Differential Expression of Long Non-Coding RNA IGF2-AS in Tamoxifen-Resistant Breast Cancer Cells
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture and Tissue Samples of Human Breast Cancer
2.2. RNA Extraction, LncRNA Profiling, and Quantitative RT-PCR
2.3. Transfection
2.4. MTT Assay
2.5. Cell Invasion Assay
2.6. Wound Healing Assay
2.7. Next-Generation Sequencing (NGS)
2.8. Prognosis Estimation and Statistical Analysis
3. Results
3.1. IGF2-AS Was Significantly Upregulated in TAMR Cell Lines
3.2. Expression of LncRNA IGF2-AS in Breast Cancer Samples Analyzed Using KM Plotter
3.3. Knockdown of IGF2-AS Reduced Cell Proliferation and Invasion but Did Not Affect Migration in TAMR-V Cell Lines
3.4. Differences Between TAMR-V and TAMR-H Breast Cancer Cells
3.5. Higher Expression of LncRNA IGF2-AS in TAMR Breast Cancer Patients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
LncRNAs | Long non-coding RNAs |
IGF2-AS | Insulin-like growth factor 2 antisense |
TAMR | Tamoxifen resistance |
NGS | Next-generation sequencing |
ER | Estrogen receptor |
PR | Progesterone receptor |
HER2 | Human epidermal growth factor receptor 2 |
TNBC | Triple-negative breast cancer |
SERMs | Selective estrogen receptor modulators |
OS | Overall survival |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Szymiczek, A.; Lone, A.; Akbari, M.R. Molecular intrinsic versus clinical subtyping in breast cancer: A comprehensive review. Clin. Genet. 2021, 99, 613–637. [Google Scholar] [CrossRef]
- Prat, A.; Pineda, E.; Adamo, B.; Galván, P.; Fernández, A.; Gaba, L.; Díez, M.; Viladot, M.; Arance, A.; Muñoz, M. Clinical implications of the intrinsic molecular subtypes of breast cancer. Breast 2015, 24 (Suppl. S2), S26–S35. [Google Scholar] [CrossRef]
- Turner, K.M.; Yeo, S.K.; Holm, T.M.; Shaughnessy, E.; Guan, J.L. Heterogeneity within molecular subtypes of breast cancer. Am. J. Physiol. Cell Physiol. 2021, 321, C343–C354. [Google Scholar] [CrossRef]
- Park, S.; Koo, J.S.; Kim, M.S.; Park, H.S.; Lee, J.S.; Lee, J.S.; Kim, S.I.; Park, B.W. Characteristics and outcomes according to molecular subtypes of breast cancer as classified by a panel of four biomarkers using immunohistochemistry. Breast 2012, 21, 50–57. [Google Scholar] [CrossRef]
- Huppert, L.A.; Gumusay, O.; Idossa, D.; Rugo, H.S. Systemic therapy for hormone receptor-positive/human epidermal growth factor receptor 2-negative early stage and metastatic breast cancer. CA Cancer J. Clin. 2023, 73, 480–515. [Google Scholar] [CrossRef] [PubMed]
- Ring, A.; Dowsett, M. Mechanisms of tamoxifen resistance. Endocr. Relat. Cancer 2004, 11, 643–658. [Google Scholar] [CrossRef] [PubMed]
- Szostakowska, M.; Trębińska-Stryjewska, A.; Grzybowska, E.A.; Fabisiewicz, A. Resistance to endocrine therapy in breast cancer: Molecular mechanisms and future goals. Breast Cancer Res. Treat. 2019, 173, 489–497. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, A.; Spicer, D.; Lu, J. Overcoming endocrine resistance in metastatic hormone receptor-positive breast cancer. J. Hematol. Oncol. 2018, 11, 80. [Google Scholar] [CrossRef]
- Hanker, A.B.; Sudhan, D.R.; Arteaga, C.L. Overcoming Endocrine Resistance in Breast Cancer. Cancer Cell 2020, 37, 496–513. [Google Scholar] [CrossRef] [PubMed]
