A Systematic Review of Clinical and Experimental Periodontitis Studies Demonstrating the Expression of PPAR-Gamma: A Meta-Analysis and Bioinformatics Approach
Abstract
1. Introduction
2. Material and Methods
2.1. Protocol Registration, the Focused Question, and PECO
2.2. The Eligibility Criteria
2.3. The Strategy for the Identification of Studies
2.4. The Article Screening and Data Extraction Processes
- (1)
- Clinical studies: (i) Authors, year of publication; (ii) the number of individuals in each group; (iii) age and sex; (iv) the biological material evaluated (gingival tissue, saliva, or blood); (v) biological molecular method of evaluation (RT-qPCR, ELISA, multiplex, Western blotting); and (vi) the gene or protein expression values in the unit of measurement originally published.
- (2)
- Experimental periodontitis studies: (i) Authors, year of publication; (ii) the number of animals in each group; (iii) age, weight, sex; (iv) strain; (v) method of periodontitis induction (ligature, LPS, or bacteria); (vi) biological material evaluated (gingival tissue, periodontal ligament, blood); (vii) biological molecular method of evaluation (RT-qPCR, ELISA, multiplex, Western blotting); and (viii) values of gene or protein expression in the unit of measurement originally published.
- (3)
- Mean and standard deviation data for the PPARG gene and PPAR-γ protein expression levels provided by the primary studies were utilized in the meta-analyses. When mean and standard deviation information was absent, graphs containing the PPAR-γ expression information were copied into a PowerPoint file. A ruler with a scale of increments of 0.05, created using the GraphPad Prism software (version 8.0.1), was aligned with the proportions of the copied figure scales. Horizontal lines were added to measure the mean and standard deviation sizes for each graph.
2.5. The Meta-Analysis
2.6. The Bioinformatics Analysis of Functional Enrichment and Interaction Networks of PPAR-γ
2.7. Quality Assessment
3. Results
3.1. Results of the Study Selection
3.2. The Induction of Experimental Periodontitis in the Animal Models and the Clinical Parameters for Selecting Patients
3.3. Study Characteristics
3.3.1. Translational Assessment of PPARG and PPAR-γ in Experimental and Clinical Periodontitis Studies
3.3.2. A Meta-Analysis of the PPAR-γ Expression Levels
3.3.3. The Functional Enrichment Analysis
3.3.4. The Gene Network Analysis
3.3.5. Quality Assessment of Studies
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lamont, R.J.; Koo, H.; Hajishengallis, G. The oral microbiota: Dynamic communities and host interactions. Nat. Rev. Microbiol. 2018, 16, 745–759. [Google Scholar] [CrossRef] [PubMed]
- Hajishengallis, G.; Chavakis, T. Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities. Nat. Rev. Immunol. 2021, 21, 426–440. [Google Scholar] [CrossRef]
- Silva, R.U.D.O.; Longhi, M.T.D.M.; Caldeira, F.I.D.; Silva, R.C.L.; Alvitos, R.; Fernandes, L.A.; Lima, C.P.M.; Capote, T.S.d.O. Susceptibility polymorphism in the promoter region of IL-4 and IL-13 in individuals with periodontitis: A systematic review. Pesqui. Bras. Odontopediatria Clín. Integr. 2024, 24, e230069. [Google Scholar] [CrossRef]
