Uncommon Factors Leading to Nephrotic Syndrome
Abstract
1. Introduction
2. Definition, Epidemiology, and Diagnosis of Nephrotic Syndrome
3. Clinical Presentation
4. Rare Causes of Nephrotic Syndrome
4.1. Schimke Syndrome: Pathophysiology and Histopathological Changes Linked to Nephrotic Syndrome
4.1.1. Pathophysiology
4.1.2. Histopathological Changes
4.1.3. Clinical Implications and Therapeutic Interventions
4.1.4. Future Directions and Research
4.2. Lecithin-Cholesterol Acyltransferase (LCAT) Deficiency
4.2.1. Fish-Eye Disease: Pathophysiology and Histopathological Changes Linked to Nephrotic Syndrome
Pathophysiology
Histopathological Changes
Clinical Implications and Therapeutic Interventions
Future Directions and Research
4.2.2. p.Leu364Pro Mutation Familial Lecithin Cholesterol Acyl Transferase Deficiency: Pathophysiology and Histopathological Changes Linked to Nephrotic Syndrome
Pathophysiology
Histopathological Changes
Clinical Implications and Therapeutic Interventions
Future Directions and Research
4.3. Nephrotic Syndrome Co-Existing with Type 1 Diabetes: Pathophysiology and Histopathological Changes
4.3.1. Pathophysiology
4.3.2. Histopathological Changes
4.3.3. Clinical Implications and Therapeutic Interventions
4.3.4. Future Directions and Research
4.4. Congenital Disorders of Glycosylation: Pathophysiology and Histopathological Changes Linked to Nephrotic Syndrome
4.4.1. Pathophysiology
4.4.2. Histopathological Changes
4.4.3. Clinical Implications and Therapeutic Interventions
4.4.4. Future Directions and Research
4.5. Nail–Patella Syndrome: Pathophysiology and Histopathological Changes Linked to Nephrotic Syndrome
4.5.1. Pathophysiology
4.5.2. Histopathological Changes
4.5.3. Clinical Implications and Therapeutic Interventions
4.5.4. Future Directions and Research
4.6. Coenzyme Q10 Deficiency: Pathophysiology and Histopathological Changes Linked to Nephrotic Syndrome
4.6.1. Pathophysiology
4.6.2. Histopathological Changes
4.6.3. Clinical Implications and Therapeutic Interventions
4.6.4. Future Directions and Research
4.7. Monoclonal Gammopathy with Renal Significance: Pathophysiology and Histopathological Changes Linked to Nephrotic Syndrome
4.7.1. Pathophysiology
4.7.2. Histopathological Changes
4.7.3. Clinical Implications and Therapeutic Interventions
4.7.4. Future Directions and Research
5. Challenges in the Research of Rare Genetic Disorders
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
NS | Nephrotic syndrome |
MCD | Minimal change disease |
FSGS | Focal segental glomerulosclerosis |
DN | Diabetic nephropathy |
CNS | Cogenital nephrotic syndrome |
GBM | Glomerular basement membrane |
MN | Membranous nephropathy |
SLE | Systemic lupus erythematosus |
GFB | Glomerular filtration barier |
SSNS | Steroid-sensitive nephrotic syndrome |
SRNS | Steroid-resistant nephrotic syndrome |
SIOD | Schimke immuno-osseous dysplasia |
LCAT | Lecithin-cholesterol acyltransferase |
FED | Fish-eye disease |
HDL | High-density lipoprotein |
LDL | Low-density lipoprotein |
HLA | Human leukocyte antigen |
T1D | Type 1 diabetes |
CDG | Congenital disorders of glycosylation |
AS | Alport syndrome |
HBI | Chronic renal failure |
DM | Diabetes mellitus |
NSAIL | Nonsteroidal anti-inflammatory drugs |
PIG | Podocyte infolding glomerulopathy |
NPS | Nail–Patella Syndrome |
ESRD | End-Stage Renal Disease |
ACE | Angiotensin-converting enzyme inhibitors |
ARB | Angiotensin receptor blockers |
GLP-1 | Glucagon-like peptide-1 |
SGLT2 | Sodium-glucose co-transporter 2 |
CoQ10 | Coenzyme Q10 |
MGRS | Monoclonal gammopathy with renal signficance |
MG | Monoclonal gammopathy |
LC | Light chains |
HC | Haevy chains |
FLC | Free light chain |
LDCC | Light chain deposition disease |