- Rani, A.; Stebbing, J.; Giamas, G.; Murphy, J. Endocrine Resistance in Hormone Receptor Positive Breast Cancer—From Mechanism to Therapy. Front. Endocrinol. 2019, 10, 245. [Google Scholar] [CrossRef]
- Willman, M.; Willman, J.; Lucke-Wold, B. Endocrine resistant breast cancer: Brain metastasis. Explor. Target Antitumor Ther. 2022, 3, 240–251. [Google Scholar] [CrossRef] [PubMed]
- Statello, L.; Guo, C.J.; Chen, L.L.; Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 2021, 22, 96–118. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, J.; Dimitrova, N. Transcription regulation by long non-coding RNAs: Mechanisms and disease relevance. Nat. Rev. Mol. Cell Biol. 2024, 25, 396–415. [Google Scholar] [CrossRef]
- Ransohoff, J.D.; Wei, Y.; Khavari, P.A. The functions and unique features of long intergenic non-coding RNA. Nat. Rev. Mol. Cell Biol. 2018, 19, 143–157. [Google Scholar] [CrossRef]
- Xue, X.; Yang, Y.A.; Zhang, A.; Fong, K.W.; Kim, J.; Song, B.; Li, S.; Zhao, J.C.; Yu, J. LncRNA HOTAIR enhances ER signaling and confers tamoxifen resistance in breast cancer. Oncogene 2016, 35, 2746–2755. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Qian, J.; Li, J.; Zhu, C. Knockdown of lncRNA-HOTAIR downregulates the drug-resistance of breast cancer cells to doxorubicin via the PI3K/AKT/mTOR signaling pathway. Exp. Ther. Med. 2019, 18, 435–442. [Google Scholar] [CrossRef]
- Wang, J.; Xie, S.; Yang, J.; Xiong, H.; Jia, Y.; Zhou, Y.; Chen, Y.; Ying, X.; Chen, C.; Ye, C.; et al. The long noncoding RNA H19 promotes tamoxifen resistance in breast cancer via autophagy. J. Hematol. Oncol. 2019, 12, 81. [Google Scholar] [CrossRef]
- Ma, Y.; Bu, D.; Long, J.; Chai, W.; Dong, J. LncRNA DSCAM-AS1 acts as a sponge of miR-137 to enhance Tamoxifen resistance in breast cancer. J. Cell Physiol. 2019, 234, 2880–2894. [Google Scholar] [CrossRef]
- Xu, C.G.; Yang, M.F.; Ren, Y.Q.; Wu, C.H.; Wang, L.Q. Exosomes mediated transfer of lncRNA UCA1 results in increased tamoxifen resistance in breast cancer cells. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 4362–4368. [Google Scholar]
- Zhang, H.Y.; Liang, F.; Zhang, J.W.; Wang, F.; Wang, L.; Kang, X.G. Effects of long noncoding RNA-ROR on tamoxifen resistance of breast cancer cells by regulating microRNA-205. Cancer Chemother. Pharmacol. 2017, 79, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yan, H.; Jiang, Y.; Chen, T.; Ma, Z.; Li, F.; Lin, M.; Xu, Y.; Zhang, X.; Zhang, J.; et al. Long non-coding RNA IGF2-AS represses breast cancer tumorigenesis by epigenetically regulating IGF2. Exp. Biol. Med. 2021, 246, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Cullen, K.J.; Lippman, M.E.; Chow, D.; Hill, S.; Rosen, N.; Zwiebel, J.A. Insulin-like growth factor-II overexpression in MCF-7 cells induces phenotypic changes associated with malignant progression. Mol. Endocrinol. 1992, 6, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Vu, T.H.; Chuyen, N.V.; Li, T.; Hoffman, A.R. Loss of imprinting of IGF2 sense and antisense transcripts in Wilms’ tumor. Cancer Res. 2003, 63, 1900–1905. [Google Scholar]
