Anti-B Cell Strategy in Nephrotic Syndrome: Beyond Rituximab
Abstract
1. Introduction
2. The Role of B Cells and Autoantibodies in NS
- (1)
- Generating antibodies
- (2)
- Engage in the cellular immune response
- (3)
- Sustaining immune homeostasis
- (4)
- Promote glomerulosclerosis
3. Innovative Therapies Targeting B Cells
- (1)
- Rituximab
- (2)
- Ofatumumab
- (3)
- Obinutuzumab
- (4)
- Ublituximab
4. Targeting Plasma Cells
5. CAR T Cells
6. Others
7. Challenges and Perspectives
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
ADCC | Antibody-dependent cellular cytotoxicity |
ADCP | Antibody-dependent cellular phagocytosis |
AE | Adverse events |
AMR | Antibody-mediated rejection |
ARA | Antibodies targeting rituximab |
BAFF | B cell activating factor |
BiTEs | Bispecific T cell Engagers |
Bregs | Regulatory B cells |
CAR | Chimeric antigen receptor |
CDC | Complement-dependent cytotoxicity |
CLL | Chronic lymphocytic leukemia |
CNIs | Calcineurin inhibitors |
CRS | Cytokine release syndrome |
FRNS | Frequently relapsing NS |
FSGS | Focal segmental glomerulosclerosis |
IgAN | IgA nephropathy |
IRR | Infusion-related reactions |
LN | Lupus nephritis |
MCD | Minimal change disease |
MDR-SRNS | Multi-drug-resistant steroid-resistant NS |
MN | Membranous nephropathy |
MRNS | Multidrug-resistant NS |
MS | Multiple sclerosis |
NK | Natural killer |
NS | Nephrotic syndrome |
RA | Rheumatoid arthritis |
scFv | Single-chain variable fragment |
SDNS | Steroid-dependent NS |
SLE | Systemic lupus erythematosus |
SRNS | Steroid-resistant NS |
TFH | Follicular helper T cells |
References
- Vivarelli, M.; Gibson, K.; Sinha, A.; Boyer, O. Childhood nephrotic syndrome. Lancet 2023, 402, 809–824. [Google Scholar] [CrossRef] [PubMed]
- Ravani, P.; Bonanni, A.; Rossi, R.; Caridi, G.; Ghiggeri, G.M. Anti-CD20 Antibodies for Idiopathic Nephrotic Syndrome in Children. Clin. J. Am. Soc. Nephrol. 2016, 11, 710–720. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, J.; Zhang, Y.; Wang, X.; Wang, J. Immunosuppressive agents for frequently relapsing/steroid-dependent nephrotic syndrome in children: A systematic review and network meta-analysis. Front. Immunol. 2024, 15, 1310032. [Google Scholar] [CrossRef]
- Bertrand, Q.; Mignot, S.; Kwon, T.; Couderc, A.; Maisin, A.; Cambier, A.; Baudouin, V.; Peyneau, M.; Deschênes, G.; Hogan, J.; et al. Anti-rituximab antibodies in pediatric steroid-dependent nephrotic syndrome. Pediatr. Nephrol. 2022, 37, 357–365. [Google Scholar] [CrossRef]
- Cerutti, A.; Cols, M.; Puga, I. Marginal zone B cells: Virtues of innate-like antibody-producing lymphocytes. Nat. Rev. Immunol. 2013, 13, 118–132. [Google Scholar] [CrossRef] [PubMed]
- Watts, A.J.B.; Keller, K.H.; Lerner, G.; Rosales, I.; Collins, A.B.; Sekulic, M.; Waikar, S.S.; Chandraker, A.; Riella, L.V.; Alexander, M.P.; et al. Discovery of Autoantibodies Targeting Nephrin in Minimal Change Disease Supports a Novel Autoimmune Etiology. J. Am. Soc. Nephrol. 2022, 33, 238–252. [Google Scholar] [CrossRef] [PubMed]
- Jamin, A.; Berthelot, L.; Couderc, A.; Chemouny, J.M.; Boedec, E.; Dehoux, L.; Abbad, L.; Dossier, C.; Daugas, E.; Monteiro, R.C.; et al. Autoantibodies against podocytic UCHL1 are associated with idiopathic nephrotic syndrome relapses and induce proteinuria in mice. J. Autoimmun. 2018, 89, 149–161. [Google Scholar] [CrossRef]
- Ye, Q.; Chen, A.; Lai, E.; Mao, J. Autoimmune Podocytopathies: A Novel Sub-Group of Diseases from Childhood Idiopathic Nephrotic Syndrome. J. Am. Soc. Nephrol. 2022, 33, 653–654. [Google Scholar] [CrossRef] [PubMed]
- Hengel, F.E.; Dehde, S.; Lassé, M.; Zahner, G.; Seifert, L.; Schnarre, A.; Kretz, O.; Demir, F.; Pinnschmidt, H.O.; Grahammer, F.; et al. Autoantibodies Targeting Nephrin in Podocytopathies. N. Engl. J. Med. 2024, 391, 422–433. [Google Scholar] [CrossRef]
- Ye, Q.; Wang, D.; Zhou, C.; Meng, H.; Liu, H.; Mao, J. A spectrum of novel anti-vascular endothelial cells autoantibodies in idiopathic nephrotic syndrome patients. Clin. Immunol. 2023, 249, 109273. [Google Scholar] [CrossRef]
- Yang, X.; Tang, X.; Li, T.; Man, C.; Yang, X.; Wang, M.; Zhang, G.; Chen, Y.; Yang, H.; Li, Q. Circulating follicular T helper cells are possibly associated with low levels of serum immunoglobulin G due to impaired immunoglobulin class-switch recombination of B cells in children with primary nephrotic syndrome. Mol. Immunol. 2019, 114, 162–170. [Google Scholar] [CrossRef]
- Boumediene, A.; Vachin, P.; Sendeyo, K.; Oniszczuk, J.; Zhang, S.-Y.; Henique, C.; Pawlak, A.; Audard, V.; Ollero, M.; Guigonis, V.; et al. NEPHRUTIX: A randomized, double-blind, placebo vs Rituximab-controlled trial assessing T-cell subset changes in Minimal Change Nephrotic Syndrome. J. Autoimmun. 2018, 88, 91–102. [Google Scholar] [CrossRef]
- Colucci, M.; Oniszczuk, J.; Vivarelli, M.; Audard, V. B-Cell Dysregulation in Idiopathic Nephrotic Syndrome: What We Know and What We Need to Discover. Front. Immunol. 2022, 13, 823204. [Google Scholar] [CrossRef]
- Bertelli, R.; Bonanni, A.; Di Donato, A.; Cioni, M.; Ravani, P.; Ghiggeri, G.M. Regulatory T cells and minimal change nephropathy: In the midst of a complex network. Clin. Exp. Immunol. 2016, 183, 166–174. [Google Scholar] [CrossRef]