- Dutzan, N.; Kajikawa, T.; Abusleme, L.; Greenwell-Wild, T.; Zuazo, C.E.; Ikeuchi, T.; Brenchley, L.; Abe, T.; Hurabielle, C.; Martin, D.; et al. A dysbiotic microbiome triggers T(H)17 cells to mediate oral mucosal immunopathology in mice and humans. Sci. Transl. Med. 2018, 10, eaat0797. [Google Scholar] [CrossRef]
- Nepomuceno, R.; Pigossi, S.C.; Finoti, L.S.; Orrico, S.R.P.; Cirelli, J.A.; Barros, S.P.; Offenbacher, S.; Scarel-Caminaga, R.M. Serum lipid levels in patients with periodontal disease: A meta-analysis and meta-regression. J. Clin. Periodontol. 2017, 44, 1192–1207. [Google Scholar] [CrossRef]
- Lalla, E.; Papapanou, P.N. Diabetes mellitus and periodontitis: A tale of two common interrelated diseases. Nat. Rev. Endocrinol. 2011, 7, 738–748. [Google Scholar] [CrossRef]
- Campos, J.R.; Martins, C.C.; Faria, S.F.S.; Carvalho, A.P.; Pereira, A.G.; Costa, F.O.; Cota, L.O. Association between components of metabolic syndrome and periodontitis: A systematic review and meta-analysis. Clin. Oral Investig. 2022, 26, 5557–5574. [Google Scholar] [CrossRef]
- Hansen, P.R.; Holmstrup, P. Cardiovascular Diseases and Periodontitis. Adv. Exp. Med. Biol. 2022, 1373, 261–280. [Google Scholar]
- Dominy, S.S.; Lynch, C.; Ermini, F.; Benedyk, M.; Marczyk, A.; Konradi, A.; Nguyen, M.; Haditsch, U.; Raha, D.; Griffin, C.; et al. Porphyromonas gingivalis in Alzheimer’s disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. Sci. Adv. 2019, 5, eaau3333. [Google Scholar] [CrossRef] [PubMed]
- Silva-Boghossian, C.M.; Dezonne, R.S. What Are the Clinical and Systemic Results of Periodontitis Treatment in Obese Individuals? Curr. Oral Health Rep. 2021, 8, 48–65. [Google Scholar] [CrossRef] [PubMed]
- Nicchio, I.G.; Cirelli, T.; da Costa Quil, L.C.; Camilli, A.C.; Scarel-Caminaga, R.M.; Leite, F.R.M. Understanding the peroxisome proliferator-activated receptor gamma (PPAR-γ) role in periodontitis and diabetes mellitus: A molecular perspective. Biochem. Pharmacol. 2025, 237, 116908. [Google Scholar] [CrossRef]
- Berger, J.; Moller, D.E. The mechanisms of action of PPARs. Annu. Rev. Med. 2002, 53, 409–435. [Google Scholar] [CrossRef]
- Liao, W.; Nguyen, M.T.; Yoshizaki, T.; Favelyukis, S.; Patsouris, D.; Imamura, T.; Verma, I.M.; Olefsky, J.M. Suppression of PPAR-gamma attenuates insulin-stimulated glucose uptake by affecting both GLUT1 and GLUT4 in 3T3-L1 adipocytes. Am. J. Physiol. Endocrinol. Metab. 2007, 293, E219–E227. [Google Scholar] [CrossRef]
- Dubrac, S.; Stoitzner, P.; Pirkebner, D.; Elentner, A.; Schoonjans, K.; Auwerx, J.; Saeland, S.; Hengster, P.; Fritsch, P.; Romani, N.; et al. Peroxisome proliferator-activated receptor-alpha activation inhibits Langerhans cell function. J. Immunol. 2007, 178, 4362–4372. [Google Scholar] [CrossRef]
- Rogue, A.; Lambert, C.; Josse, R.; Antherieu, S.; Spire, C.; Claude, N.; Guillouzo, A. Comparative gene expression profiles induced by PPARgamma and PPARalpha/gamma agonists in human hepatocytes. PLoS ONE 2011, 6, e18816. [Google Scholar] [CrossRef]
- Xu, P.; Zhai, Y.; Wang, J. The Role of PPAR and Its Cross-Talk with CAR and LXR in Obesity and Atherosclerosis. Int. J. Mol. Sci. 2018, 19, 1260. [Google Scholar] [CrossRef] [PubMed]
