Anti-Inflammatory and Immunomodulatory Effects of 2-(3-Acetyl-5-(4-Chlorophenyl)-2-Methyl-1H-Pyrrol-1-yl)-3-Phenylpropanoic Acid
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Experimental Animals
2.3. Evaluation of Anti-Inflammatory Activity
2.4. Cytokine Profiling in a LPS-Induced Inflammation Model
ELISA-Based Cytokine Quantification
- TGF-β1: Sensitivity: 8 pg/mL; Intra-/inter-assay CV: <3.7%/<8.6%
- IL-10: Sensitivity: 1.5 pg/mL; Intra-/inter-assay CV: <5%/<10%
- TNF-α: Sensitivity: 11 pg/mL; Intra-/inter-assay CV: <5%/<10%
2.5. Statistical Analysis
3. Results
3.1. Anti-Inflammatory Effect of Compound 3f
3.1.1. Single Administration
3.1.2. Repeated Administration (14 Days)
3.2. Effect of Compound 3f on Serum Levels of TNF-α, IL-10, and TGF-β1
3.2.1. Single Administration
3.2.2. Repeated Administration (14 Days)
4. Discussion
5. Conclusions
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NSAIDs | Non-steroidal anti-inflammatory drugs |
COX | Cyclooxygenase |
LPS | Lipopolysaccharide |
TNF-α | Tumor necrosis factor alpha |
IL-10 | Interleukin 10 |
TGF-β1 | Transforming growth factor beta 1 |
NF-κB | Nuclear factor kappa B |
ELISA | Enzyme-linked immunosorbent assay |
HPLC | High-performance liquid chromatography |
References
- Bian, M.; Ma, Q.Q.; Wu, Y.; Du, H.H.; Guo-Hua, G. Small molecule compounds with good anti-inflammatory activity reported in the literature from 01/2009 to 05/2021: A review. J. Enzyme Inhib. Med. Chem. 2021, 36, 2139–2159. [Google Scholar] [CrossRef]
- Chahal, S.; Rani, P.; Kiran; Sindhu, J.; Joshi, G.; Ganesan, A.; Kalyaanamoorthy, S.; Mayank; Kumar, P.; Singh, R.; et al. Design and development of COX-II inhibitors: Current scenario and future perspective. ACS Omega 2023, 8, 17446–17498. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Kumar, D.; Singh, G.; Monga, V.; Kumar, B. Recent advancements in the development of heterocyclic anti-inflammatory agents. Eur. J. Med. Chem. 2020, 200, 112438. [Google Scholar] [CrossRef] [PubMed]
- Neha, K.; Wakode, S. Contemporary advances of cyclic molecules proposed for inflammation. Eur. J. Med. Chem. 2021, 221, 113493. [Google Scholar] [CrossRef] [PubMed]
- Jeelan Basha, N.; Basavarajaiah, S.M.; Shyamsunder, K. Therapeutic potential of pyrrole and pyrrolidine analogs: An update. Mol. Divers. 2022, 26, 2915–2937. [Google Scholar] [CrossRef]
- Javid, H.; Saeedian Moghadam, E.; Farahmandfar, M.; Manouchehrabadi, M.; Amini, M.; Salimi, M.; Torkaman-Boutorabi, A. Biological activity of novel pyrrole derivatives as antioxidant agents against 6-OHDA induced neurotoxicity in PC12 cells. Iran J. Pharm. Res. 2023, 22, e140450. [Google Scholar] [CrossRef]
- Reale, A.; Brogi, S.; Chelini, A.; Paolino, M.; Di Capua, A.; Giuliani, G.; Cappelli, A.; Giorgi, G.; Chemi, G.; Grillo, A.; et al. Synthesis, biological evaluation and molecular modeling of novel selective COX-2 inhibitors: Sulfide, sulfoxide, and sulfone derivatives of 1,5-diarylpyrrol-3-substituted scaffold. Bioorg Med. Chem. 2019, 27, 115045. [Google Scholar] [CrossRef]