MPGN | Membranoproliferative glomerulonephritis |
MIDD | Monoclonal immunoglobulinemic glomerulonephritis |
References
- Kopp, J.B.; Anders, H.J.; Susztak, K.; Podestà, M.A.; Remuzzi, G.; Hildebrandt, F.; Romagnani, P. Podocytopathies. Nat. Rev. Dis. Primers 2020, 6, 68. [Google Scholar] [CrossRef]
- Vivarelli, M.; Massella, L.; Ruggiero, B.; Emma, F. Minimal Change Disease. Clin. J. Am. Soc. Nephrol. 2017, 12, 332–345. [Google Scholar] [CrossRef]
- Tapia, C.; Bastur, K. Nephrotic Syndrome. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Macé, C.; Chugh, S.S. Nephrotic syndrome: Components, connections, and angiopoietin-like 4-related therapeutics. J. Am. Soc. Nephrol. 2014, 25, 2393–2398. [Google Scholar] [CrossRef]
- Lemmink, H.H.; Nillesen, W.N.; Mochizuki, T.; Schröder, C.H.; Brunner, H.G.; van Oost, B.A.; Monnens, L.A.; Smeets, H.J. Benign familial hematuria due to mutation of the type IV collagen alpha4 gene. J. Clin. Investig. 1996, 98, 1114–1118. [Google Scholar] [CrossRef]
- Kashtan, C.E.; Ding, J.; Garosi, G.; Heidet, L.; Massella, L.; Nakanishi, K.; Nozu, K.; Renieri, A.; Rheault, M.; Wang, F.; et al. Alport syndrome: A unified classification of genetic disorders of collagen IV α345: A position paper of the Alport Syndrome Classification Working Group. Kidney Int. 2018, 93, 1045–1051. [Google Scholar] [CrossRef]
- Debiec, H.; Dossier, C.; Letouzé, E.; Gillies, C.E.; Vivarelli, M.; Putler, R.K.; Ars, E.; Jacqz-Aigrain, E.; Elie, V.; Colucci, M.; et al. Transethnic, Genome-Wide Analysis Reveals Immune-Related Risk Alleles and Phenotypic Correlates in Pediatric Steroid-Sensitive Nephrotic Syndrome. J. Am. Soc. Nephrol. 2018, 29, 2000–2013. [Google Scholar] [CrossRef]
- Trautmann, A.; Bodria, M.; Ozaltin, F.; Gheisari, A.; Melk, A.; Azocar, M.; Anarat, A.; Caliskan, S.; Emma, F.; Gellermann, J.; et al. Spectrum of steroid-resistant and congenital nephrotic syndrome in children: The PodoNet registry cohort. Clin. J. Am. Soc. Nephrol. 2015, 10, 592–600. [Google Scholar] [CrossRef]
- Jarad, G.; Cunningham, J.; Shaw, A.S.; Miner, J.H. Proteinuria precedes podocyte abnormalities inLamb2-/- mice, implicating the glomerular basement membrane as an albumin barrier. J. Clin. Investig. 2006, 116, 2272–2279. [Google Scholar] [CrossRef] [PubMed]
- Wartiovaara, J.; Ofverstedt, L.G.; Khoshnoodi, J.; Zhang, J.; Mäkelä, E.; Sandin, S.; Ruotsalainen, V.; Cheng, R.H.; Jalanko, H.; Skoglund, U.; et al. Nephrin strands contribute to a porous slit diaphragm scaffold as revealed by electron tomography. J. Clin. Investig. 2004, 114, 1475–1483. [Google Scholar] [CrossRef] [PubMed]
- Tryggvason, K.; Wartiovaara, J. Molecular basis of glomerular permselectivity. Curr. Opin. Nephrol. Hypertens. 2001, 10, 543–549. [Google Scholar] [CrossRef] [PubMed]
- Kerjaschki, D. Caughtflat-footed: Podocyte damage and the molecular bases of focal glomerulosclerosis. J. Clin. Investig. 2001, 108, 1583–1587. [Google Scholar] [CrossRef] [PubMed]
- Neal, C.R. Podocytes … What’s under yours? (Podocytes and foot processes and how they change in nephropathy). Front. Endocrinol. 2015, 6, 9. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, A.; Feltran, L.S.; Sampson, M.G. Genetics of Nephrotic Syndrome Presenting in Childhood: Core Curriculum 2019. Am. J. Kidney Dis. 2019, 74, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Lahdenkari, A.T.; Kestilä, M.; Holmber, C.; Koskimies, O.; Jalanko, H. Nephrin gene (NPHS1) in patients with minimal change nephrotic syndrome (MCNS). Kidney Int. 2004, 65, 1856–1863. [Google Scholar] [CrossRef]
- Lane, B.M.; Cason, R.; Esezobor, C.I.; Gbadegesin, R.A. Genetics of Childhood Steroid Sensitive Nephrotic Syndrome: An Update. Front. Pediatr. 2019, 7, 8. [Google Scholar] [CrossRef]
