Voors, A.A.; Angermann, C.E.; Teerlink, J.R.; Collins, S.P.; Kosiborod, M.; Biegus, J.; Ferreira, J.P.; Nassif, M.E.; Psotka, M.A.; Tromp, J. The SGLT2 inhibitor empagliflozin in patients hospitalized for acute heart failure: A multinational randomized trial. Nat. Med. 2022, 28, 568–574. [Google Scholar] [CrossRef]
- Sanyaolu, S.E. Recent Advancements in the Management of Heart Failure: A Review. Cardiology 2025, 3, 100008. [Google Scholar] [CrossRef]
- Cunningham, J.W.; Myhre, P.L. NT-proBNP response to heart failure therapies: An imperfect surrogate. J. Am. Coll. Cardiol. 2021, 78, 1333–1336. [Google Scholar] [CrossRef]
- Salvatore, T.; Galiero, R.; Caturano, A.; Rinaldi, L.; Di Martino, A.; Albanese, G.; Di Salvo, J.; Epifani, R.; Marfella, R.; Docimo, G. An overview of the cardiorenal protective mechanisms of SGLT2 inhibitors. Int. J. Mol. Sci. 2022, 23, 3651. [Google Scholar] [CrossRef]
- Spielman, A.F.; Griffin, M.F.; Parker, J.; Cotterell, A.C.; Wan, D.C.; Longaker, M.T. Beyond the scar: A basic science review of wound remodeling. Adv. Wound Care 2023, 12, 57–67. [Google Scholar] [CrossRef]
- Bharadia, S.K.; Burnett, L.; Gabriel, V. Hypertrophic scar. Phys. Med. Rehabil. Clin. 2023, 34, 783–798. [Google Scholar] [CrossRef] [PubMed]
- Philip, M.A.; Webb, C.M.; Chakraborty, T.; Collins, P. Effect of sex on sodium-glucose co-transporter-2 antagonists and glucagon-like peptide-1 agonists in heart failure. ESC Heart Fail. 2024, 11, 3539–3550. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Wood, S.; Bell, J.S.; De Blasio, M.J.; Ilomäki, J.; Ritchie, R.H. Sex differences in risk of cardiovascular events and mortality with sodium glucose co-transporter-2 inhibitors versus glucagon-like peptide 1 receptor agonists in Australians with type 2 diabetes: A population-based cohort study. Lancet Reg. Health–West. Pac. 2023, 33, 100692. [Google Scholar] [CrossRef]
- Smereka, Y.; Ezekowitz, J.A. HFpEF and sex: Understanding the role of sex differences. Can. J. Physiol. Pharmacol. 2024, 102, 465–475. [Google Scholar] [CrossRef]
- Liu, X.; Pan, H.; Jiang, Y.; Wang, Y.; Abudukeremu, A.; Cao, Z.; Wu, M.; He, W.; Zhang, M.; Yan, Z. Association between trajectory of systolic blood pressure and outcomes in heart failure patients with preserved ejection fraction (HFpEF). Eur. J. Intern. Med. 2025, 131, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Aune, D.; Schlesinger, S.; Norat, T.; Riboli, E. Tobacco smoking and the risk of heart failure: A systematic review and meta-analysis of prospective studies. Eur. J. Prev. Cardiol. 2019, 26, 279–288. [Google Scholar] [CrossRef]