- Saletti, M.; Maramai, S.; Reale, A.; Paolino, M.; Brogi, S.; Di Capua, A.; Cappelli, A.; Giorgi, G.; D’AVino, D.; Rossi, A.; et al. Novel analgesic/anti-inflammatory agents: 1,5-Diarylpyrrole nitrooxyethyl sulfides and related compounds as cyclooxygenase-2 inhibitors containing a nitric oxide donor moiety endowed with vasorelaxant properties. Eur. J. Med. Chem. 2022, 241, 114615. [Google Scholar] [CrossRef]
- Abdellatif, K.R.A.; Abdelall, E.K.A.; Labib, M.B.; Fadaly, W.A.A.; Zidan, T.H. Design, synthesis of celecoxib-tolmetin drug hybrids as selective and potent COX-2 inhibitors. Bioorg. Chem. 2019, 90, 103029. [Google Scholar] [CrossRef]
- Almeer, R.S.; Hammad, S.F.; Leheta, O.F.; Abdel Moneim, A.E.; Amin, H.K. Anti-inflammatory and anti-hyperuricemic functions of two synthetic hybrid drugs with dual biological active sites. Int. J. Mol. Sci. 2019, 20, 5635. [Google Scholar] [CrossRef]
- Jang, D.-I.; Lee, A.-H.; Shin, H.-Y.; Song, H.-R.; Park, J.-H.; Kang, T.-B.; Lee, S.-R.; Yang, S.-H. The role of tumor necrosis factor alpha (TNF-α) in autoimmune disease and current TNF-α inhibitors in therapeutics. Int. J. Mol. Sci. 2021, 22, 2719. [Google Scholar] [CrossRef]
- Souza, R.F.; Caetano, M.A.F.; Magalhães, H.I.R.; Castelucci, P. Study of tumor necrosis factor receptor in the inflammatory bowel disease. World J. Gastroenterol. 2023, 29, 2733–2746. [Google Scholar] [CrossRef] [PubMed]
- Moreau, J.M.; Velegraki, M.; Bolyard, C.; Rosenblum, M.D.; Li, Z. Transforming growth factor-β1 in regulatory T cell biology. Sci. Immunol. 2022, 7, eabi4613. [Google Scholar] [CrossRef]
- Mishra, B.; Bachu, M.; Yuan, R.; Wingert, C.; Chaudhary, V.; Brauner, C.; Bell, R.; Ivashkiv, L.B. IL-10 targets IRF transcription factors to suppress IFN and inflammatory response genes by epigenetic mechanisms. Nat. Immunol. 2025, 26, 748–759. [Google Scholar] [CrossRef] [PubMed]
- York, A.G.; Skadow, M.H.; Oh, J.; Qu, R.; Zhou, Q.D.; Hsieh, W.-Y.; Mowel, W.K.; Brewer, J.R.; Kaffe, E.; Williams, K.J.; et al. IL-10 constrains sphingolipid metabolism to limit inflammation. Nature 2024, 627, 628–635. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.W.; Moon, S.J. Inflammatory cytokines in psoriatic arthritis: Understanding pathogenesis and implications for treatment. Int. J. Mol. Sci. 2023, 24, 11662. [Google Scholar] [CrossRef]
- Zhao, Y.; Shao, C.; Zhou, H.; Yu, L.; Bao, Y.; Mao, Q.; Yang, J.; Wan, H. Salvianolic acid B inhibits atherosclerosis and TNF-α-induced inflammation by regulating NF-κB/NLRP3 signaling pathway. Phytomedicine 2023, 119, 155002. [Google Scholar] [CrossRef]