- Hinkes, B.G.; Mucha, B.; Vlangos, C.N.; Gbadegesin, R.; Liu, J.; Hasselbacher, K.; Hangan, D.; Ozaltin, F.; Zenker, M.; Hildebrandt, F.; et al. Nephrotic syndrome in the first year of life: Two thirds of cases are caused by mutations in 4 genes (NPHS1, NPHS2, WT1, and LAMB2). Pediatrics 2007, 119, e907–e919. [Google Scholar] [CrossRef]
- Dumas De La Roque, C.; Combe, C.; Rigothier, C. Actualité sur les mécanismes physiopathologiques des syndromes néphrotiques idiopathiques: Lésions glomérulaires minimes et hyalinose segmentaire et focale [Up to date of pathophysiology mechanism of idiopathic nephrotic syndromes: Minimal change disease and focal and segmental glomerulosclerosis]. Nephrol. Ther. 2018, 14, 501–506. [Google Scholar] [CrossRef]
- Mahalingasivam, V.; Booth, J.; Sheaff, M.; Yaqoob, M. Nephrotic syndrome in adults. Acute Med. 2018, 17, 36–43. [Google Scholar] [PubMed]
- Kodner, C. Diagnosis and Management of Nephrotic Syndrome in Adults. Am. Fam. Physician 2016, 93, 479–485. [Google Scholar] [PubMed]
- Devi Padmanaban, P.; Jayaraman, D.; Shanmugam, S.G.; Geminiganesan, S. Nephrotic Syndrome and Hodgkins Lymphoma—An Unusual Association. EJIFCC 2022, 33, 262–267. [Google Scholar] [PubMed]
- Luciano, R.L.; Brewster, U.C. Kidney involvement in leukemia and lymphoma. Adv. Chronic Kidney Dis. 2014, 21, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Graca, A.; Suszek, D.; Jeleniewicz, R.; Majdan, M. Nephrotic syndrome in the course of type 1 diabetes mellitus and systemic lupus erythematosus with secondary antiphospholipid syndrome-diagnostic and therapeutic problems. Reumatologia 2020, 58, 331–334. [Google Scholar] [CrossRef] [PubMed]
- Pereira Rêgo Muniz, M.; Pereira Arcoverde Fechine Brito, L.; Cavalcante Vale, P.H.; Leite Guedes, F.; Mendonça Oliveira, T.K.; de Araújo Brito, D.J.; Salgado Filho, N.; Dantas, M.; Barros Silva, G.E. Renal involvement in systemic lupus erythematosus: Additional histopathological lesions. Arch. Med. Sci. 2023, 19, 1398–1409. [Google Scholar] [CrossRef]
- Kveder, R.; Kajtna-Koselj, M.; Rott, T.; Bren, A.F. Nephrotic syndrome in patients with diabetes mellitus is not always associated with diabetic nephropathy. Nephrol. Dial. Transplant. 2001, 16, 86–87. [Google Scholar] [CrossRef]
- Bawahab, N.S.; Safdar, O.Y.; Nagadi, S.A.; Saeedi, A.T.; Mohammed Hussain, R.W. Nephrotic syndrome co-existing with type 1 diabetes in a 12-year-old boy: Case report and literature review. SAGE Open Med. Case Rep. 2019, 7, 2050313X19827734. [Google Scholar] [CrossRef]
- Nishizono, R.; Kogou, H.; Ishizaki, Y.; Minakawa, A.; Kikuchi, M.; Inagaki, H.; Sato, Y.; Fujimoto, S. Concurrent minimal change nephrotic syndrome and type 1 diabetes mellitus in an adult Japanese woman: A case report. BMC Nephrol. 2020, 21, 410. [Google Scholar] [CrossRef] [PubMed]
- Agras, P.I.; Kinik, S.T.; Cengiz, N.; Baskin, E. Type 1 diabetes mellitus associated with nephrotic syndrome. J. Pediatr. Endocrinol. Metab. 2006, 19, 1045–1048. [Google Scholar] [CrossRef]
- Lewis, G.; Maxwell, A.P. Timely diagnosis and treatment essential in glomerulonephritis. Practitioner 2015, 259, 13–17, 2. [Google Scholar] [PubMed]
- Mérida, E.; Praga, M. NSAIDs and Nephrotic Syndrome. Clin. J. Am. Soc. Nephrol. 2019, 14, 1280–1282. [Google Scholar] [CrossRef]
- Jia, N.; Cormack, F.C.; Xie, B.; Shiue, Z.; Najafian, B.; Gralow, J.R. Collapsing focal segmental glomerulosclerosis following long-term treatment with oral ibandronate: Case report and review of literature. BMC Cancer 2015, 15, 535. [Google Scholar] [CrossRef]
- Gbadegesin, R.; William, S.E. Nephrotic syndrome. In Comprehensive Pediatric Nephrology; Geary Franz Scaefer, D.F., Ed.; Mosby: Philadelphia, PA, USA, 2008; pp. 205–218. [Google Scholar]