- Raucci Jr, F.J.; Singh, A.P.; Soslow, J.; Markham, L.W.; Zhong, L.; Aljafar, W.; Lessiohadi, N.; Awgulewitsch, C.P.; Umbarkar, P.; Zhang, Q. The BDNF rs6265 polymorphism is a modifier of cardiomyocyte contractility and dilated cardiomyopathy. Int. J. Mol. Sci. 2020, 21, 7466. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Duan, J.; Liu, W.; Yang, C.; Yang, L. BDNF mediates the heart-brain axis: Implications for cardiovascular diseases and mental disorders. Eur. Arch. Psychiatry Clin. Neurosci. 2025, 1–15. [Google Scholar] [CrossRef]
- Eastwood, S.V.; Hemani, G.; Watkins, S.H.; Scally, A.; Smith, G.D.; Chaturvedi, N. Ancestry, ethnicity, and race: Explaining inequalities in cardiometabolic disease. Trends Mol. Med. 2024, 30, 541–551. [Google Scholar] [CrossRef]
- Skogestad, J.; Albert, I.; Hougen, K.; Lothe, G.B.; Lunde, M.; Eken, O.S.; Veras, I.; Huynh, N.T.T.; Børstad, M.; Marshall, S. Disruption of phosphodiesterase 3A binding to SERCA2 increases SERCA2 activity and reduces mortality in mice with chronic heart failure. Circulation 2023, 147, 1221–1236. [Google Scholar] [CrossRef]
- Chaanine, A.H. Metabolic remodeling and implicated calcium and signal transduction pathways in the pathogenesis of heart failure. Int. J. Mol. Sci. 2021, 22, 10579. [Google Scholar] [CrossRef]
- Goerg, J.; Sommerfeld, M.; Greiner, B.; Lauer, D.; Seckin, Y.; Kulikov, A.; Ivkin, D.; Kintscher, U.; Okovityi, S.; Kaschina, E. Low-dose empagliflozin improves systolic heart function after myocardial infarction in rats: Regulation of MMP9, NHE1, and SERCA2a. Int. J. Mol. Sci. 2021, 22, 5437. [Google Scholar] [CrossRef]
- Ma, L.; Zou, R.; Shi, W.; Zhou, N.; Chen, S.; Zhou, H.; Chen, X.; Wu, Y. SGLT2 inhibitor dapagliflozin reduces endothelial dysfunction and microvascular damage during cardiac ischemia/reperfusion injury through normalizing the XO-SERCA2-CaMKII-coffilin pathways. Theranostics 2022, 12, 5034. [Google Scholar] [CrossRef] [PubMed]
- Țica, O.; Țica, O. Molecular Diagnostics in Heart Failure: From Biomarkers to Personalized Medicine. Diagnostics 2025, 15, 1807. [Google Scholar] [CrossRef] [PubMed]
Total No. of Patients (n = 120) | Ejection Fraction | p-Value | Brain Natriuretic Peptide | p-Value | ||
---|---|---|---|---|---|---|
Responders (n = 69) | Non- Responders (n = 51) | Responders (n = 63) | Non- Responders (n = 57) | |||
Demographic characteristics mean ± SD | ||||||
Age (Years) | 58.14± 9.04 | 59.66± 9.06 | 0.362 | 58.46 ± 9.05 | 59.16 ± 9.02 | 0.674 |
Gender Male Female | 47 (68.1%) 22 (31.9%) | 30 (58.8%) 26 (41.7%) | 0.624 | 44 (69.8%) 19 (30.2%) | 25 (43.9%) 32 (56.1%) | 0.004 |
Medical history/Comorbidities n (%) | ||||||
Hypertension Yes No | 54 (78.3%) 42 (21.7%) | 42 (82.4%) 9 (17.6%) | 0.580 | 55 (87.3%) 8 (12.7%) | 41 (71.9%) 16 (28.1%) | 0.036 |
Diabetes Mellitus Yes No | 42 (60.9%) 27 (39.1%) | 31 (60.8%) 20 (39.2%) | 0.992 | 39 (61.9%) 24 (38.1%) | 34 (59.6%) 23 (40.4%) | 0.800 |
Chronic Kidney Disease (CKD) Yes No | 22 (31.9%) 47 (68.1%) | 13 (25.5%) 38 (74.5%) | 0.446 | 14 (22.2%) 49 (77.8%) | 21 (36.8%) 36 (63.2%) | 0.078 |