- Qiu, J.; Yang, R.; Rao, Y.; Du, Y.; Kalembo, F.W. Risk factors for breast cancer and expression of insulin-like growth factor-2 (IGF-2) in women with breast cancer in Wuhan City, China. PLoS ONE 2012, 7, e36497. [Google Scholar] [CrossRef]
- Yu, H.; Jin, F.; Shu, X.O.; Li, B.D.; Dai, Q.; Cheng, J.R.; Berkel, H.J.; Zheng, W. Insulin-like growth factors and breast cancer risk in Chinese women. Cancer Epidemiol. Biomark. Prev. 2002, 11, 705–712. [Google Scholar]
- Sakauchi, F.; Nojima, M.; Mori, M.; Wakai, K.; Suzuki, S.; Tamakoshi, A.; Ito, Y.; Watanabe, Y.; Inaba, Y.; Tajima, K.; et al. Serum insulin-like growth factors I and II, insulin-like growth factor binding protein-3 and risk of breast cancer in the Japan Collaborative Cohort study. Asian Pac. J. Cancer Prev. 2009, 10, 51–55. [Google Scholar]
- Santen, R.J.; Fan, P.; Zhang, Z.; Bao, Y.; Song, R.X.; Yue, W. Estrogen signals via an extra-nuclear pathway involving IGF-1R and EGFR in tamoxifen-sensitive and -resistant breast cancer cells. Steroids 2009, 74, 586–594. [Google Scholar] [CrossRef]
- Santen, R.J.; Song, R.X.; Zhang, Z.; Kumar, R.; Jeng, M.H.; Masamura, A.; Lawrence, J., Jr.; Berstein, L.; Yue, W. Long-term estradiol deprivation in breast cancer cells up-regulates growth factor signaling and enhances estrogen sensitivity. Endocr. Relat. Cancer 2005, 12 (Suppl. S1), S61–S73. [Google Scholar] [CrossRef]
- Luo, E.; Lee, S.; Agarwal, N.M.; Choi, J. Targeting EPAS-1/HIF-2α Pathway to Address Endocrine Resistance in Luminal A Type Breast Cancer. Transl. Oncol. 2025, 57, 102415. [Google Scholar] [CrossRef]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc (accessed on 1 June 2012).
- FASTQ/A Short-Reads Pre-Processing Tools. Available online: http://hannonlab.cshl.edu/fastx_toolkit/commandline.html (accessed on 1 June 2012).
- Bushnell, B. BBMap: A Fast, Accurate, Splice-Aware Aligner. Available online: https://www.osti.gov/biblio/1241166-bbmap-fast-accurate-splice-aware-aligner (accessed on 1 March 2014).
- Trapnell, C.; Pachter, L.; Salzberg, S.L. TopHat: Discovering splice junctions with RNA-Seq. Bioinformatics 2009, 25, 1105–1111. [Google Scholar] [CrossRef]
- Roberts, A.; Trapnell, C.; Donaghey, J.; Rinn, J.L.; Pachter, L. Improving RNA-Seq expression estimates by correcting for fragment bias. Genome. Biol. 2011, 12, R22. [Google Scholar] [CrossRef]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [PubMed]
- R Development Core Team. R: A language and environment for statistical computing. R Found. Stat. Comput. 2016, 1, 409. [Google Scholar]
- Sun, D.; Chen, G.; Dellinger, R.W.; Duncan, K.; Fang, J.L.; Lazarus, P. Characterization of tamoxifen and 4-hydroxytamoxifen glucuronidation by human UGT1A4 variants. Breast Cancer Res. 2006, 8, R50. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Luo, Y.; Chen, G.; Liu, H.; Tian, N.; Zen, X.; Liu, Q. Long noncoding RNA IGF2AS regulates high-glucose induced apoptosis in human retinal pigment epithelial cells. IUBMB Life 2019, 71, 1611–1618. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, B.; Li, B.; Song, C.; Diao, H.; Guo, Z.; Li, Z.; Zhang, J. Inhibition of long noncoding RNA IGF2AS promotes angiogenesis in type 2 diabetes. Biomed. Pharmacother. 2017, 92, 445–450. [Google Scholar] [CrossRef]