- Wang, Y.-F.; Feng, J.-Y.; Zhao, L.-N.; Zhao, M.; Wei, X.-F.; Geng, Y.; Yuan, H.-F.; Hou, C.-Y.; Zhang, H.-H.; Wang, G.-W.; et al. Aspirin triggers ferroptosis in hepatocellular carcinoma cells through restricting NF-κB p65-activated SLC7A11 transcription. Acta Pharmacol. Sin. 2023, 44, 1712–1724. [Google Scholar] [CrossRef]
- Sokołowska, P.; Bleibel, L.; Owczarek, J.; Wiktorowska-Owczarek, A. PPARγ, NF-κB and the UPR pathway as new molecular targets in the anti-inflammatory actions of NSAIDs: Novel applications in cancers and central nervous system diseases? Adv. Clin. Exp. Med. 2024, 33, 1007–1022. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, Q.; Sui, J.; Tu, Y.; Guo, X.; Li, F. Celecoxib prevents tumor necrosis factor-α (TNF-α)-induced cellular senescence in human chondrocytes. Bioengineered 2021, 12, 12812–12820. [Google Scholar] [CrossRef]
- Vladimirova, S.; Bijev, A. An access to new N-pyrrolylcarboxylic acids as potential COX-2 inhibitors via Paal-Knorr cyclization. Heterocycl. Commun. 2014, 20, 111–115. [Google Scholar] [CrossRef]
- Hassan, A.S.; Soliman, G.M. Rutin nanocrystals with enhanced anti-inflammatory activity: Preparation and ex vivo/in vivo evaluation in an inflammatory rat model. Pharmaceutics 2022, 14, 2727. [Google Scholar] [CrossRef]
- Azambuja, J.H.; Mancuso, R.I.; Via, F.I.D.; Torello, C.O.; Saad, S.T.O. Protective effect of green tea and epigallocatechin-3-gallate in a LPS-induced systemic inflammation model. J. Nutr. Biochem. 2022, 101, 108920. [Google Scholar] [CrossRef]
- Chaouch, A.C.; Benkaci-Ali, F.; Oukil, S.; Umar, H.I.; Ayoade, I.; Tata, S.; Belkadi, A. Chemical composition and kinetic study of Pinus resin volatile, investigation in its antibacterial, anti-inflammatory, anti-Alzheimer and insecticidal activities. Food Biosci. 2025, 68, 106653. [Google Scholar] [CrossRef]
- Adel, I.; Jarrar, Q.; Ayoub, R.; Jilani, J.; Moshawih, S.; Al-Qadi, E.; Zihlif, M. The toxicity and therapeutic efficacy of mefenamic acid and its hydroxyethyl ester in mice: In vivo comparative study: A promising drug derivative. Jordan J. Pharm. Sci. 2022, 15, 507–522. [Google Scholar] [CrossRef]
- Morais, M.G.; Saldanha, A.A.; Mendes, I.C.; Rodrigues, J.P.C.; Azevedo, L.S.; Ferreira, L.M.; Amado, P.A.; Zanuncio, V.S.; Farias, K.S.; Silva, D.B.; et al. Antinociceptive and anti-inflammatory potential, and chemical characterization of the dichloromethane fraction of Solanum lycocarpum (Solanaceae) ripe fruits by LC-DAD-MS. J. Ethnopharmacol. 2024, 322, 117640. [Google Scholar] [CrossRef] [PubMed]
- Burayk, S.; Oh-Hashi, K.; Kandeel, M. Drug discovery of new anti-inflammatory compounds by targeting cyclooxygenases. Pharmaceuticals 2022, 15, 282. [Google Scholar] [CrossRef]
- Patil, K.R.; Mahajan, U.B.; Unger, B.S.; Goyal, S.N.; Belemkar, S.; Surana, S.J.; Ojha, S.; Patil, C.R. Animal models of inflammation for screening of anti-inflammatory drugs: Implications for the discovery and development of phytopharmaceuticals. Int. J. Mol. Sci. 2019, 20, 4367. [Google Scholar] [CrossRef]