- Qi, J.; Liu, C.; Bai, Z.; Li, X.; Yao, G. T follicular helper cells and T follicular regulatory cells in autoimmune diseases. Front. Immunol. 2023, 14, 1178792. [Google Scholar] [CrossRef]
- Reese, S.R.; Wilson, N.A.; Huang, Y.; Ptak, L.; Degner, K.R.; Xiang, D.; Redfield, R.R.; Zhong, W.; Panzer, S.E. B-cell Deficiency Attenuates Transplant Glomerulopathy in a Rat Model of Chronic Active Antibody-mediated Rejection. Transplantation 2021, 105, 1516–1529. [Google Scholar] [CrossRef]
- Doublier, S.; Zennaro, C.; Musante, L.; Spatola, T.; Candiano, G.; Bruschi, M.; Besso, L.; Cedrino, M.; Carraro, M.; Ghiggeri, G.M.; et al. Soluble CD40 ligand directly alters glomerular permeability and may act as a circulating permeability factor in FSGS. PLoS ONE 2017, 12, e0188045. [Google Scholar] [CrossRef]
- Kitsou, K.; Askiti, V.; Mitsioni, A.; Spoulou, V. The immunopathogenesis of idiopathic nephrotic syndrome: A narrative review of the literature. Eur. J. Pediatr. 2022, 181, 1395–1404. [Google Scholar] [CrossRef] [PubMed]
- Morath, C.; Schaier, M.; Ibrahim, E.; Wang, L.; Kleist, C.; Opelz, G.; Süsal, C.; Ponath, G.; Aly, M.; Alvarez, C.M.; et al. Induction of Long-Lasting Regulatory B Lymphocytes by Modified Immune Cells in Kidney Transplant Recipients. J. Am. Soc. Nephrol. 2023, 34, 160–174. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Tan, X.; Dong, S.; Wang, M.; Wu, D.; Zhang, G.; Chen, X.; Wang, M.; Yang, H.; Li, Q. The Role of IL-10-Producing Regulatory B Cells in Children with Primary Nephrotic Syndrome. Nephrology 2025, 30, e70008. [Google Scholar] [CrossRef] [PubMed]
- Roca, N.; Martinez, C.; Jatem, E.; Madrid, A.; Lopez, M.; Segarra, A. Activation of the acute inflammatory phase response in idiopathic nephrotic syndrome: Association with clinicopathological phenotypes and with response to corticosteroids. Clin. Kidney J. 2021, 14, 1207–1215. [Google Scholar] [CrossRef]
- Zhang, F.; Li, P.; Shan, Y.; Lai, Z.; Hou, S.; Xiong, Z.; Xiong, Z.; Huang, X.; Zheng, F. Unraveling the proteomic landscape of fibrosis in lupus nephritis through CI-based analysis. Clin. Rheumatol. 2024, 43, 3551–3564. [Google Scholar] [CrossRef]
- Wang, Y.M.; Shaw, K.; Zhang, G.Y.; Chung, E.Y.M.; Hu, M.; Cao, Q.; Wang, Y.; Zheng, G.; Wu, H.; Chadban, S.J.; et al. Interleukin-33 Exacerbates IgA Glomerulonephritis in Transgenic Mice Overexpressing B Cell Activating Factor. J. Am. Soc. Nephrol. 2022, 33, 966–984. [Google Scholar] [CrossRef]
- Chan, E.Y.-H.; Yap, D.Y.-H.; Colucci, M.; Ma, A.L.-T.; Parekh, R.S.; Tullus, K. Use of Rituximab in Childhood Idiopathic Nephrotic Syndrome. Clin. J. Am. Soc. Nephrol. 2023, 18, 533–548. [Google Scholar] [CrossRef]
- Parmentier, C.; Delbet, J.-D.; Decramer, S.; Boyer, O.; Hogan, J.; Ulinski, T. Immunoglobulin serum levels in rituximab-treated patients with steroid-dependent nephrotic syndrome. Pediatr. Nephrol. 2020, 35, 455–462. [Google Scholar] [CrossRef]
- Sinha, A.; Mathew, G.; Arushi, A.; Govindarajan, S.; Ghanapriya, K.; Grewal, N.; Rai, K.; Brijwal, M.; Kalluru, S.L.; Tewari, P.; et al. Sequential rituximab therapy sustains remission of nephrotic syndrome but carries high risk of adverse effects. Nephrol. Dial. Transplant 2023, 38, 939–949. [Google Scholar] [CrossRef] [PubMed]
- Iijima, K.; Sako, M.; Nozu, K.; Mori, R.; Tuchida, N.; Kamei, K.; Miura, K.; Aya, K.; Nakanishi, K.; Ohtomo, Y.; et al. Rituximab for childhood-onset, complicated, frequently relapsing nephrotic syndrome or steroid-dependent nephrotic syndrome: A multicentre, double-blind, randomised, placebo-controlled trial. Lancet 2014, 384, 1273–1281. [Google Scholar] [CrossRef] [PubMed]
- Ruggenenti, P.; Ruggiero, B.; Cravedi, P.; Vivarelli, M.; Massella, L.; Marasà, M.; Chianca, A.; Rubis, N.; Ene-Iordache, B.; Rudnicki, M.; et al. Rituximab in steroid-dependent or frequently relapsing idiopathic nephrotic syndrome. J. Am. Soc. Nephrol. 2014, 25, 850–863. [Google Scholar] [CrossRef] [PubMed]
- Ravani, P.; Lugani, F.; Drovandi, S.; Caridi, G.; Angeletti, A.; Ghiggeri, G.M. Rituximab vs Low-Dose Mycophenolate Mofetil in Recurrence of Steroid-Dependent Nephrotic Syndrome in Children and Young Adults: A Randomized Clinical Trial. JAMA Pediatr. 2021, 175, 631–632. [Google Scholar] [CrossRef]
- Basu, B.; Sander, A.; Roy, B.; Preussler, S.; Barua, S.; Mahapatra, T.K.S.; Schaefer, F. Efficacy of Rituximab vs Tacrolimus in Pediatric Corticosteroid-Dependent Nephrotic Syndrome: A Randomized Clinical Trial. JAMA Pediatr. 2018, 172, 757–764. [Google Scholar] [CrossRef]
- Kari, J.A.; Alhasan, K.A.; Albanna, A.S.; Safdar, O.Y.; Shalaby, M.A.; Böckenhauer, D. Rituximab versus cyclophosphamide as first steroid-sparing agent in childhood frequently relapsing and steroid-dependent nephrotic syndrome. Pediatr. Nephrol. 2020, 35, 1445–1453. [Google Scholar] [CrossRef]
- Chan, E.Y.-H.; Yu, E.L.M.; Angeletti, A.; Arslan, Z.; Basu, B.; Boyer, O.; Chan, C.Y.; Colucci, M.; Dorval, G.; Dossier, C.; et al. Long-Term Efficacy and Safety of Repeated Rituximab to Maintain Remission in Idiopathic Childhood Nephrotic Syndrome: An International Study. J. Am. Soc. Nephrol. 2022, 33, 1193–1207. [Google Scholar] [CrossRef]