- Boyer, O.; Tory, K.; Machuca, E.; Antignac, C. Idiopatic Nephrotic Syndrome: Genetic Aspect. In Pediatric Nephrology, 7th ed.; Avner, E.E., Harmon, W.E., Niaudet, P., Yoshikawa, N., Emma, F., Goldstein, S.L., Eds.; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Dossier, C.; Lapidus, N.; Bayer, F.; Sellier-Leclerc, A.L.; Boyer, O.; de Pontual, L.; May, A.; Nathanson, S.; Orzechowski, C.; Simon, T.; et al. Epidemiology of idiopathic nephrotic syndrome in children: Endemic or epidemic? Pediatr. Nephrol. 2016, 31, 2299–2308. [Google Scholar] [CrossRef]
- Kikunaga, K.; Ishikura, K.; Terano, C.; Sato, M.; Komaki, F.; Hamasaki, Y.; Sasaki, S.; Iijima, K.; Yoshikawa, N.; Nakan-ishi, K.; et al. High incidence of idiopathic nephrotic syndrome in East Asian children: A nationwide survey in Japan (JP-SHINE study). Clin. Exp. Nephrol. 2017, 21, 651–657. [Google Scholar] [CrossRef]
- McKinney, P.A.; Feltbower, R.G.; Brocklebank, J.T.; Fitzpatrick, M.M. Time trends and ethnic patterns of childhood nephrotic syndrome in Yorkshire, UK. Pediatr. Nephrol. 2001, 16, 1040–1044. [Google Scholar] [CrossRef]
- Esezobor, C.I.; Solarin, A.U.; Gbadegesin, R. Changing epidemiology of nephrotic syndrome in Nigerian children: A cross-sectional study. PLoS ONE 2020, 15, e0239300. [Google Scholar] [CrossRef]
- Anonymous. The primary nephrotic syndrome in children. Identification of patients with minimal change nephrotic syndrome from initial response to prednisone. A report of the International Study of Kidney Disease in Children. J. Pediatr. 1981, 98, 561–564. [Google Scholar] [CrossRef]
- Maas, R.J.; Deegens, J.K.; Beukhof, J.R.; Reichert, L.J.; Ten Dam, M.A.; Beutler, J.J.; van den Wall Bake, A.W.L.; Rensma, P.L.; Konings, C.J.; Geerse, D.A.; et al. The Clinical Course of Minimal Change Nephrotic Syndrome with Onset in Adulthood or Late Adolescence: A Case Series. Am. J. Kidney Dis. 2017, 69, 637–646. [Google Scholar] [CrossRef]
- Gbadegesin, R.A.; Winn, M.P.; Smoyer, W.E. Genetic testing in nephrotic syndrome—Challenges and opportunities. Nat. Rev. Nephrol. 2013, 9, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Cheong, H.I. Genetic tests in children with steroid-resistant nephrotic syndrome. Kidney Res. Clin. Pract. 2020, 39, 7–16. [Google Scholar] [CrossRef]
- Efe, O.; So, P.N.H.; Anandh, U.; Lerma, E.V.; Wiegley, N. An Updated Review of Membranous Nephropathy. Indian J. Nephrol. 2024, 34, 105–118. [Google Scholar] [CrossRef]
- Segarra-Medrano, A.; Carnicer-Cáceres, C.; Arbós-Via, M.A.; Quiles-Pérez, M.T.; Agraz-Pamplona, I.; Ostos-Roldán, E. Biological markers of nephrotic syndrome: A few steps forward in the long way. Nefrologia 2012, 32, 558–572, (In English, Spanish). [Google Scholar] [CrossRef]
- Sampson, M.G.; Hodgin, J.B.; Kretzler, M. Defining nephrotic syndrome from an integrative genomics perspective. Pediatr. Nephrol. 2015, 30, 51–63; quiz 59. [Google Scholar] [CrossRef]
- Floege, J.; Johnson, R. Introduction to Glomerular Disease: Clinical Presentations. In Comprehensive Clinical Nephrology, 7th ed.; Johnson, F., Floege, J., Tonelli, M., Eds.; Elsevier: Philadelphia, PA, USA, 2024; pp. 193–207. [Google Scholar]
- Kaysen, G.A.; Gambertoglio, J.; Felts, J.; Hutchison, F.N. Albumin synthesis, albuminuria and hyperlipemia in nephrotic patients. Kidney Int. 1987, 31, 1368–1376. [Google Scholar] [CrossRef] [PubMed]
- Svenningsen, P.; Friis, U.G.; Versland, J.B.; Buhl, K.B.; Møller Frederiksen, B.; Andersen, H.; Zachar, R.M.; Bistrup, C.; Skøtt, O.; Jørgensen, J.S.; et al. Mechanisms of renal NaCl retention in proteinuric disease. Acta Physiol. 2013, 207, 536–545. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Hurbe, B.; Herrera-Acosta, J.; Johnson, R.J. Interstitial inflammation, sodium retention, and the pathogenesis of nephrotic edema: A unifying hypothesis. Kidney Int. 2002, 62, 1379–1384. [Google Scholar] [CrossRef] [PubMed]