Ischemic Heart Disease (IHD) Yes No | 14 (20.3%) 20 (79.7%) | 55 (45.8%) 31 (25.8%) | 0.023 | 17 (27.0%) 46 (73.0%) | 17 (29.8%) 40 (70.2%) | 0.730 |
Smoking Yes No | 12 (10.0%) 57 (82.6%) | 20 (39.2%) 42 (82.4%) | 0.971 | 16 (25.4%) 47 (74.6%) | 5 (8.8%) 52 (91.2) | 0.017 |
Medications at baseline n (%) | ||||||
Beta-Blockers Yes No | 42 (60.9%) 27 (39.1%) | 31 (60.8%) 20 (39.1%) | 0.992 | 39 (61.9%) 24 (38.1%) | 34 (42.1%) 23 (57.9%) | 0.800 |
Diuretics Yes No | 22 (31.9%) 47 (68.1%) | 13 (25.5%) 38 (74.5%) | 0.446 | 14 (22.2%) 49 (77.8%) | 21 (36.8%) 36 (63.2%) | 0.078 |
Variable | Patients n = 120 | Response with Respect to BNP | p-Value | ||
---|---|---|---|---|---|
Responders (n = 63) | Non- Responders (n = 57) | ||||
Laboratory Findings | Triglycerides (mg/dL) | 162.30 ± 87.77 | 171.22 ± 103.69 | 153.8 ± 64,65 | 0.264 |
HDL (mg/dL) | 38.03 ± 7.96 | 38.70 ± 8.34 | 37.30 ± 7.52 | 0.338 | |
LDL (mg/dL) | 108.61 ± 36.59 | 106.68 ± 36.17 | 110.74 ± 37.26 | 0.547 | |
Total Cholesterol (mg/dL) | 173.03 ± 41.53 | 173.97 ± 40.62 | 172.0 ± 48.4 | 0.797 | |
HbA1c | 7.44 ± 2.07 | 7.73 ± 2.193 | 7.11 ± 1.86 | 0.099 | |
Hematocrit | 37.01 ± 11.44 | 34 ± 6.25 | 40 ± 14.62 | 0.003 | |
Creatinine (mg/dL) | 1.51 ± 0.76 | 1.48 ± 0.71 | 1.53 ± 0.82 | 0.772 | |
eGFR (mL/min/1.73 m2) | 61.55 ± 22.11 | 61.773 ± 21.1 | 61.39 ± 23.1 | 0.926 | |
Heart failure characteristics mean ± SD | EF at baseline | 34.00 ± 8.03 | 33.81 ± 7.92 | 34.21 ± 8.23 | 0.786 |
BNP Biomarker | |||||
BNP at baseline (pg/mL) | 1458.02 ± 1886.70 | 1768.4 ± 2280.95 | 1114.0 ± 1255.35 | 0.058 | |
ATP2A2 rs1860561 n = 68 | GG | 58 (85.29%) | 42 (72.4%) | 16 (94.12%) | 0.22 |
GA + AA | 10 (14.71%) | 9 (15.2%) | 1 (5.88%) | ||
G Allele | 126 (92.65%) | 101 (91.8%) | 25 (96.2%) | ||
A Allele | 10 (7.35%) | 9 (8.2%) | 1 (3.8) | ||
BDNF rs6265 n = 83 | CC | 48 (57.83%) | 34 (82.9%) | 14 (33.3%) | <0.001 ** |
CT + TT | 35 (42.17%) | 7 (17.1%) | 28 (66.7%) | ||
C Allele | 131 (78.92% | 75 (91.5%) | 56 (66.7%) | ||
T Allele | 35 (21.08%) | 7 (8.5%) | 28 (33.3%) |
Variable | Patients n = 120 | Response with Respect to Ejection Fraction | p-Value | ||
---|---|---|---|---|---|
Responders (n= 69) | Non-Responders (n= 51) | ||||
Laboratory Findings | Triglycerides (mg/dL) | 162.30 ± 87.77 | 158.6 ± 99.82 | 160.88 ± 69.20 | 0.655 |
HDL (mg/dL) | 38.03 ± 7.96 | 37.5 ± 7.86 | 38.75 ± 8.10 | 0.402 | |
LDL (mg/dL) | 108.61 ± 36.59 | 107.4 ± 36.11 | 110.7 ± 37.50 | 0.630 | |
Total Cholesterol (mg/dL) | 173.03 ± 41.53 | 173.4 ± 39.31 | 172.4 ± 44.73 | 0.892 | |
HbA1c | 7.44 ± 2.07 | 7.1 ± 1.85 | 7.8 ± 2.85 | 0.046 | |
Hematocrit | 37.01 ± 11.44 | 36.3 ± 9.096 | 37.9 ± 14.05 | 0.448 | |
Creatinine (mg/dL) | 1.51 ± 0.76 | 1.49 ± 0.73 | 1.52 ± 0.78 | 0.799 | |