- He, H.P.; Gu, S. The PPAR-gamma/SFRP5/Wnt/beta-catenin signal axis regulates the dexamethasone-induced osteoporosis. Cytokine 2021, 143, 155488. [Google Scholar] [CrossRef] [PubMed]
- Combarros, O.; Rodriguez-Rodriguez, E.; Mateo, I.; Vazquez-Higuera, J.L.; Infante, J.; Berciano, J.; Sánchez-Juan, P. APOE dependent-association of PPAR-gamma genetic variants with Alzheimer’s disease risk. Neurobiol. Aging 2011, 32, 547.e1–547.e6. [Google Scholar] [CrossRef]
- Di Paola, R.; Briguglio, F.; Paterniti, I.; Mazzon, E.; Oteri, G.; Militi, D.; Cordasco, G.; Cuzzocrea, S. Emerging role of PPAR-beta/delta in inflammatory process associated to experimental periodontitis. Mediat. Inflamm. 2011, 2011, 787159. [Google Scholar] [CrossRef] [PubMed]
- Folwaczny, M.; Manolis, V.; Markus, C.; Glas, J. Variants of the human PPARG locus and the susceptibility to chronic periodontitis. Innate Immun. 2011, 17, 541–547. [Google Scholar] [CrossRef]
- Cirelli, T.; Nicchio, I.G.; Bussaneli, D.G.; Silva, B.R.; Nepomuceno, R.; Orrico, S.R.; Cirelli, J.A.; Theodoro, L.H.; Barros, S.P.; Scarel-Caminaga, R.M. Evidence Linking PPARG Genetic Variants with Periodontitis and Type 2 Diabetes Mellitus in a Brazilian Population. Int. J. Mol. Sci. 2023, 24, 6760. [Google Scholar] [CrossRef]
- Estrada, V.; Oldenburg, E.; Popa, O.; Muller, H.W. Mapping the Long Rocky Road to Effective Spinal Cord Injury Therapy: A Meta-Review of Pre-Clinical and Clinical Research. J. Neurotrauma 2022, 39, 591–612. [Google Scholar] [CrossRef]
- Liu, S.; Zheng, H.; Yu, W.; Ramakrishnan, V.; Shah, S.; Gonzalez, L.F.; Singh, I.; Graffagnino, C.; Feng, W. Investigation of S-Nitrosoglutathione in stroke: A systematic review and meta-analysis of literature in pre-clinical and clinical research. Exp. Neurol. 2020, 328, 113262. [Google Scholar] [CrossRef] [PubMed]
- Naaktgeboren, W.R.; Binyam, D.; Stuiver, M.M.; Aaronson, N.K.; Teske, A.J.; van Harten, W.H.; Groen, W.G.; May, A.M. Efficacy of Physical Exercise to Offset Anthracycline-Induced Cardiotoxicity: A Systematic Review and Meta-Analysis of Clinical and Preclinical Studies. J. Am. Heart Assoc. 2021, 10, e021580. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Caton, J.G.; Armitage, G.; Berglundh, T.; Chapple, I.L.C.; Jepsen, S.; Kornman, K.S.; Mealey, B.L.; Papapanou, P.N.; Sanz, M.; Tonetti, M.S. A new classification scheme for periodontal and peri-implant diseases and conditions—Introduction and key changes from the 1999 classification. J. Periodontol. 2018, 89 (Suppl. 1), S1–S8. [Google Scholar] [CrossRef] [PubMed]
- Johnson, N.; Phillips, M. Rayyan for systematic reviews. J. Electron. Resour. Librariansh. 2018, 30, 46–48. [Google Scholar] [CrossRef]
- Caldeira, F.I.D.; Hidalgo, M.A.R.; De Carli Dias, M.L.; Scarel-Caminaga, R.M.; Pigossi, S.C. Systematic review of ratios between disease /health periodontitis modulators and meta-analysis of their levels in gingival tissue and biological fluids. Arch. Oral Biol. 2021, 127, 105147. [Google Scholar] [CrossRef]
- Raudvere, U.; Kolberg, L.; Kuzmin, I.; Arak, T.; Adler, P.; Peterson, H.; Vilo, J. g:Profiler: A web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019, 47, W191–W198. [Google Scholar] [CrossRef]