- Gauckler, P.; Matyjek, A.; Kapsia, S.; Marinaki, S.; Quintana, L.F.; Diaz, M.M.; King, C.; Griffin, S.; Ramachandran, R.; Odler, B.; et al. Long-Term Outcomes of Rituximab-Treated Adult Patients with Podocytopathies. J. Am. Soc. Nephrol. 2025, 36, 668–678. [Google Scholar] [CrossRef]
- Xue, C.; Yang, B.; Xu, J.; Zhou, C.; Zhang, L.; Gao, X.; Dai, B.; Yu, S.; Mao, Z.; Mei, C.; et al. Efficacy and safety of rituximab in adult frequent-relapsing or steroid-dependent minimal change disease or focal segmental glomerulosclerosis: A systematic review and meta-analysis. Clin. Kidney J. 2020, 14, 1042–1054. [Google Scholar] [CrossRef]
- Chan, E.Y.-H.; Sinha, A.; Yu, E.L.M.; Akhtar, N.; Angeletti, A.; Bagga, A.; Banerjee, S.; Boyer, O.; Chan, C.-Y.; Francis, A.; et al. An international, multi-center study evaluated rituximab therapy in childhood steroid-resistant nephrotic syndrome. Kidney Int. 2024, 106, 1146–1157. [Google Scholar] [CrossRef]
- Nozu, K.; Sako, M.; Tanaka, S.; Kano, Y.; Ohwada, Y.; Morohashi, T.; Hamada, R.; Ohtsuka, Y.; Oka, M.; Kamei, K.; et al. Rituximab in combination with cyclosporine and steroid pulse therapy for childhood-onset multidrug-resistant nephrotic syndrome: A multicenter single-arm clinical trial (JSKDC11 trial). Clin. Exp. Nephrol. 2024, 28, 337–348. [Google Scholar] [CrossRef] [PubMed]
- Roccatello, D.; Sciascia, S.; Rossi, D.; Alpa, M.; Naretto, C.; Radin, M.; Barreca, A.; Fenoglio, R.; Baldovino, S.; Menegatti, E.; et al. High-Dose Rituximab Ineffective for Focal Segmental Glomerulosclerosis: A Long-Term Observation Study. Am. J. Nephrol. 2017, 46, 108–113. [Google Scholar] [CrossRef]
- Al Shamsi, H.R.; Shaheen, I.; Aziz, D. Management of recurrent focal segmental glomerulosclerosis (FSGS) post renal transplantation. Transplant Rev. 2022, 36, 100675. [Google Scholar] [CrossRef] [PubMed]
- Magnasco, A.; Ravani, P.; Edefonti, A.; Murer, L.; Ghio, L.; Belingheri, M.; Benetti, E.; Murtas, C.; Messina, G.; Massella, L.; et al. Rituximab in children with resistant idiopathic nephrotic syndrome. J. Am. Soc. Nephrol. 2012, 23, 1117–1124. [Google Scholar] [CrossRef] [PubMed]
- Sinha, A.; Bhatia, D.; Gulati, A.; Rawat, M.; Dinda, A.K.; Hari, P.; Bagga, A. Efficacy and safety of rituximab in children with difficult-to-treat nephrotic syndrome. Nephrol. Dial. Transplant 2015, 30, 96–106. [Google Scholar] [CrossRef]
- Kamei, K.; Ishikura, K.; Sako, M.; Ito, S.; Nozu, K.; Iijima, K. Rituximab therapy for refractory steroid-resistant nephrotic syndrome in children. Pediatr. Nephrol. 2020, 35, 17–24. [Google Scholar] [CrossRef]
- Fujinaga, S.; Nishino, T.; Endo, S.; Umeda, C.; Watanabe, Y.; Nakagawa, M. Unfavorable impact of anti-rituximab antibodies on clinical outcomes in children with complicated steroid-dependent nephrotic syndrome. Pediatr. Nephrol. 2020, 35, 2003–2008. [Google Scholar] [CrossRef] [PubMed]
- Boyer-Suavet, S.; Andreani, M.; Lateb, M.; Savenkoff, B.; Brglez, V.; Benzaken, S.; Bernard, G.; Nachman, P.H.; Esnault, V.; Seitz-Polski, B. Neutralizing Anti-Rituximab Antibodies and Relapse in Membranous Nephropathy Treated With Rituximab. Front. Immunol. 2020, 10, 3069. [Google Scholar] [CrossRef]
- Alghazali, T.; Saleh, R.O.; Uthirapathy, S.; Ballal, S.; Abullais, S.S.; Kalia, R.; Arya, R.; Sharma, R.; Kumar, A.; Abdulamer, R.S. Rheumatoid arthritis unmasked: The power of B cell depletion therapy. Mol. Biol. Rep. 2025, 52, 254. [Google Scholar] [CrossRef]
- Tur, C.; Eckstein, M.; Velden, J.; Rauber, S.; Bergmann, C.; Auth, J.; Bucci, L.; Corte, G.; Hagen, M.; Wirsching, A. CD19-CAR T-cell therapy induces deep tissue depletion of B cells. Ann. Rheum. Dis. 2025, 84, 106–114. [Google Scholar] [CrossRef]
- Reddy, V.R.; Pepper, R.J.; Shah, K.; Cambridge, G.; Henderson, S.R.; Klein, C.; Kell, L.; Taylor, S.J.; Isenberg, D.A.; Cragg, M.S. Disparity in peripheral and renal B-cell depletion with rituximab in systemic lupus erythematosus: An opportunity for obinutuzumab? Rheumatology 2022, 61, 2894–2904. [Google Scholar] [CrossRef]
- Hu, M.; Zhang, T.; Liu, B.; Guo, Q.; Zhao, B.; Lin, J.; Lv, Z.; Wang, R. Association of rituximab use with adverse events in adults with lymphoma or autoimmune disease: A single center experience. Front. Med. 2025, 12, 1567886. [Google Scholar] [CrossRef] [PubMed]
- Paul, F.; Cartron, G. Infusion-related reactions to rituximab: Frequency, mechanisms and predictors. Expert Rev. Clin. Immunol. 2019, 15, 383–389. [Google Scholar] [CrossRef]
- Hainsworth, J.D. Safety of rituximab in the treatment of B cell malignancies: Implications for rheumatoid arthritis. Arthritis Res. Ther. 2003, 5, S12–S16. [Google Scholar] [CrossRef] [PubMed]
- Bar-Or, A.; Wiendl, H.; Montalban, X.; Alvarez, E.; Davydovskaya, M.; Delgado, S.R.; Evdoshenko, E.P.; Giedraitiene, N.; Gross-Paju, K.; Haldre, S.; et al. Rapid and sustained B-cell depletion with subcutaneous ofatumumab in relapsing multiple sclerosis: APLIOS, a randomized phase-2 study. Mult. Scler. 2022, 28, 910–924. [Google Scholar] [CrossRef]