- Bockenhauer, D. Over- or underfill: Not all nephrotic states are created equal. Pediatr. Nephrol. 2013, 28, 1153–1156. [Google Scholar] [CrossRef]
- Vaziri, N.D. HDL abnormalities in nephrotic syndrome and chronic kidney disease. Nat. Rev. Nephrol. 2016, 12, 37–47. [Google Scholar] [CrossRef]
- Vaziri, N.D. Disorders of lipid metabolism in nephrotic syndrome: Mechanisms and consequences. Kidney Int. 2016, 90, 41–52. [Google Scholar] [CrossRef]
- Fogo, A.B. Mechanisms of progression of chronic kidney disease. Pediatr. Nephrol. 2007, 22, 2011–2022. [Google Scholar] [CrossRef]
- Schnaper, H.W. Remnant nephron physiology and the progression of chronic kidney disease. Pediatr. Nephrol. 2014, 29, 193–202. [Google Scholar] [CrossRef]
- Cravedi, P.; Remuzzi, G. Pathophysiology of proteinuria and its value as an outcome measure in chronic kidney disease. Br. J. Clin. Pharmacol. 2013, 76, 516–523. [Google Scholar] [CrossRef]
- Pisoni, R.; Aros, C.; Ruggenenti, P.; Remuzzi, G. Mechanisms of Progression of Chronic Renal Disease. Saudi J. Kidney Dis. Transplant. 2002, 13, 250–256. [Google Scholar]
- Milovanova, A.; Ananin, P.; Vashurina, T.; Zrobok, O.; Dmitrienko, S.; Ryaposova, A.; Tsygina, E.; Pushkov, A.; Zhanin, I.; Chudakova, D.; et al. Genetic and Clinical Features of Schimke Immuno-Osseous Dysplasia: Single-Centre Retrospective Study of 21 Unrelated Paediatric Patients over a Period of 20 Years. Int. J. Mol. Sci. 2025, 26, 1744. [Google Scholar] [CrossRef] [PubMed]
- Zieg, J.; Bezdička, M.; Němčikova, M.; Balaščáková, M.; Sukova, M.; Štérbova, K.; Vondrák, K.; Dušek, J.; Křepelová, A. Schimke immunoosseous dysplasia: An ultra-rare disease a 20-year case series from the tertiary hospital in the Czech Republic. Ital. J. Pediatr. 2023, 49, 11. [Google Scholar] [CrossRef] [PubMed]
- Pourpashang, P.; Esfandiar, N.; Paryeshahi, S.; Sharafain, S.; Mirbehbahani, S.H. Schimke immuno-osseous dysplasia in a boy with generalized edem; a case report. J. Nephropathol. 2024, 13, e21481. [Google Scholar] [CrossRef]
- Sarin, S.; Javidan, A.; Boivin, F.; Alexopoulon, I.; Lukic, D.; Svajger, B.; Chu, S.; Baradaran-Heravi, A.; Boerkoel, C.F.; Rosenblum, N.D.; et al. Insights into the renal pathogenesis in Schimke immuno-osseous dysplasia: A renal histological characterization and expression analysis. J. Histochem. Cytochem. 2015, 63, 32–44. [Google Scholar] [CrossRef]
- Xiong, S.; Shuai, L.; Li, X.; Dang, X.; Wu, X.; He, Q. Podocytic infolding in Schimke immuno-osseous dysplasia with novel SMARCAL1 mutations: A case report. BMC Nephrol. 2020, 21, 170. [Google Scholar] [CrossRef]
- Pedrosa, A.K.; Torres, L.F.; Silva, A.C.; Dantas, A.B.; Zuntini, K.L.; Aguiar, L.C. Rare case of nephrotic syndrome: Schimke syndrome. Braz. J. Nephrol. 2016, 38, 370–373. [Google Scholar] [CrossRef]
- Boerkoel, C.F.; O’Neill, S.; André, J.L.; Benke, P.J.; Bogdanovic, R.; Bulla, M.; Burguet, A.; Cockfield, S.; Cordeiro, I.; Ehrich, J.H.; et al. Manifestations and treatment of Schimke immuno-osseous dysplasia: 14 new cases and a review of the literature. Eur. J. Pediatr. 2000, 159, 1–7. [Google Scholar] [CrossRef]
- D’Agati, V.D. The spectrum of focal segmental glomerulosclerosis: New insights. Curr. Opin. Nephrol. Hypertens. 2008, 17, 271–281. [Google Scholar] [CrossRef]
- Zivicnjak, M.; Franke, D.; Zenker, M.; Hoyer, J.; Lucke, T.; Pape, L.; Ehrich, J.H. SMARCAL1 mutations: A case of prepubertal idiopathic steroid-resistant nephrotic syndrome. Pediatr. Res. 2009, 65, 564–568. [Google Scholar] [CrossRef]
- Choi, M.J. Histologic classification on FSGS: Does form delineate function? Clin. J. Am. Soc. Nephrol. 2013, 8, 344–346. [Google Scholar] [CrossRef]