- Franz, M.; Rodriguez, H.; Lopes, C.; Zuberi, K.; Montojo, J.; Bader, G.D.; Morris, Q. GeneMANIA update 2018. Nucleic Acids Res. 2018, 46, W60–W64. [Google Scholar] [CrossRef]
- Zuberi, K.; Franz, M.; Rodriguez, H.; Montojo, J.; Lopes, C.T.; Bader, G.D.; Morris, Q. GeneMANIA prediction server 2013 update. Nucleic Acids Res. 2013, 41, W115–W122. [Google Scholar] [CrossRef]
- Hooijmans, C.R.; Rovers, M.M.; de Vries, R.B.; Leenaars, M.; Ritskes-Hoitinga, M.; Langendam, M.W. SYRCLE’s risk of bias tool for animal studies. BMC Med. Res. Methodol. 2014, 14, 43. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, Z.; Keohane, A.; Hu, Y. In vitro and in vivo study of the pathogenic role of PPARalpha in experimental periodontitis. J. Appl. Oral Sci. 2022, 30, e20220076. [Google Scholar] [CrossRef] [PubMed]
- Karatas, O.; Balci Yuce, H.; Taskan, M.M.; Gevrek, F.; Alkan, C.; Isiker Kara, G.; Temiz, C. Cinnamic acid decreases periodontal inflammation and alveolar bone loss in experimental periodontitis. J. Periodontal Res. 2020, 55, 676–685. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, Y.; Hou, Y.; Jin, L.; Chen, M. Effects of Emodin on Alveolar Bone Resorption via the IL-23/Th17 Inflammatory Axis in Rats with Periodontitis. J. Hard Tissue Biol. 2022, 31, 71–78. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, M.; He, X.; Zhou, H.; Wei, J.; Li, H.; Yuan, Q.; Zuo, Y.; Zhao, L.; Xie, Y. A breakthrough in periodontitis treatment: Revealing the pharmacodynamic substances and mechanisms of Kouqiangjie formula. J. Ethnopharmacol. 2024, 323, 117738. [Google Scholar] [CrossRef]
- Karatas, O.; Yuce, H.B.; Taskan, M.M.; Gevrek, F.; Yarkac, F.U.; Cacan, E. Detection of nuclear receptors in gingival samples of diabetic and nondiabetic periodontitis patients. Niger. J. Clin. Pract. 2021, 24, 269–276. [Google Scholar] [CrossRef]
- Taskan, M.M.; Gevrek, F. PPAR-gamma, RXR, VDR, and COX-2 Expressions in gingival tissue samples of healthy individuals, periodontitis and peri-implantitis patients. Niger. J. Clin. Pract. 2020, 23, 46–53. [Google Scholar] [CrossRef]
- Stewart, D.; Javadi, M.; Chambers, M.; Gunsolly, C.; Gorski, G.; Borghaei, R.C. Interleukin-4 inhibition of interleukin-1-induced expression of matrix metalloproteinase-3 (MMP-3) is independent of lipoxygenase and PPARgamma activation in human gingival fibroblasts. BMC Mol. Biol. 2007, 8, 12. [Google Scholar] [CrossRef]
- Straus, D.S.; Pascual, G.; Li, M.; Welch, J.S.; Ricote, M.; Hsiang, C.H.; Sengchanthalangsy, L.L.; Ghosh, G.; Glass, C.K. 15-deoxy-delta 12,14-prostaglandin J2 inhibits multiple steps in the NF-kappa B signaling pathway. Proc. Natl. Acad. Sci. USA 2000, 97, 4844–4849. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, J.; Fu, S.; Wang, C.; Zhou, B. Preventive Effects of Protocatechuic Acid on LPS-Induced Inflammatory Response in Human Gingival Fibroblasts via Activating PPAR-gamma. Inflammation 2015, 38, 1080–1084. [Google Scholar] [CrossRef]