eGFR (mL/min/1.73 m2) | 61.55 ± 22.11 | 61.2 ± 20.29 | 61.9 ± 24.37 | 0.864 | |
Heart failure characteristics mean ± SD | |||||
EF at baseline | 34.00 ± 8.03 | 33.4 ± 7.08 | 34.7 ± 9.18 | 0.410 | |
BNP Biomarker | |||||
BNP at baseline (pg/mL) | 1458.02 ± 1886.70 | 1334 ± 1658.5 | 1625 ± 2163.5 | 0.405 | |
ATP2A2 rs1860561 n = 68 | GG | 58 (85.29%) | 29 (90.5%) | 29 (76.9%) | 0.040 |
GA + AA | 10 (14.71%) | 9 (9.5%) | 1 (23.1%) | ||
G Allele | 126 (92.65%) | 67 (53.2%) | 59 (46.8%) | ||
A Allele | 10 (7.35%) | 9 (46.8) | 1 (44.4) | ||
BDNF rs6265 n = 83 | CC | 48 (57.83%) | 34 (77.3%) | 14 (35.9%) | 0.028 ** |
CT + TT | 35 (42.17%) | 10 (22.7%) | 25 (64.1%) | ||
C Allele | 131 (78.92%) | 78 (88.6%) | 53 (67.9%) | ||
T Allele | 35 (21.08%) | 10 (11.4%) | 25 (32.1%) |
Genotype | EF Responders n (%) | EF Non- Responders n (%) | B | OR (95% CI) | p-Value | BNP Responders n (%) | BNP Non- Responders n (%) | B | OR (95% CI) | p- Value |
---|---|---|---|---|---|---|---|---|---|---|
ATP2A2 rs1860561 (n = 68) | ||||||||||
GG (n = 58) | 29 (76.3%) | 29 (96.7%) | 3.91 | 0.09 (0.01–0.97) | 0.048 | 42 (82.4%) | 16 (94.1%) | 2.31 | 0.14 (0.01–1.7) | 0.128 |
GA + AA (n = 10) | 9 (23.7%) | 1 (3.3%) | 9 (17.6%) | 1 (5.9%) | ||||||
BDNF rs6265 (n = 83) | ||||||||||
CC (n = 48) | 34 (77.3%) | 14 (35.9%) | 10.64 | 5.97 (2.04–17.46) | 0.001 | 34 (82.9%) | 14 (33.3%) | 12.19 | 7.7 (2.4–24.65) | <0.001 |
CT + TT (n = 35) | 10 (22.7%) | 25 (64.1%) | 7 (17.1%) | 28 (66.7%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ain, Q.T.; Shaheen, A.; Ijaz, U.; Ahmed, S.; Usman, M.; Ahmed, M.; Ali, M.; Azam, F.; Khan, A.A.; Hasan, A.; et al. Personalized Response to Empagliflozin in Heart Failure: Association of BDNF and ATP2A2 Variants in a South Asian Cohort. Biomedicines 2025, 13, 2095. https://doi.org/10.3390/biomedicines13092095
Ain QT, Shaheen A, Ijaz U, Ahmed S, Usman M, Ahmed M, Ali M, Azam F, Khan AA, Hasan A, et al. Personalized Response to Empagliflozin in Heart Failure: Association of BDNF and ATP2A2 Variants in a South Asian Cohort. Biomedicines. 2025; 13(9):2095. https://doi.org/10.3390/biomedicines13092095
Chicago/Turabian StyleAin, Qura Tul, Abida Shaheen, Umer Ijaz, Sagheer Ahmed, Muhammad Usman, Mushood Ahmed, Muhammad Ali, Fahad Azam, Asaad Akbar Khan, Ali Hasan, and et al. 2025. "Personalized Response to Empagliflozin in Heart Failure: Association of BDNF and ATP2A2 Variants in a South Asian Cohort" Biomedicines 13, no. 9: 2095. https://doi.org/10.3390/biomedicines13092095
APA StyleAin, Q. T., Shaheen, A., Ijaz, U., Ahmed, S., Usman, M., Ahmed, M., Ali, M., Azam, F., Khan, A. A., Hasan, A., & Ahmed, R. (2025). Personalized Response to Empagliflozin in Heart Failure: Association of BDNF and ATP2A2 Variants in a South Asian Cohort. Biomedicines, 13(9), 2095. https://doi.org/10.3390/biomedicines13092095