- Baradaran-Heravi, A.; Raams, A.; Lubieniecka, J.; Cho, K.S.; DeHaai, K.A.; Basiratnia, M.; Mari, P.O.; Xue, Y.; Rauth, M.; Olney, A.H.; et al. SMARCAL1 deficiency predisposes to non-Hodgkin lymphoma and hypersensitivity to genotoxic agents in vivo. Am. J. Med. Genet. A 2012, 158A, 2204–2213. [Google Scholar] [CrossRef] [PubMed]
- Ramdeny, S.; Chaudhary, A.; Worth, A.S.; Slatter, M.; Lum, S.H.; Vora, A. Activity of blinatumomab in lymphoblastic leukemia with impaired T-cell immunity due to congenital immunodeficiency. Blood Adv. 2021, 5, 2153–2155. [Google Scholar] [CrossRef] [PubMed]
- Lücke, T.; Franke, D.; Clewing, J.M.; Boerkoel, C.F.; Ehrich, J.H.; Das, A.M.; Zivicnjak, M. Schimke versus non-Schimke chronic kidney disease: An anthropometric approach. Pediatrics 2006, 118, e400–e407. [Google Scholar] [CrossRef] [PubMed]
- Lipska-Ziętkiewicz, B.S.; Gellermann, J.; Boyer, O.; Gribouval, O.; Ziętkiewicz, S.; Kari, J.A.; Shalaby, M.A.; Ozaltin, F.; Dusek, J.; Melk, A.; et al. PodoNet Consortium. Low renal but high extrarenal phenotype variability in Schimke immuno-osseous dysplasia. PLoS ONE 2017, 12, e0180926. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Carroll, C.; Hunley, T.E.; Guo, Y.; Cortez, D. A novel splice site mutation in SMARCAL1 results in aberrant exon definition in a child with Schimke immunoosseous dysplasia. Am. J. Med. Genet. A 2015, 167A, 2260–2264. [Google Scholar] [CrossRef]
- Clewing, J.M.; Antalfy, B.C.; Lücke, T.; Najafian, B.; Marwedel, K.M.; Hori, A.; Powel, R.M.; Do, A.F.; Najera, L.; SantaCruz, K.; et al. Schimke immuno-osseous dysplasia: A clinicopathological correlation. J. Med. Genet. 2007, 44, 122–130. [Google Scholar] [CrossRef]
- Lücke, T.; Kanzelmeyer, N.; Baradaran-Heravi, A.; Boerkoel, C.F.; Burg, M.; Ehrich, J.H.; Pape, L. Improved outcome with immunosuppressive monotherapy after renal transplantation in Schimke-immuno-osseous dysplasia. Pediatr. Transplant. 2009, 13, 482–489. [Google Scholar] [CrossRef]
- Bertaina, A.; Grimm, P.C.; Weinberg, K.; Parkman, R.; Kristovich, K.M.; Barbarito, G.; Lippner, E.; Dhamdhere, G.; Ramachandran, V.; Spatz, J.M.; et al. Sequential stem cell-kidney transplantation in Schimke immuno-osseous dysplasia. N. Engl. J. Med. 2022, 386, 2295–2302. [Google Scholar] [CrossRef]
- Alavanda, C.; Demir, Ş.; Güven, S.; Eltan, M.; Bilgiç Eltan, S.; Sefer, A.P.; Pul, S.; Güran, T.; Alpay, H.; Arman, A.; et al. Expanding the Clinical Features of Schimke Immuno-osseous Dysplasia: A New Patient with a Novel Variant and Novel Clinical Findings. J. Clin. Res. Pediatr. Endocrinol. 2025, 17, 126–135. [Google Scholar] [CrossRef]
- Mehta, R.; Elias-López, D.; Martagón, A.J.; Pérez-Méndez, O.A.; Sánchez, M.L.O.; Segura, Y.; Tusié, M.T.; Aguilar-Salinas, C.A. LCAT deficiency: A systematic review with the clinical and genetical description of Mexican kindred. Lipids Health Dis. 2021, 20, 70. [Google Scholar] [CrossRef] [PubMed]
- Vaziri, N.D.; Liang, K.; Parks, J.S. Acquired lecithin-cholesterol acyltransferase deficiency in nephrotic syndrome. Am. J. Physiol. Renal Physiol. 2001, 280, F823-8. [Google Scholar] [CrossRef] [PubMed]
- Hasbal, N.B.; Palit, F.; Taş, M.Y.; Solakoglu, S.; Kiliҫaslan, I.; Yildiz, G. A rare cause of nephrotic syndrome: The p.Leu364Pro mutation associated with familial lesitin cholesterol acyl transferase deficiency. Turk. J. Nephrol. 2024, 33, 303–304. [Google Scholar] [CrossRef]
- Kuivenhoven, J.A.; Pritchard, H.; Hill, J.; Frohlich, J.; Assmann, G.; Kastelein, J. The molecular pathology of lecithin: Cholesterol acyltransferase (LCAT) deficiency syndromes. J. Lipid Res. 1997, 38, 191–205. [Google Scholar] [CrossRef] [PubMed]