- Wang, Y.; Sugita, N.; Yoshihara, A.; Iwasaki, M.; Miyazaki, H.; Nakamura, K.; Yoshie, H. Peroxisome proliferator-activated receptor (PPAR) gamma polymorphism, vitamin D, bone mineral density and periodontitis in postmenopausal women. Oral Dis. 2013, 19, 501–506. [Google Scholar] [CrossRef]
- Buccitelli, C.; Selbach, M. mRNAs, proteins and the emerging principles of gene expression control. Nat. Rev. Genet. 2020, 21, 630–644. [Google Scholar] [CrossRef]
- Upadhya, S.R.; Ryan, C.J. Experimental reproducibility limits the correlation between mRNA and protein abundances in tumor proteomic profiles. Cell Rep. Methods 2022, 2, 100288. [Google Scholar] [CrossRef] [PubMed]
- Perl, K.; Ushakov, K.; Pozniak, Y.; Yizhar-Barnea, O.; Bhonker, Y.; Shivatzki, S.; Geiger, T.; Avraham, K.B.; Shamir, R. Reduced changes in protein compared to mRNA levels across non-proliferating tissues. BMC Genom. 2017, 18, 305. [Google Scholar] [CrossRef]
- Isali, I.; Mahran, A.; Khalifa, A.O.; Sheyn, D.; Neudecker, M.; Qureshi, A.; Conroy, B.; Schumacher, F.R.; Hijaz, A.K.; El-Nashar, S.A. Gene expression in stress urinary incontinence: A systematic review. Int. Urogynecol. J. 2020, 31, 1–14. [Google Scholar] [CrossRef]
- Mokhtar, F.B.A.; Plat, J.; Mensink, R.P. Genetic variation and intestinal cholesterol absorption in humans: A systematic review and a gene network analysis. Prog. Lipid Res. 2022, 86, 101164. [Google Scholar] [CrossRef] [PubMed]
- Senguttuvan, N.B.; Subramanian, V.; Venkatesan, V.; Muralidharan, T.R.; Sankaranarayanan, K. Clonal hematopoiesis of indeterminate potential (CHIP) and cardiovascular diseases-an updated systematic review. J. Genet. Eng. Biotechnol. 2021, 19, 105. [Google Scholar] [CrossRef] [PubMed]
- Sheikhvatan, M.; Chaichian, S.; Moazzami, B. A Systematic Review and Bioinformatics Study on Genes and micro-RNAs Involving the Transformation of Endometriosis into Ovarian Cancer. Microrna 2020, 9, 101–111. [Google Scholar] [CrossRef]
- Cecoro, G.; Annunziata, M.; Iuorio, M.T.; Nastri, L.; Guida, L. Periodontitis, Low-Grade Inflammation and Systemic Health: A Scoping Review. Medicina 2020, 56, 272. [Google Scholar] [CrossRef]
- Santos Tunes, R.; Foss-Freitas, M.C.; Nogueira-Filho Gda, R. Impact of periodontitis on the diabetes-related inflammatory status. J. Can. Dent. Assoc. 2010, 76, a35. [Google Scholar] [PubMed]
Author/Year | Organism | Control | Disease | Periodontitis Induction | RT-qPCR | Western Blotting | Immunohistochemistry | |||
---|---|---|---|---|---|---|---|---|---|---|
Sex/Number/ Mean Age | Sex/Number/ Mean Age | Periodontitis (Mean ± SD) | Control (Mean ± SD) | Periodontitis (Mean ± SD) | Control (Mean ± SD) | Periodontitis (Mean ± SD) | Control (Mean ± SD) | |||
Chen et al., 2022 [33] | Wild-type (WT) C57BL/6 mice | Male; n = 6; 8–10 weeks | Male; n = 12; 8–10 weeks | 7-0 silk ligature soaked in P. gingivalis around both maxillary second molars for 15 days. | 1.05 ± 0.25 a | 1.1 ± 0.21 a | - | - | - | - |
Wu et al., 2024 [36] | Sprague-Dawley rats | Male; n = 6; 8 weeks | Male; n = 6; 8 weeks | 0.2 mm diameter orthodontic wire soaked in P. gingivalis W83 bacterial (1 × 108 CFU) around both maxillary first molars. Additionally, P.g LPS (50 µL, 2 mg/mL) was injected into the gingival crevices around the teeth. Duration = 4 weeks. | 0.07 ± 0.02 a | 1.0 ± 0.05 b | 0.15 ± 0.01 a | 1.0 ± 0.05 b | - | - |