- Maddila, S.; Gorle, S.; Sampath, C.; Lavanya, P. Synthesis and anti-inflammatory activity of some new 1,3,4-thiadiazoles containing pyrazole and pyrrole nucleus. J. Saudi Chem. Soc. 2012, 20, S306–S312. [Google Scholar] [CrossRef]
- Mohamed, M.S.; Kamel, R.; Fatahala, S.S. Synthesis and biological evaluation of some thio containing pyrrolo [2,3-d]pyrimidine derivatives for their anti-inflammatory and anti-microbial activities. Eur. J. Med. Chem. 2010, 45, 2994–3004. [Google Scholar] [CrossRef]
- Di Capua, A.; Sticozzi, C.; Brogi, S.; Brindisi, M.; Cappelli, A.; Sautebin, L.; Rossi, A.; Pace, S.; Ghelardini, C.; Di Cesare Mannelli, L.; et al. Synthesis and biological evaluation of fluorinated 1,5-diarylpyrrole-3-alkoxyethyl ether derivatives as selective COX-2 inhibitors endowed with anti-inflammatory activity. Eur. J. Med. Chem. 2016, 109, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Lavrentaki, V.; Kousaxidis, A.; Theodosis-Nobelos, P.; Papagiouvannis, G.; Koutsopoulos, K.; Nicolaou, I. Design, synthesis, and pharmacological evaluation of indazole carboxamides of N-substituted pyrrole derivatives as soybean lipoxygenase inhibitors. Mol. Divers. 2024, 28, 3757–3782. [Google Scholar] [CrossRef]
- Pasha, A.; Mondal, S.; Panigrahi, N. Synthesis of novel aryl (4-aryl-1H-pyrrol-3-yl) (thiophen-2-yl) methanone derivatives: Molecular modelling, in silico ADMET, anti-inflammatory and anti-ulcer activities. Antiinflamm. Antiallergy Agents Med. Chem. 2021, 20, 182–195. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Qin, T.; Feng, X.; Xu, M.; Ling, Z.; Xie, X.; Zhang, M.; Huang, Y.; Luo, J.; Cao, S.; et al. Structural optimizations on the scaffold of 7H-pyrrolo [2,3-d]pyrimidine to develop potent iNOS inhibitors with improved antiarthritis activity in vivo. Arch. Pharm. 2025, 358, e70038. [Google Scholar] [CrossRef]
- Schleiff, M.A.; Payakachat, S.; Schleiff, B.M.; Swamidass, S.J.; Boysen, G.; Miller, G.P. Impacts of diphenylamine NSAID halogenation on bioactivation risks. Toxicology 2021, 458, 152832. [Google Scholar] [CrossRef]
- Cuesta, S.A.; Meneses, L. The role of organic small molecules in pain management. Molecules 2021, 26, 4029. [Google Scholar] [CrossRef]
- Kaur, B.; Singh, P. Inflammation: Biochemistry, cellular targets, anti-inflammatory agents and challenges with special emphasis on cyclooxygenase-2. Bioorg. Chem. 2022, 121, 105663. [Google Scholar] [CrossRef] [PubMed]
- Kalgutkar, A.S.; Daniels, J.S. Carboxylic acids and their bioisosteres. In Metabolism, Pharmacokinetics and Toxicity of Functional Groups: Impact of Chemical Building Blocks on ADMET; Smith, D.A., Ed.; Royal Society of Chemistry: Cambridge, UK, 2010; Volume 1, pp. 116–118. [Google Scholar]