- Vitali, C.; Bajej, A.; Nguyen, C.; Schnall, J.; Chen, J.; Stylianou, K.; Rader, D.J.; Cuchel, M. A systematic review of the natural history and biomarkers of primary lecithin: Cholesterol acyltransferase deficiency. J. Lipid Res. 2022, 63, 100169. [Google Scholar] [CrossRef]
- Mahapatra, H.S.; Ramanarayanan, S.; Gupta, A.; Bhardwaj, M. Co-existence of classic familial lecithin-cholesterol acyl transferase deficiency and fish eye disease in the same family. Indian J. Nephrol. 2015, 25, 362–365. [Google Scholar] [CrossRef]
- Sahay, M.; Vali, P.S.; Ismal, K.; Gowrishankar, S.; Padua, M.D.; Swain, M. An unusual case of nephrotic syndrome. Indian J. Nephrol. 2016, 26, 55–56. [Google Scholar] [CrossRef]
- Ranawaka, P.; Erger, F.; Dayasiri, K.; Altmüller, J.; Jayasundara, K.; Gamage, M.; Chathurangana, P.; Herath, I.; Siderius, L.; Beck, B. POS-434 fish-eye disease: A rare cause of steroid resistant nephrotic syndrome. Kidney Int. Rep. 2021, 6, s188–s189. [Google Scholar] [CrossRef]
- Takahashi, S.; Hiromura, K.; Tsukida, M.; Ohishi, Y.; Hamatani, H.; Sakurai, N.; Sakairi, T.; Ikeuchi, H.; Kaneko, Y.; Maeshima, A.; et al. Nephrotic syndrome caused by immune-mediated acquired LCAT deficiency. J. Am. Soc. Nephrol. 2013, 24, 1305–1312. [Google Scholar] [CrossRef]
- Charles Jennette, J. Heptinstall’s Pathology of the Kidney, 6th ed.; Wolters Kluwer (Lippincott Williams & Wilkins): Baltimore, MD, USA, 2007. [Google Scholar]
- Hirashio, S.; Ueno, T.; Naito, T.; Masaki, T. Characteristic kidney pathology, gene abnormality and treatments in LCAT deficiency. Clin. Exp. Nephrol. 2014, 18, 180–193. [Google Scholar] [CrossRef]
- Strøm, E.H.; Sund, S.; Reier-Nilsen, M.; Dørje, C.; Leren, T.P. Lecithin: Cholesterol Acyltransferase (LCAT) Deficiency: Renal lesions with early graft recurrence. Ultrastruct. Pathol. 2011, 35, 139–145. [Google Scholar] [CrossRef]
- Kanai, M.; Koh, S.; Masuda, D.; Koseki, M.; Nishida, K. Clinical features and visual function in a patient with Fish-eye disease: Quantitative measurements and optical coherence tomography. Am. J. Ophthalmol. Case Rep. 2018, 10, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Balwani, M.R.; Ghodela, V.A.; Kute, V.B.; Shah, P.R.; Patel, H.V.; Gera, D.N.; Vanikar, A.; Trivedi, H.L. An unusual presentation of LCAT deficiency as nephrotic syndrome with normal serum HDL-C level. J. Nephropharmacol. 2017, 6, 23–26. [Google Scholar] [PubMed]
- Pavanello, C.; Calabresi, L. Genetic, biochemical, and clinical features of LCAT deficiency: Update for 2020. Curr. Opin. Lipidol. 2020, 31, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, M.; Bujo, H.; Yokote, K.; Murano, T.; Yamaguchi, T.; Ogura, M.; Ikewaki, K.; Koseki, M.; Takeuchi, Y.; Nakatsuka, A.; et al. Current Status of Familial LCAT Deficiency in Japan. J. Atheroscler. Thromb. 2021, 28, 679–691. [Google Scholar] [CrossRef]
- Stoekenbroek, R.M.; van den Bergh Weerman, M.A.; Hovingh, G.K.; Potter van Loon, B.J.; Siegert, C.E.; Holleboom, A.G. Familial LCAT deficiency: From renal replacement to enzyme replacement. Neth. J. Med. 2013, 71, 29–31. [Google Scholar] [PubMed]
- Ozkok, A.; Onal, Y.; Kilicaslan, I.; Solakoglu, S.; Bayramlar, H.; Odabas, A.R. The Case | Nephrotic syndrome with corneal opacities. Kidney Int. 2017, 91, 515–516. [Google Scholar] [CrossRef]
- Weber, P.; Owen, J.S.; Desai, K.; Clemens, M.R. Hereditary lecithin-cholesterol acyltransferase deficiency. Case report of a German patient. Am. J. Clin. Pathol. 1987, 88, 510–516. [Google Scholar] [CrossRef]
- Santamarina-Fojo, S.; Lambert, G.; Hoeg, J.M.; Brewer, H.B., Jr. Lecithin-cholesterol acyltransferase: Role in lipoprotein metabolism, reverse cholesterol transport and atherosclerosis. Curr. Opin. Lipidol. 2000, 11, 267–275. [Google Scholar] [CrossRef]