- Basu, B. Ofatumumab for rituximab-resistant nephrotic syndrome. N. Engl. J. Med. 2014, 370, 1268–1270. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-S.; Liverman, R.S.; Garro, R.; George, R.P.; Glumova, A.; Karp, A.; Jernigan, S.; Warshaw, B. Ofatumumab for the treatment of childhood nephrotic syndrome. Pediatr. Nephrol. 2017, 32, 835–841. [Google Scholar] [CrossRef]
- Podestà, M.A.; Trillini, M.; Portalupi, V.; Gennarini, A.; Tomatis, F.; Villa, A.; Perna, A.; Rubis, N.; Remuzzi, G.; Ruggenenti, P. Ofatumumab in Rituximab-Resistant and Rituximab-Intolerant Patients With Primary Membranous Nephropathy: A Case Series. Am. J. Kidney Dis. 2024, 83, 340–349. [Google Scholar] [CrossRef]
- Bernard, J.; Lalieve, F.; Sarlat, J.; Perrin, J.; Dehoux, L.; Boyer, O.; Godron-Dubrasquet, A.; Harambat, J.; Decramer, S.; Caillez, M.; et al. Ofatumumab treatment for nephrotic syndrome recurrence after pediatric renal transplantation. Pediatr. Nephrol. 2020, 35, 1499–1506. [Google Scholar] [CrossRef]
- Ravani, P.; Colucci, M.; Bruschi, M.; Vivarelli, M.; Cioni, M.; DiDonato, A.; Cravedi, P.; Lugani, F.; Antonini, F.; Prunotto, M.; et al. Human or Chimeric Monoclonal Anti-CD20 Antibodies for Children with Nephrotic Syndrome: A Superiority Randomized Trial. J. Am. Soc. Nephrol. 2021, 32, 2652–2663. [Google Scholar] [CrossRef]
- Colucci, M.; Angeletti, A.; Zotta, F.; Carsetti, R.; Lugani, F.; Ravà, L.; Ravani, P.; Emma, F.; Ghiggeri, G.M.; Vivarelli, M. Age and memory B cells at baseline are associated with risk of relapse and memory B-cell reappearance following anti-CD20 treatment in pediatric frequently-relapsing/steroid-dependent nephrotic syndrome. Kidney Int. 2023, 104, 577–586. [Google Scholar] [CrossRef] [PubMed]
- Ravani, P.; Pisani, I.; Bodria, M.; Caridi, G.; Degl’Innocenti, M.L.; Ghiggeri, G.M. Low-dose ofatumumab for multidrug-resistant nephrotic syndrome in children: A randomized placebo-controlled trial. Pediatr. Nephrol. 2020, 35, 997–1003. [Google Scholar] [CrossRef]
- Bonanni, A.; Calatroni, M.; D’Alessandro, M.; Signa, S.; Bertelli, E.; Cioni, M.; Di Marco, E.; Biassoni, R.; Caridi, G.; Ingrasciotta, G.; et al. Adverse events linked with the use of chimeric and humanized anti-CD20 antibodies in children with idiopathic nephrotic syndrome. Br. J. Clin. Pharmacol. 2018, 84, 1238–1249. [Google Scholar] [CrossRef]
- Marinov, A.D.; Wang, H.; Bastacky, S.I.; van Puijenbroek, E.; Schindler, T.; Speziale, D.; Perro, M.; Klein, C.; Nickerson, K.M.; Shlomchik, M.J. The Type II Anti-CD20 Antibody Obinutuzumab (GA101) Is More Effective Than Rituximab at Depleting B Cells and Treating Disease in a Murine Lupus Model. Arthritis Rheumatol. 2021, 73, 826–836. [Google Scholar] [CrossRef]
- Freeman, C.L.; Sehn, L.H. A tale of two antibodies: Obinutuzumab versus rituximab. Br. J. Haematol. 2018, 182, 29–45. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Pan, Y.; Han, Q.; Xu, J.; Wang, J.; Lei, X.; Chen, L.; Wang, Y.; Ren, P.; Lan, L.; et al. Obinutuzumab May Be an Effective and Safe Option for Adult Minimal Change Disease and Focal Segmental Glomerulosclerosis Patients after Multitarget Therapy Including Rituximab. Am. J. Nephrol. 2025, 56, 111–120. [Google Scholar] [CrossRef]
- Dossier, C.; Bonneric, S.; Baudouin, V.; Kwon, T.; Prim, B.; Cambier, A.; Couderc, A.; Moreau, C.; Deschenes, G.; Hogan, J. Obinutuzumab in Frequently Relapsing and Steroid-Dependent Nephrotic Syndrome in Children. Clin. J. Am. Soc. Nephrol. 2023, 18, 1555–1562. [Google Scholar] [CrossRef]
- Fujinaga, S.; Saito, K.; Watanabe, Y.; Nakagawa, M.; Sakuraya, K. Low-dose obinutuzumab for steroid-dependent nephrotic syndrome complicated by recurrent rituximab-induced serum sickness and anti-rituximab antibodies. Pediatr. Nephrol. 2025, 40, 2493–2495. [Google Scholar] [CrossRef]
- Xu, M.; Wang, Y.; Wu, M.; Chen, R.; Zhao, W.; Li, M.; Hao, C.M.; Xie, Q. Obinutuzumab versus rituximab for the treatment of refractory primary membranous nephropathy. Nephrol. Dial. Transplant 2025, 40, 978–986. [Google Scholar] [CrossRef] [PubMed]
- Sessa, C.; Galeano, D.; Zanoli, L.; Delsante, M.; Rossi, G.M.; Morale, W. Obinutuzumab in membranous nephropathy: A potential game-changer in treatment. Drugs Context 2025, 14, 2024-9-1. [Google Scholar] [CrossRef] [PubMed]
- Boldrini, V.O.; Mader, S.; Kümpfel, T.; Meinl, E. Ublituximab: A new FDA-approved anti-CD20 mAb for relapsing forms of multiple sclerosis. Mult. Scler. Relat. Disord. 2023, 75, 104733. [Google Scholar] [CrossRef] [PubMed]
- Jakimovski, D.; Weinstock-Guttman, B.; Zivadinov, R. Ublituximab-xiiy as a treatment option for relapsing multiple sclerosis. Expert Rev. Neurother. 2023, 23, 1053–1061. [Google Scholar] [CrossRef]
- Mukhtar, H.; Yasmeen, U.; Siddiqa, S.; Sarfraz, Z.; Sarfraz, A. Outcomes of Ublituximab compared to Teriflunomide for relapsing multiple sclerosis: A meta-analysis. Mult. Scler. Relat. Disord. 2022, 65, 104002. [Google Scholar] [CrossRef]
- Lunning, M.; Vose, J.; Nastoupil, L.; Fowler, N.; Burger, J.A.; Wierda, W.G.; Schreeder, M.T.; Siddiqi, T.; Flowers, C.R.; Cohen, J.B.; et al. Ublituximab and umbralisib in relapsed/refractory B-cell non-Hodgkin lymphoma and chronic lymphocytic leukemia. Blood 2019, 134, 1811–1820. [Google Scholar] [CrossRef]