- Lee, Y.; Kim, J.; Kim, W.; Yoon, I.S.; Jung, Y. Preparation and evaluation of amino acid conjugates of celecoxib as prodrugs to improve the pharmacokinetic and therapeutic properties of celecoxib. Pharmaceutics 2020, 12, 1043. [Google Scholar] [CrossRef]
- Rodríguez-Castillo, A.J.; González-Chávez, S.A.; Portillo-Pantoja, I.; Cruz-Hermosillo, E.; Pacheco-Tena, C.; Chávez-Flores, D.; Delgado-Gardea, M.C.E.; Infante-Ramírez, R.; Ordaz-Ortiz, J.J.; Sánchez-Ramírez, B. Aqueous extracts of Rhus trilobata inhibit the lipopolysaccharide-induced inflammatory response in vitro and in vivo. Plants 2024, 13, 2840. [Google Scholar] [CrossRef]
- Lim, J.S.; Bae, J.; Lee, S.; Lee, D.Y.; Yao, L.; Cho, N.; Bach, T.T.; Yun, N.; Park, S.-J.; Cho, Y.-C. In vitro anti-inflammatory effects of Symplocos sumuntia Buch.-Ham. Ex D. Don extract via blockage of the NF-κB/JNK signaling pathways in LPS-activated microglial cells. Plants 2022, 11, 3095. [Google Scholar] [CrossRef]
- Jung, H.J.; Cho, D.-Y.; Han, J.-H.; Park, K.D.; Choi, D.-K.; Kim, E.; Yoon, S.-H.; Park, J.-Y. Synthesis of 1-(4-(dimethylamino)phenyl)-3,4-diphenyl-1H-pyrrole-2,5-dione analogues and their anti-inflammatory activities in lipopolysaccharide-induced BV2 cells. Bioorg. Med. Chem. Lett. 2023, 92, 129408. [Google Scholar] [CrossRef]
- Pandey, A.R.; Singh, S.P.; Joshi, P.; Srivastav, K.S.; Srivastava, S.; Yadav, K.; Chandra, R.; Bisen, A.C.; Agrawal, S.; Sanap, S.N.; et al. Design, synthesis and evaluation of novel pyrrole-hydroxybutenolide hybrids as promising antiplasmodial and anti-inflammatory agents. Eur. J. Med. Chem. 2023, 254, 115340. [Google Scholar] [CrossRef]
- Paprocka, R.; Pazderski, L.; Mazur, L.; Wiese-Szadkowska, M.; Kutkowska, J.; Nowak, M.; Helmin-Basa, A. Synthesis and structural study of amidrazone derived pyrrole-2,5-dione derivatives: Potential anti-inflammatory agents. Molecules 2022, 27, 2891. [Google Scholar] [CrossRef]
- Xu, Q.; Qiao, Y.; Dai, C.; Pang, L.; Li, L.; Lu, Y. Discovery of anti-inflammatory pyrrole alkaloids from Curvularia lunata CL1. Fitoterapia 2025, 185, 106718. [Google Scholar] [CrossRef]
- de Brito, T.M.; Amendoeira, F.C.; de Oliveira, T.B.; Doro, L.H.; Garcia, E.B.; da Silva, N.M.F.; Chaves, A.d.S.; Muylaert, F.F.; Pádua, T.A.; Rosas, E.C.; et al. Anti-inflammatory activity and chemical analysis of different fractions from Solidago chilensis inflorescence. Oxid. Med. Cell Longev. 2021, 2021, 7612380. [Google Scholar] [CrossRef]
- Liu, T.W.; Chen, C.M.; Chang, K.H. Biomarker of neuroinflammation in Parkinson’s disease. Int. J. Mol. Sci. 2022, 23, 4148. [Google Scholar] [CrossRef] [PubMed]