Wang et al., 2022 [35] | Sprague-Dawley rats | Male; n = 8; 6–8 weeks | Male; n = 8; 6–8 weeks | 0.2 mm diameter fixed orthodontic treatment and 30 µL LPS injection into both maxillary second molars. | - | - | 0.42 ± 0.08 a | 0.85 ± 0.15 b | - | - |
Karatas et al., 2020 [34] | Wistar rats | Female; n = 8; NR | Female; n = 8; NR | A 4-0 silk suture ligature around both lower first molars. The suture was removed from half of the rats on the 15th and 30th day. | - | - | - | - | P-L = 59.90 ± 7.12 a P-R = 64.03 ± 3.93 a | 23.06 ± 5.65 b |
Author/Year | Organism | Control | Disease | Criteria for Subject Selection | RT-qPCR | Western Blotting | Immunohistochemistry | |||
Sex/Number/ Mean Age | Sex/Number/ Mean Age | Periodontitis (Mean ± SD) | Control (Mean ± SD) | Periodontitis (Mean ± SD) | Control (Mean ± SD) | Periodontitis (Mean ± SD) | Control (Mean ± SD) | |||
Taskan and Gevrek, 2020 [38] | Human | Men/n = 8; Women/n = 7/45.05 ± 2.50 years | Men/n = 6; Women/n = 9/46.47 ± 1.89 years | Control: Never smokers and systemically healthy participants. | - | - | - | - | 68.84 ± 1.37 a | 49.47 ± 2.49 b |
Disease: Periodontitis stage 3 grade B. PI, GI, and PPD recorded in six sites per tooth. The mean value of six measurements was recorded. | ||||||||||
Karatas et al., 2021 [37] | Human | Men/n = 7; Women/n = 7/41.05 ± 1.80 years | Men/n = 7; Women/n = 7/42.35 ± 1.92 years | Control: Never smokers and systemically healthy participants. | 0.1 a | 1 b | - | - | 53.84 ± 3.37 a | 72.0 ± 2.40 b |
Disease: Periodontitis stage 3 grade B. PI, GI, and PPD recorded in six sites per tooth. The mean value of six measurements was recorded. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hidalgo, M.A.R.; Caldeira, F.I.D.; Orrico, S.R.P.; Leite, F.R.M.; Scarel-Caminaga, R.M. A Systematic Review of Clinical and Experimental Periodontitis Studies Demonstrating the Expression of PPAR-Gamma: A Meta-Analysis and Bioinformatics Approach. Biomedicines 2025, 13, 2028. https://doi.org/10.3390/biomedicines13082028
Hidalgo MAR, Caldeira FID, Orrico SRP, Leite FRM, Scarel-Caminaga RM. A Systematic Review of Clinical and Experimental Periodontitis Studies Demonstrating the Expression of PPAR-Gamma: A Meta-Analysis and Bioinformatics Approach. Biomedicines. 2025; 13(8):2028. https://doi.org/10.3390/biomedicines13082028
Chicago/Turabian StyleHidalgo, Marco Antonio Rimachi, François Isnaldo Dias Caldeira, Silvana Regina Perez Orrico, Fabio Renato Manzolli Leite, and Raquel Mantuaneli Scarel-Caminaga. 2025. "A Systematic Review of Clinical and Experimental Periodontitis Studies Demonstrating the Expression of PPAR-Gamma: A Meta-Analysis and Bioinformatics Approach" Biomedicines 13, no. 8: 2028. https://doi.org/10.3390/biomedicines13082028
APA StyleHidalgo, M. A. R., Caldeira, F. I. D., Orrico, S. R. P., Leite, F. R. M., & Scarel-Caminaga, R. M. (2025). A Systematic Review of Clinical and Experimental Periodontitis Studies Demonstrating the Expression of PPAR-Gamma: A Meta-Analysis and Bioinformatics Approach. Biomedicines, 13(8), 2028. https://doi.org/10.3390/biomedicines13082028