- de Weers, M.; Tai, Y.-T.; van der Veer, M.S.; Bakker, J.M.; Vink, T.; Jacobs, D.C.; Oomen, L.A.; Peipp, M.; Valerius, T.; Slootstra, J.W.; et al. Daratumumab, a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors. J. Immunol. 2011, 186, 1840–1848. [Google Scholar] [CrossRef] [PubMed]
- Overdijk, M.B.; Verploegen, S.; Bögels, M.; van Egmond, M.; Lammerts van Bueren, J.J.; Mutis, T.; Groen, R.W.; Breij, E.; Martens, A.C.M.; Bleeker, W.K.; et al. Antibody-mediated phagocytosis contributes to the anti-tumor activity of the therapeutic antibody daratumumab in lymphoma and multiple myeloma. MAbs 2015, 7, 311–321. [Google Scholar] [CrossRef]
- Krejcik, J.; Casneuf, T.; Nijhof, I.S.; Verbist, B.; Bald, J.; Plesner, T.; Syed, K.; Liu, K.; van de Donk, N.W.; Weiss, B.M.; et al. Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma. Blood 2016, 128, 384–394. [Google Scholar] [CrossRef]
- Gao, Y.; Li, L.; Zheng, Y.; Zhang, W.; Niu, B.; Li, Y. Monoclonal antibody Daratumumab promotes macrophage-mediated anti-myeloma phagocytic activity via engaging FC gamma receptor and activation of macrophages. Mol. Cell. Biochem. 2022, 477, 2015–2024. [Google Scholar] [CrossRef]
- Doberer, K.; Kläger, J.; Gualdoni, G.A.; Mayer, K.A.; Eskandary, F.; Farkash, E.A.; Agis, H.; Reiter, T.; Reindl-Schwaighofer, R.; Wahrmann, M.; et al. CD38 Antibody Daratumumab for the Treatment of Chronic Active Antibody-mediated Kidney Allograft Rejection. Transplantation 2021, 105, 451–457. [Google Scholar] [CrossRef]
- Rovin, B.H.; Ronco, P.M.; Wetzels, J.F.M.; Adler, S.G.; Ayoub, I.; Zaoui, P.; Han, S.H.; Dudani, J.S.; Gilbert, H.N.; Patel, U.D.; et al. Phase 1b/2a Study Assessing the Safety and Efficacy of Felzartamab in Anti-Phospholipase A2 Receptor Autoantibody-Positive Primary Membranous Nephropathy. Kidney Int. Rep. 2024, 9, 2635–2647. [Google Scholar] [CrossRef] [PubMed]
- Hiepe, F.; Dörner, T.; Hauser, A.E.; Hoyer, B.F.; Mei, H.; Radbruch, A. Long-lived autoreactive plasma cells drive persistent autoimmune inflammation. Nat. Rev. Rheumatol. 2011, 7, 170–178. [Google Scholar] [CrossRef]
- Hiepe, F.; Radbruch, A. Plasma cells as an innovative target in autoimmune disease with renal manifestations. Nat. Rev. Nephrol. 2016, 12, 232–240. [Google Scholar] [CrossRef]
- Roccatello, D.; Fenoglio, R.; Caniggia, I.; Kamgaing, J.; Naretto, C.; Cecchi, I.; Rubini, E.; Rossi, D.; De Simone, E.; Del Vecchio, G.; et al. Daratumumab monotherapy for refractory lupus nephritis. Nat. Med. 2023, 29, 2041–2047. [Google Scholar] [CrossRef] [PubMed]
- Chiarenza, D.S.; Mancini, R.; Bigatti, C.; Caridi, G.; Consolaro, A.; Natoli, V.; Mortari, G.; Kajana, X.; Lugani, F.; Gattorno, M.; et al. Case report: Single infusion of combined anti-CD20 and anti-CD38 monoclonal antibodies in pediatric refractory lupus nephritis. Front. Immunol. 2025, 16, 1525892. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.; Rovin, B.H. Expert Perspective: An Approach to Refractory Lupus Nephritis. Arthritis Rheumatol. 2022, 74, 915–926. [Google Scholar] [CrossRef]
- Angeletti, A.; Bin, S.; Kajana, X.; Spinelli, S.; Bigatti, C.; Caridi, G.; Candiano, G.; Lugani, F.; Verrina, E.E.; La Porta, E.; et al. Combined Rituximab and Daratumumab Treatment in Difficult-to-Treat Nephrotic Syndrome Cases. Kidney Int. Rep. 2024, 9, 1892–1896. [Google Scholar] [CrossRef]
- Dossier, C.; Prim, B.; Moreau, C.; Kwon, T.; Maisin, A.; Nathanson, S.; De Gennes, C.; Barsotti, K.; Bourrassi, A.; Hogan, J.; et al. A global antiB cell strategy combining obinutuzumab and daratumumab in severe pediatric nephrotic syndrome. Pediatr. Nephrol. 2021, 36, 1175–1182. [Google Scholar] [CrossRef]
- Melenhorst, J.J.; Chen, G.M.; Wang, M.; Porter, D.L.; Chen, C.; Collins, M.A.; Gao, P.; Bandyopadhyay, S.; Sun, H.; Zhao, Z.; et al. Decade-long leukaemia remissions with persistence of CD4+ CAR T cells. Nature 2022, 602, 503–509. [Google Scholar] [CrossRef]
- Anagnostou, T.; Riaz, I.B.; Hashmi, S.K.; Murad, M.H.; Kenderian, S.S. Anti-CD19 chimeric antigen receptor T-cell therapy in acute lymphocytic leukaemia: A systematic review and meta-analysis. Lancet Haematol. 2020, 7, e816–e826. [Google Scholar] [CrossRef] [PubMed]
- Jogalekar, M.P.; Rajendran, R.L.; Khan, F.; Dmello, C.; Gangadaran, P.; Ahn, B.-C. CAR T-Cell-Based gene therapy for cancers: New perspectives, challenges, and clinical developments. Front. Immunol. 2022, 13, 925985. [Google Scholar] [CrossRef] [PubMed]
- Elahi, R.; Khosh, E.; Tahmasebi, S.; Esmaeilzadeh, A. Immune Cell Hacking: Challenges and Clinical Approaches to Create Smarter Generations of Chimeric Antigen Receptor T Cells. Front. Immunol. 2018, 9, 1717. [Google Scholar] [CrossRef] [PubMed]
- Levine, B.L.; Miskin, J.; Wonnacott, K.; Keir, C. Global Manufacturing of CAR T Cell Therapy. Mol. Ther.—Methods Clin. Dev. 2017, 4, 92–101. [Google Scholar] [CrossRef]
- Au, R. Immunooncology: Can the Right Chimeric Antigen Receptors T-Cell Design Be Made to Cure All Types of Cancers and Will It Be Covered? J. Pharm. 2017, 2017, 7513687. [Google Scholar] [CrossRef]
- Schett, G.; Mackensen, A.; Mougiakakos, D. CAR T-cell therapy in autoimmune diseases. Lancet 2023, 402, 2034–2044. [Google Scholar] [CrossRef]