- Vingren, J.L.; Boyett, J.C.; Lee, E.C.; Levitt, D.E.; Luk, H.Y.; McDermott, B.P.; Munoz, C.X.; Ganio, M.S.; Armstrong, L.E.; Hill, D.W. A single dose of ibuprofen impacts IL-10 response to 164-km road cycling in the heat. Res. Q. Exerc. Sport. 2023, 94, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Oladejo, B.O.; Adeboboye, C.F.; Adiji, P.I.; Adebolu, T.T. Cytokine-mediated immunoregulatory activity of Lactobacillus species in a carrageenan-induced acute inflammatory model. BioTechnologia 2023, 104, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Abudukeyoumu, A.; Li, M.Q.; Xie, F. Transforming growth factor-β1 in intrauterine adhesion. Am. J. Reprod. Immunol. 2020, 84, e13262. [Google Scholar] [CrossRef]
- de Streel, G.; Lucas, S. Targeting immunosuppression by TGF-β1 for cancer immunotherapy. Biochem. Pharmacol. 2021, 192, 114697. [Google Scholar] [CrossRef]
- Houshmand, G.; Naghizadeh, B.; Ghorbanzadeh, B.; Ghafouri, Z.; Goudarzi, M.; Mansouri, M.T. Celecoxib inhibits acute edema and inflammatory biomarkers through peroxisome proliferator-activated receptor-γ in rats. Iran J. Basic Med. Sci. 2020, 23, 1544–1550. [Google Scholar] [CrossRef]
- Beekhuizen, M.; Tsuchida, A.I.; Saris, D.B.; Dhert, W.J.; Creemers, L.B.; van Osch, G.J. Celecoxib decreases the production of cytokines by osteoarthritic cartilage and synovium without affecting cartilage matrix degradation. Osteoarthr. Cartil. 2012, 20, S239. [Google Scholar] [CrossRef]
- Beyer, I.; Njemini, R.; Bautmans, I.; Demanet, C.; Mets, T. Immunomodulatory effect of NSAID in geriatric patients with acute infection: Effects of piroxicam on chemokine/cytokine secretion patterns and levels of heat shock proteins. Cell Stress Chaperones. 2012, 17, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Balachandran, S.K.; Iyer, K.; Senthil, S.A.; Ramalingam, A.P.; Venkatachalam, S. Evaluating the anti-inflammatory efficacy of steroids, COX-2 selective, and nonselective NSAIDs in contusion spinal cord injury: An experimental analysis. J. Pharm. Bioallied Sci. 2025, 17, S1877–S1881. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Lu, Z.; Zhang, H.; Fan, X.; Zhang, X.; Jiang, B.; Li, J.; Xue, M. Aspirin and celecoxib regulate Notch1/Hes1 pathway to prevent pressure overload-induced myocardial hypertrophy. Int. Heart J. 2024, 65, 475–486. [Google Scholar] [CrossRef]
- Shendi, S.S.; Selim, S.M.; Sharaf, S.A.; Gouda, M.A.; Sallam, H.M.; Sweed, D.M.; A Shafey, D. Anti-toxoplasmic effects of celecoxib alone and combined with spiramycin in experimental mice. Acta Trop. 2024, 260, 107448. [Google Scholar] [CrossRef]
- Tajdari, M.; Peyrovinasab, A.; Bayanati, M.; Ismail Mahboubi Rabbani, M.; Abdolghaffari, A.H.; Zarghi, A. Dual COX-2/TNF-α inhibitors as promising anti-inflammatory and cancer chemopreventive agents: A review. Iran J. Pharm. Res. 2024, 23, e151312. [Google Scholar] [CrossRef]
Group | Treatment | Paw Edema Model | LPS-Induced Inflammation Model | n |
---|---|---|---|---|
1 | Saline (carrageenan control) | Yes—single and repeated administration | No | 8 |
2 | Saline (LPS single-dose control) | No | Yes—LPS administered on day of experiment | 8 |