- Chen, Q.; Sun, T.; Wang, F.; Gong, B.; Xie, W.; Ma, M.; Yang, X. Long Noncoding RNA IGF2AS is Acting as an Epigenetic Tumor Suppressor in Human Prostate Cancer. Urology 2019, 124, 310.e1–310.e8. [Google Scholar] [CrossRef]
- Qi, J.; Li, J.; Sun, J.; Li, C. Long Non-Coding RNA IGF2AS in Serum may be a Biomarker for Diagnosis of Hepatitis B Virus-Related Hepatocellular Carcinoma. Clin. Lab 2019, 65. [Google Scholar] [CrossRef]
- Xiang, Y.; Zong, Q.B.; Liu, H.; Li, H.N.; Wu, Q.F.; Dai, Z.T.; Huang, Y.; Shen, C.; Li, L.W.; Li, X.R.; et al. lncRNA IGF2-AS regulates miR-500a-3p/PPP4R1/p-VEGFR2 signalling pathway to promote thyroid carcinoma progression and tubulogenesis. Clin. Transl. Med. 2023, 13, e1240. [Google Scholar] [CrossRef]
- Yan, B.; Ren, Z.; Sun, J.; Ding, C.; Yang, D. IGF2-AS knockdown inhibits glycolysis and accelerates apoptosis of gastric cancer cells through targeting miR-195/CREB1 axis. Biomed. Pharmacother. 2020, 130, 110600. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Zhang, M.; Lu, M.M.; Qu, L.Y.; Xu, S.G.; Li, Y.Z.; Wang, M.Y.; Zhu, H.F.; Zhang, Z.Y.; He, G.Y.; et al. EPAS1 targeting by miR-152-3p in Paclitaxel-resistant Breast Cancer. J. Cancer 2020, 11, 5822–5830. [Google Scholar] [CrossRef] [PubMed]
- Perone, Y.; Farrugia, A.J.; Rodríguez-Meira, A.; Győrffy, B.; Ion, C.; Uggetti, A.; Chronopoulos, A.; Marrazzo, P.; Faronato, M.; Shousha, S.; et al. SREBP1 drives Keratin-80-dependent cytoskeletal changes and invasive behavior in endocrine-resistant ERα breast cancer. Nat. Commun. 2019, 10, 2115. [Google Scholar] [CrossRef]
- Du, R.; Liu, B.; Zhou, L.; Wang, D.; He, X.; Xu, X.; Zhang, L.; Niu, C.; Liu, S. Downregulation of annexin A3 inhibits tumor metastasis and decreases drug resistance in breast cancer. Cell Death Dis. 2018, 9, 126. [Google Scholar] [CrossRef] [PubMed]
Level of Expression | lncRNAs | TAMR-V * | TAMR-H * |
---|---|---|---|
Upregulation | Anti-NOS2A | 52.82983 ± 16.65489 | 24.41382 ± 9.56836 |
EVF1 and EVF2 | 34.11834 ± 12.70678 | 28.66012 ± 10.95019 | |
HAR1B | 9.013918 ± 8.091384 | 4.250339 ± 4.595892 | |
IGF2AS (family) | 4.865702 ± 2.040343 | 1.772124 ± 0.980745 | |
GAS5 (family) | 3.377255 ± 0.835037 | 4.224700 ± 0.311261 | |
H19 upstream conserved 1 & 2 | 3.027784 ± 1.649675 | 2.038056 ± 0.510124 | |
Downregulation | NTT | 0.66975 ± 0.3869 | 0.767579 ± 0.308688 |
7SK | 0.656233 ± 0.028282 | 0.682445 ± 0.061467 | |
SOX2OT | 0.094758 ± 0.046917 | 0.044528 ± 0.023905 | |
Control | 18S rRNA | 8.822375 ± 0.791897 | 11.43136 ± 1.015886 |
RNU43 (snoRNA) | 1.664141 ± 0.222279 | 4.614409 ± 0.336516 | |
LAMIN A/C | 0.547854 ± 0.02251 | 0.016867 ± 0.009027 | |
U6 snRNA | 0.31399 ± 0.060132 | 0.558524 ± 0.121545 | |
GAPDH | 0.271698 ± 0.027552 | 0.983259 ± 0.12848 |
Gene Symbol | TAMR_V/MCF7 | TAMR_H/MCF7 | Transcript ID | Biotype | Aliases | Description | NCBI Search |
---|---|---|---|---|---|---|---|
LGALS3 | 19.198 | 267.620 | NM_001177388 | protein_coding | CBP35|GAL3|GALBP|GALIG|L31|LGALS2|MAC2 | Lectin, galactoside-binding soluble 3 | LGALS3 |