- Ye, Q.; Zhou, C.; Wang, D.; Fu, H.; Wang, J.; Mao, J. Seven novel podocyte autoantibodies were identified to diagnosis a new disease subgroup-autoimmune Podocytopathies. Clin. Immunol. 2021, 232, 108869. [Google Scholar] [CrossRef]
- Ye, Q.; Lan, B.; Liu, H.; Persson, P.B.; Lai, E.Y.; Mao, J. A critical role of the podocyte cytoskeleton in the pathogenesis of glomerular proteinuria and autoimmune podocytopathies. Acta Physiol. 2022, 235, e13850. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Gao, D.; Liu, D.; Liu, Z. Telitacicept for autoimmune nephropathy. Front. Immunol. 2023, 14, 1169084. [Google Scholar] [CrossRef]
- Chen, R.; Fu, R.; Lin, Z.; Huang, C.; Huang, W. The efficacy and safety of telitacicept for the treatment of systemic lupus erythematosus: A real life observational study. Lupus 2022, 32, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Lafayette, R.; Barbour, S.; Israni, R.; Wei, X.; Eren, N.; Floege, J.; Jha, V.; Kim, S.G.; Maes, B.; Phoon, R.K.S.; et al. A phase 2b, randomized, double-blind, placebo-controlled, clinical trial of atacicept for treatment of IgA nephropathy. Kidney Int. 2024, 105, 1306–1315. [Google Scholar] [CrossRef]
- Zhang, L.; Jin, H.; Wang, D.; Wang, Y. Case report: Successful treatment of refractory membranous nephropathy with telitacicept. Front. Immunol. 2023, 14, 1268929. [Google Scholar] [CrossRef]
- Huang, R.; Yin, Y.; Zhao, Z.; Dong, X.; Chen, C.; Lin, H.; Tao, Y.; Peng, S.; Wen, S.; Li, B.; et al. Telitacicept and Tacrolimus Synergy in Managing Refractory Primary Membranous Nephropathy: Case Insights. Am. J. Case Rep. 2025, 26, e946727. [Google Scholar] [CrossRef]
- Li, Q.-Y.; Liu, F.; Li, X.; Kang, M.; Bai, L.; Tong, T.; Zheng, C.; Jin, Y.; Zhang, X.; Xie, Y.; et al. Single cell analysis identified IFN signaling activation contributes to the pathogenesis of pediatric steroid-sensitive nephrotic syndrome. Biomark. Res. 2025, 13, 77. [Google Scholar] [CrossRef]
- Hagen, M.; Bucci, L.; Böltz, S.; Nöthling, D.M.; Rothe, T.; Anoshkin, K.; Raimondo, M.G.; Tur, C.; Wirsching, A.; Wacker, J.; et al. BCMA-Targeted T-Cell-Engager Therapy for Autoimmune Disease. N. Engl. J. Med. 2024, 391, 867–869. [Google Scholar] [CrossRef]
- Cech, P.; Skórka, K.; Dziki, L.; Giannopoulos, K. T-Cell Engagers—The Structure and Functional Principle and Application in Hematological Malignancies. Cancers 2024, 16, 1580. [Google Scholar] [CrossRef]
- Subklewe, M.; Magno, G.; Gebhardt, C.; Bücklein, V.; Szelinski, F.; Arévalo, H.J.R.; Hänel, G.; Dörner, T.; Zugmaier, G.; von Bergwelt-Baildon, M.; et al. Application of blinatumomab, a bispecific anti-CD3/CD19 T-cell engager, in treating severe systemic sclerosis: A case study. Eur. J. Cancer 2024, 204, 114071. [Google Scholar] [CrossRef] [PubMed]
- Perico, L.; Casiraghi, F.; Sônego, F.; Todeschini, M.; Corna, D.; Cerullo, D.; Pezzotta, A.; Isnard-Petit, P.; Faravelli, S.; Forneris, F.; et al. Bi-specific autoantigen-T cell engagers as targeted immunotherapy for autoreactive B cell depletion in autoimmune diseases. Front. Immunol. 2024, 15, 1335998. [Google Scholar] [CrossRef]
- Ravani, P.; Lugani, F.; Pisani, I.; Bodria, M.; Piaggio, G.; Bartolomeo, D.; Prunotto, M.; Ghiggeri, G.M. Rituximab for very low dose steroid-dependent nephrotic syndrome in children: A randomized controlled study. Pediatr. Nephrol. 2020, 35, 1437–1444. [Google Scholar] [CrossRef] [PubMed]
- Dahan, K.; Debiec, H.; Plaisier, E.; Cachanado, M.; Rousseau, A.; Wakselman, L.; Michel, P.A.; Mihout, F.; Dussol, B.; Matignon, M.; et al. Rituximab for Severe Membranous Nephropathy: A 6-Month Trial with Extended Follow-Up. J. Am. Soc. Nephrol. 2017, 28, 348–358. [Google Scholar] [CrossRef]
- Hansrivijit, P.; Cheungpasitporn, W.; Thongprayoon, C.; Ghahramani, N. Rituximab therapy for focal segmental glomerulosclerosis and minimal change disease in adults: A systematic review and meta-analysis. BMC Nephrol. 2020, 21, 134. [Google Scholar] [CrossRef] [PubMed]
- Ravani, P.; Rossi, R.; Bonanni, A.; Quinn, R.R.; Sica, F.; Bodria, M.; Pasini, A.; Montini, G.; Edefonti, A.; Belingheri, M.; et al. Rituximab in Children with Steroid-Dependent Nephrotic Syndrome: A Multicenter, Open-Label, Noninferiority, Randomized Controlled Trial. J. Am. Soc. Nephrol. 2015, 26, 2259–2266. [Google Scholar] [CrossRef]
- Ahn, Y.H.; Kim, S.H.; Han, K.H.; Choi, H.J.; Cho, H.; Lee, J.W.; Shin, J.I.; Cho, M.H.; Lee, J.H.; Park, Y.S.; et al. Efficacy and safety of rituximab in childhood-onset, difficult-to-treat nephrotic syndrome: A multicenter open-label trial in Korea. Medicine 2018, 97, e13157. [Google Scholar] [CrossRef]
- Bonanni, A.; Rossi, R.; Murtas, C.; Ghiggeri, G.M. Low-dose ofatumumab for rituximab-resistant nephrotic syndrome. BMJ Case Rep. 2015, 2015, bcr2015210208. [Google Scholar] [CrossRef]
- Liu, J.; Shen, Q.; Xie, L.; Wang, J.; Li, Y.; Chen, J.; Fang, X.; Tang, X.; Qian, B.; Xu, H. Protocol for an open-label, single-arm, multicentre clinical study to evaluate the efficacy and safety of rituximab in the first episode of paediatric idiopathic nephrotic syndrome. BMJ Open 2022, 12, e064216. [Google Scholar] [CrossRef] [PubMed]