3 | Saline (LPS repeated-dose control) | No | Yes—LPS administered on day of experiment after 14 days of saline treatment | 8 |
4 | Diclofenac 25 mg/kg | Yes—single and repeated administration | No | 8 |
5 | Compound 3f 10 mg/kg | Yes—single and repeated administration | No | 8 |
6 | Compound 3f 20 mg/kg | Yes—single and repeated administration | No | 8 |
7 | Compound 3f 40 mg/kg | Yes—single and repeated administration | No | 8 |
8 | Compound 3f 40 mg/kg (single administration) + LPS | No | Yes—LPS administered on day of experiment | 8 |
9 | Compound 3f 40 mg/kg (repeated administration) + LPS | No | Yes—LPS administered on day of experiment after 14 days of treatment | 8 |
Parameter | Dose (mg/kg) | Time (h)/ Measurement Point | Control (Mean ± SEM) | Treated (Mean ± SEM) | Significance (p) | Administration |
---|---|---|---|---|---|---|
Paw Edema (%) | 20 | 2 | 47.1 ± 4.1 | 25.0 ± 3.9 | 0.001 | Single dose |
10 | 2 | 45.8 ± 2.9 | 7.2 ± 2.3 | <0.001 | Repeated (14 days) | |
10 | 3 | 40.5 ± 3.9 | 11.0 ± 4.2 | <0.001 | Repeated (14 days) | |
10 | 4 | 41.0 ± 4.0 | 8.9 ± 4.1 | <0.001 | Repeated (14 days) | |
20 | 2 | 45.8 ± 2.9 | 14.9 ± 2.6 | <0.001 | Repeated (14 days) | |
20 | 3 | 40.5 ± 3.9 | 14.4 ± 1.6 | <0.001 | Repeated (14 days) | |
20 | 4 | 41.0 ± 4.0 | 11.1 ± 3.3 | <0.001 | Repeated (14 days) | |
40 | 2 | 45.8 ± 2.9 | 9.7 ± 2.2 | <0.001 | Repeated (14 days) | |
40 | 3 | 40.5 ± 3.9 | 9.9 ± 2.6 | <0.001 | Repeated (14 days) | |
40 | 4 | 41.0 ± 4.0 | 6.4 ± 1.9 | <0.001 | Repeated (14 days) | |
TNF-α (pg/mL) | 40 | 4 h post-LPS | 155 ± 38 | 64 ± 14 | 0.064 (trend) | Single dose |
40 | 4 h post-LPS | 103 ± 22 | 40 ± 7 | 0.032 | Repeated (14 days) | |
TGF-β1 (pg/mL) | 40 | 4 h post-LPS | 83 ± 13 | 155 ± 10 | 0.002 | Single dose |
40 | 4 h post-LPS | 78 ± 16 | 119 ± 5 | 0.045 | Repeated (14 days) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zlatanova-Tenisheva, H.; Vladimirova, S. Anti-Inflammatory and Immunomodulatory Effects of 2-(3-Acetyl-5-(4-Chlorophenyl)-2-Methyl-1H-Pyrrol-1-yl)-3-Phenylpropanoic Acid. Biomedicines 2025, 13, 2003. https://doi.org/10.3390/biomedicines13082003
Zlatanova-Tenisheva H, Vladimirova S. Anti-Inflammatory and Immunomodulatory Effects of 2-(3-Acetyl-5-(4-Chlorophenyl)-2-Methyl-1H-Pyrrol-1-yl)-3-Phenylpropanoic Acid. Biomedicines. 2025; 13(8):2003. https://doi.org/10.3390/biomedicines13082003
Chicago/Turabian StyleZlatanova-Tenisheva, Hristina, and Stanislava Vladimirova. 2025. "Anti-Inflammatory and Immunomodulatory Effects of 2-(3-Acetyl-5-(4-Chlorophenyl)-2-Methyl-1H-Pyrrol-1-yl)-3-Phenylpropanoic Acid" Biomedicines 13, no. 8: 2003. https://doi.org/10.3390/biomedicines13082003
APA StyleZlatanova-Tenisheva, H., & Vladimirova, S. (2025). Anti-Inflammatory and Immunomodulatory Effects of 2-(3-Acetyl-5-(4-Chlorophenyl)-2-Methyl-1H-Pyrrol-1-yl)-3-Phenylpropanoic Acid. Biomedicines, 13(8), 2003. https://doi.org/10.3390/biomedicines13082003