EPAS1 | 18.378 | 70.987 | NM_001430 | protein_coding | ECYT4|HIF2A|HLF|MOP2|PASD2|bHLHe73 | Endothelial PAS domain protein 1 | EPAS1 |
BCAS1 | 9.121 | 16.782 | NM_003657 | protein_coding | AIBC1|NABC1 | Breast carcinoma amplified sequence 1 | BCAS1 |
ADM | 8.136 | 7.956 | NM_001124 | protein_coding | AM | Adrenomedullin | ADM |
KRT80 | 7.849 | 6.289 | NM_182507 | protein_coding | KB20 | Keratin 80 | KRT80 |
C19orf33 | 7.505 | 36.531 | NM_033520 | protein_coding | H2RSP|IMUP|IMUP-1|IMUP-2|MGC39135|MGC75180 | Chromosome 19 open reading frame 33 | C19orf33 |
UPK2 | 7.335 | 83.240 | NM_006760 | protein_coding | MGC138598|UP2|UPII | Uroplakin 2 | UPK2 |
ANXA3 | 7.235 | 7.402 | NM_005139 | protein_coding | ANX3 | Annexin A3 | ANXA3 |
TNS3 | 7.102 | 5.821 | NM_022748 | protein_coding | DKFZp686K12123|DKFZp686M1045|FLJ13732|FLJ35545|H_NH049I23.2|MGC88434|TEM6|TENS1 | Tensin 3 | TNS3 |
ANXA9 | 6.39 | 12.706 | NM_003568 | protein_coding | ANX31 | Annexin A9 | ANXA9 |
SYTL1 | 5.364 | 5.411 | NM_001193308 | protein_coding | FLJ14996|JFC1|SLP1 | Synaptotagmin like 1 | SYTL1 |
CXXC5 | 5.096 | 7.979 | NM_016463 | protein_coding | CF5|RINF|WID | CXXC finger protein 5 | CXXC5 |
ST3GAL4 | 5.038 | 10.386 | NM_001254757 | protein_coding | CGS23|FLJ11867|FLJ46764|NANTA3|SAT3|SIAT4|SIAT4C|ST3GalIV|STZ | ST3 beta-galactoside alpha-2,3-sialyltransferase 4 | ST3GAL4 |
S100A4 | 0.190 | 0.126 | NM_019554 | protein_coding | 18A2|42A|CAPL|FSP1|MTS1|P9KA|PEL98 | S100 calcium-binding protein A4 | S100A4 |
CXCL12 | 0.159 | 0.040 | NM_001277990 | protein_coding | IRH|PBSF|SCYB12|SDF1|SDF1A|SDF1B|TLSF|TPAR1 | C-X-C motif chemokine ligand 12 | CXCL12 |
MUCL1 | 0.126 | 8.281 | NM_058173 | protein_coding | SBEM | Mucin-like 1 | MUCL1 |
TEX19 | 0.124 | 0.114 | NM_207459 | protein_coding | FLJ35767 | Testis expressed 19 | TEX19 |
FHL1 | 0.069 | 0.096 | NR_027621 | protein_coding | FHL1A|FHL1B|FLH1A|KYOT|MGC111107|SLIM1|SLIMMER|XMPMA | Four and a half LIM domains 1 | FHL1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Kang, B.; Kim, E.A.; Kang, J.; Chae, Y.S.; Park, H.Y.; Lee, S.J.; Lee, I.H.; Park, J.-Y.; Park, N.J.-Y.; et al. Differential Expression of Long Non-Coding RNA IGF2-AS in Tamoxifen-Resistant Breast Cancer Cells. Biomedicines 2025, 13, 2087. https://doi.org/10.3390/biomedicines13092087
Lee J, Kang B, Kim EA, Kang J, Chae YS, Park HY, Lee SJ, Lee IH, Park J-Y, Park NJ-Y, et al. Differential Expression of Long Non-Coding RNA IGF2-AS in Tamoxifen-Resistant Breast Cancer Cells. Biomedicines. 2025; 13(9):2087. https://doi.org/10.3390/biomedicines13092087
Chicago/Turabian StyleLee, Jeeyeon, Byeongju Kang, Eun Ae Kim, Jieun Kang, Yee Soo Chae, Ho Yong Park, Soo Jung Lee, In Hee Lee, Ji-Young Park, Nora Jee-Young Park, and et al. 2025. "Differential Expression of Long Non-Coding RNA IGF2-AS in Tamoxifen-Resistant Breast Cancer Cells" Biomedicines 13, no. 9: 2087. https://doi.org/10.3390/biomedicines13092087
APA StyleLee, J., Kang, B., Kim, E. A., Kang, J., Chae, Y. S., Park, H. Y., Lee, S. J., Lee, I. H., Park, J.-Y., Park, N. J.-Y., & Jung, J. H. (2025). Differential Expression of Long Non-Coding RNA IGF2-AS in Tamoxifen-Resistant Breast Cancer Cells. Biomedicines, 13(9), 2087. https://doi.org/10.3390/biomedicines13092087