- Basu, B.; Preussler, S.; Sander, A.; Mahapatra, T.K.S.; Schaefer, F. Randomized clinical trial to compare efficacy and safety of repeated courses of rituximab to single-course rituximab followed by maintenance mycophenolate-mofetil in children with steroid dependent nephrotic syndrome. BMC Nephrol. 2020, 21, 520. [Google Scholar] [CrossRef]
Drugs | Indications | Approved Regions | Future Research |
---|---|---|---|
Rituximab | Adults with B cell malignancies (e.g., CLL,ALL) and autoimmune diseases (e.g., RA), pediatric CD20-positive ALL,MCD(FRNS/SDNS) | Worldwide, including the US (FDA), EU (EMA), and China (NMPA). | Focuses on personalized dosing; predictive biomarkers; combination therapies with novel agents; long-term safety monitoring. |
Ofatumumab | Adult patients with relapsing MS and CLL, but no widely approved indications in children. | Worldwide, including the US (FDA), EU (EMA), and China (NMPA). | Expansion into pediatric populations; optimization of treatment protocols; long-term safety monitoring. |
Obinutuzumab | Adult populations, for previously untreated CLL and follicular lymphoma, in combination with chemotherapy. | Worldwide, including the US (FDA), EU (EMA), and China (NMPA). | Potential in pediatric malignancies; subcutaneous formulation optimization; combination strategies with novel agents; long-term management of immune reconstitution and infection risks. |
Blinatumomab | Pediatric and adult patients with relapsed or refractory B cell precursor ALL, and as consolidation therapy for patients with minimal residual disease-positive ALL. | Worldwide, including the US (FDA), EU (EMA), and China (NMPA). | Prioritize administration optimization; earlier-line efficacy evaluation; combination strategies with novel immunotherapies; and long-term safety monitoring. |
Daratumumab | Adult patients with multiple myeloma. Pediatric applications remain investigational in relapsed/refractory acute leukemias. | Worldwide, including the US (FDA), EU (EMA), and China (NMPA). | Prioritize pediatric CD38+ malignancy trials; subcutaneous formulation development; novel immunotherapy combinations; enhancing management of adverse reactions. |
CAR-T | Tisagenlecleucel is approved for patients up to 25 years of age with B cell precursor ALL that is refractory or in second or later relapse, while axicabtagene ciloleucel and brexucabtagene autoleucel are approved for adult patients with specific types of large B cell lymphoma and mantle cell lymphoma. | In major medical markets including the US(FDA), EU(EMA), Japan (PMDA), and China (NMPA), though specific approved indications may vary by region. | Expanding applications to solid tumors and earlier treatment lines; developing allogeneic “off-the-shelf” platforms to enhance accessibility; improving toxicity management for CRS and neurotoxicity; optimizing manufacturing and cost structure; establishing long-term safety and efficacy surveillance. |
Telitacicept | Adult patients with SLE. While not yet approved for pediatric use, early clinical investigations are exploring its potential in childhood-onset autoimmune conditions. | Approved only in China (NMPA). | Pediatric autoimmune disease trials; expand indications for B cell mediated disorders; develop predictive biomarkers for treatment response; establish long-term immunologic monitoring protocols to assess infection risks. |
Ublituximab | Adult patients with relapsing forms of MS. Not currently approved for pediatric use in any region. | Approval primarily in US(FDA) | Pediatric autoimmunity applications; dosing optimization; long-term monitoring of humoral immunity and infection risks; and exploration of combination strategies with novel immunomodulatory agents. |
Drug/Therapy | Mechanism | Safety | Durability of Response | Renal Research |
---|---|---|---|---|
Rituximab | Anti-CD20 mAb; depletes B lymphocytes | Infusion reactions (mild), hypogammaglobulinemia (long-term) | 12–36 months; 30–40% relapse within 2 years (FRNS/SDNS) | [3,27,28,29,30,36,39,55,97,102,103,104,105,106] |
Ofatumumab | 2nd-gen anti-CD20 mAb; higher CD20 affinity, stronger B cell depletion | Fewer infusion reactions vs. rituximab; similar hypogammaglobulinemia risk | 40% maintained efficacy within 2 years (rituximab-resistant MN) A low-dose single infusion was ineffective for MRNS | [30,55,57,107] |
Obinutuzumab | Glycoengineered anti-CD20 mAb; enhanced ADCC | Grade 3–4 infections (15%); frequent infusion reactions | Achieving a 24 month relapse-free survival rate of 68% (FRNS/SDNS) | [62,63,64] |
Daratumumab | Anti-CD38 mAb; targets plasma cells and activated B cells | Thrombocytopenia, infusion reactions, infection risk (respiratory) | Combined with obinutuzumab 60% 2 year relapse-free, median immunosuppressant free duration was 19.1 months (SDNS) | [74,75,79,81,82] |
CAR T Cells | CD19/BCMA-targeted autologous T cells; eliminate pathogenic B/plasma cells | CRS, neurotoxicity, long-term B cell aplasia | No data | No data |
Telitacicept | TACI-Fc fusion protein; inhibits BLyS/APRIL, blocks B cell differentiation | Upper respiratory infections, headache; no severe infusion reactions | Proteinuria IgAN: reduction sustained to 48 weeks | [94,95,96] |
Blinatumomab | Bispecific CD19/CD3 mAb; redirects T cells to kill CD19+ B cells | CRS, neurotoxicity, cytopenias; rarely used outside oncology | No data | No data |
Subtype | Recommended Therapies |
---|---|
MCD | First-line: Rituximab (60–80% remission) Refractory (FRNS/SDNS/SRNS): Ofatumumab/Obinutuzumab/Rituximab + Daratumumab/MDR-SRNS: CAR-T may be considered as a potential therapeutic approach. |
FSGS | First-line: Rituximab (30–50% remission) Refractory: Obinutuzumab/Ofatumumab may be considered as a potential therapeutic approach. Monoclonal gammopathy-related: Daratumumab/CAR-T may be considered as a potential therapeutic approach. |
MN | Preferred: Obinutuzumab (60% remission, faster onset) or Rituximab (40–60%) Emerging: Telitacicept |
IgAN | First-line: Telitacicept (34% improvement in proteinuria) Second-line: Rituximab |
Drug Type | Clinical Trial | N | Study Design | Dose | Status | Phase | ClinicalTrials.gov ID |
---|---|---|---|---|---|---|---|
Rituximab | Rituximab for INS | 30 | RCT | 375 mg/m2 (1 dose) | Completed | 3 | NCT04494438 |
Efficacy and Safety of Rituximab to That of CNIs in Children With Steroid Dependent NS | 120 | RCT | 375 mg/m2 (2–4 dose) | Completed | 3 | NCT02438982 [30] | |
Ofatumumab Versus Rituximab in Children With Steroid and CNIs Dependent Idiopathic | 140 | RCT | 375 mg/m2 (1 dose) | Completed | 2 | NCT02394119 [55] | |
Rituximab in Multirelapsing MCD or FSGS (NEMO) | 24 | Single Group | 375 mg/m2 (1 dose) | Completed | 3 | NCT00981838 [28] | |
Efficacy and Safety of Rituximab in the First Episode of Pediatric Idiopathic | 44 | Single Group | 375 mg/m2 (1 dose) | Completed | 2 | NCT04783675 [108] | |
Compare Efficacy and Safety of Repeated Courses of Rituximab to That of Maintenance Mycophenolate Mofetil Following Single Course of Rituximab Among Children With Steroid Dependent NS (RITURNS II) | 100 | RCT | 375 mg/m2 (3 dose) | Completed | 3 | NCT03899103 [109] | |
Efficacy of Rituximab For the Treatment of CNIs Dependent NS During Childhood (NEPHRUTIX) | 26 | RCT | 375 mg/m2 (2 dose) | Completed | 1–2 | NCT01268033 [12] | |
Clinical Study of Rituximab for the Treatment for Idiopathic MN with NS (PRIME) | 88 | RCT | 500 mg (2–4 dose) | Recruiting | 3 | NCT05914155 | |
Efficacy and Safety of Rituximab Versus Mycophenolate Mofetil in Children With SDNS | 46 | RCT | 375 mg/m2 (2 dose) | Recruiting | 2 | NCT05843968 | |
Study of Rituximab Monotherapy on Children With New-onset NS: A Randomized Controlled Trial (STORM) | 80 | RCT | 375 mg/m2 (4 dose) | Recruiting | 3 | NCT05734794 | |
Rituximab Plus Cyclosporine in Idiopathic MN | 30 | Single Group | 1000 mg (6 dose) | Recruiting | 2 | NCT00977977 | |
Rituximab, Cyclophosphamide, and Corticosteroids in Primary MN | 40 | Single Group | 375 mg/m2 (4 dose) | Recruiting | Not Applicable | NCT05679336 | |
Ofatumumab | Ofatumumab Versus Rituximab in Children With Steroid and CNIs Dependent Idiopathic | 140 | RCT | 1500 mg/1.73 m2 (1 dose) | Completed | 2 | NCT02394119 [55] |
Obinutuzumab | Efficacy and Safety of Obinutuzumab Versus Rituximab in Childhood Steroid Dependant and Frequent Relapsing NS (OBIRINS) | 88 | RCT | 300 mg/1.73 m2 (1 dose) | Recruiting | 1–2 | NCT05786768 |
Daratumumab | Efficacy of Anti-CD20 Ab Associated With Anti-CD38 in the Childhood Multidrug Dependent and Resistant NS | 20 | Single Group | 16 mg /Kg (1 dose) | Recruiting | 2 | NCT05704400 |
CAR T Cells | Study of Therapeutic Efficacy of Anti-CD19 CAR-T Cell Therapy in Patients With MDR-SRNS | 9–18 | Single Group | Three dose groups (0.3 × 105/kg, 1 × 105/kg, 3 × 105/kg) | Recruiting | 1 | NCT06842589 |
Study of Therapeutic Efficacy of CAR-T Cell Therapy in Patients With MDR-SRNS | 18 | Single Group | Three dose groups (0.3 × 105/kg, 1 × 105/kg, 3 × 105/kg) | Recruiting | 1 | NCT06553898 | |
Telitacicept | Study of the Telitacicept in Pediatric Patients With Frequently Relapsing or Steroid Dependent NS (STERN) | 20 | Single Group | 10–20 kg: 40 mg 20–40 kg: 80 mg 40–60 kg: 120 mg ≥60 kg: 160 mg | Recruiting | 3 | NCT06125405 |
Blinatumomab | Blinatumomab for CNI-Resistant/Intolerant SRNS in Children | 6 | Single Group | two 5 day cycles (5 µg/m2/day, maximum dose 9 µg/day) | Recruiting | 1 | NCT06607991 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, Y.; Xie, Y.; Fu, H.; Liu, F.; Mao, J. Anti-B Cell Strategy in Nephrotic Syndrome: Beyond Rituximab. Biomedicines 2025, 13, 2063. https://doi.org/10.3390/biomedicines13092063
Jin Y, Xie Y, Fu H, Liu F, Mao J. Anti-B Cell Strategy in Nephrotic Syndrome: Beyond Rituximab. Biomedicines. 2025; 13(9):2063. https://doi.org/10.3390/biomedicines13092063
Chicago/Turabian StyleJin, Yanyan, Yi Xie, Haidong Fu, Fei Liu, and Jianhua Mao. 2025. "Anti-B Cell Strategy in Nephrotic Syndrome: Beyond Rituximab" Biomedicines 13, no. 9: 2063. https://doi.org/10.3390/biomedicines13092063
APA StyleJin, Y., Xie, Y., Fu, H., Liu, F., & Mao, J. (2025). Anti-B Cell Strategy in Nephrotic Syndrome: Beyond Rituximab. Biomedicines, 13(9), 2063. https://doi.org/10.3390/biomedicines13092063