- Leal-Gonzalez, R.; Ramos-Reyes, Á.; Moncada-Madrazo, M.; Apodaca-Ramos, I.; Morales-Palomino, K.L.; Valdés-Cepeda, A.; Marrufo-García, C.A.; Rangel-Nava, H.A. LCAT deficiency and pregnancy: Case report. Obstet. Med. 2021, 14, 193–196. [Google Scholar] [CrossRef]
- Althaf, M.M.; Almana, H.; Abdelfadiel, A.; Amer, S.M.; Al-Hussain, T.O. Familial lecithin-cholesterol acyltransferase (LCAT) deficiency; a differential of proteinuria. J. Nephropathol. 2015, 4, 25–28. [Google Scholar] [CrossRef]
- Naghashpour, M.; Cualing, H. Splenomegaly with sea-blue histocytosis, dyslipidemia, and nephropathy in a patient with lecithin-cholesterol acyltransferase deficiency: A clinicopathologic correlation. Metabolism 2009, 58, 1459–1464. [Google Scholar] [CrossRef]
- Ratnayake, A.; Turri, M.; Calabresi, M.; Pavanello, C.; McLean, A.; Tanna, A.; Cegla, J.; Jones, B.; Duncan, N. Emerging Therapies for Familial Lecithin-Cholesterol Acyltransferase Deficiency: A Role for Plasma Exchange. Kidney Int. Rep. 2024, 9, 2299–2302. [Google Scholar] [CrossRef]
- Yang, D.; Ren, X.; Lu, Y.; Han, J. Current diagnosis and management of rare pediatric diseases in China. Intractable Rare Dis. Res. 2021, 10, 223–237. [Google Scholar] [CrossRef] [PubMed]
- Mszar, R.; Webb, G.B.; Kulkarni, V.T.; Ahmad, Z.; Soffer, D. Genetic Lipid Disorders Associated with Atherosclerotic Cardiovascular Disease: Molecular Basis to Clinical Diagnosis and Epidemiologic Burden. Med. Clin. N. Am. 2022, 106, 325–348. [Google Scholar] [CrossRef] [PubMed]
- Schiffmann, R.; Hughes, D.A.; Linthorst, G.E.; Ortiz, A.; Svarstad, E.; Warnock, D.G.; West, M.L.; Wanner, C.; Bichet, D.G.; Christensen, E.I.; et al. Screening, diagnosis, and management of patients with Fabry disease: Conclusions from a “Kidney Disease: Improving Global Outcomes” (KDIGO) Controversies Conference. Kidney Int. 2017, 91, 284–293. [Google Scholar] [CrossRef]
- Vitali, C.; Rader, D.J.; Cuchel, M. Novel therapeutic opportunities for familial lecithin:cholesterol acyltransferase deficiency: Promises and challenges. Curr. Opin. Lipidol. 2023, 34, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Shamburek, R.D.; Bakker-Arkema, R.; Auerbach, B.J.; Krause, B.R.; Homan, R.; Amar, M.J.; Freeman, L.A.; Remaley, A.T. Familial lecithin:cholesterol acyltransferase deficiency: First-in-human treatment with enzyme replacement. J. Clin. Lipidol. 2016, 10, 356–367. [Google Scholar] [CrossRef]
- de Serpa Brandão, R.M.S.; Britto, F.B.; do Monte Neto, J.T.; Lima, M.C.; do Monte, S.J.H.; de Sousa Lima, A.V.; Pereira, E.M.; da Silva, H.J.N.; Oliveira, D.M.T.E.; Coelho, A.G.B.; et al. Familial lecithin-cholesterol acyltransferase deficiency: If so rare, why so frequent in the state of Piauí, northeastern Brazil? Mol. Genet. Metab. Rep. 2022, 30, 100840. [Google Scholar] [CrossRef]
- Norum, K.R.; Remaley, A.T.; Miettinen, H.E.; Strøm, E.H.; Balbo, B.E.P.; Sampaio, C.A.T.L.; Wiig, I.; Kuivenhoven, J.A.; Calabresi, L.; Tesmer, J.J.; et al. Lecithin:cholesterol acyltransferase: Symposium on 50 years of biomedical research from its discovery to latest findings. J. Lipid Res. 2020, 61, 1142–1149. [Google Scholar] [CrossRef] [PubMed]
- Ciro Acosta, S.; Díaz-Ordóñez, L.; Gutierrez-Medina, J.D.; Silva-Cuero, Y.K.; Arango-Vélez, L.G.; García-Trujillo, A.O.; Pachajoa, H. Familial LCAT Deficiency and Low HDL-C Levels: In silico Characterization of Two Rare LCAT Missense Mutations. Appl. Clin. Genet. 2024, 17, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Urizar, R.E.; Schwartz, A.; Top, F., Jr.; Vernier, R.L. The nephrotic syndrome in children with diabetes mellitus of recent onset. N. Engl. J. Med. 1969, 281, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Marakkar, S.; Rahman, R.K.; Soodhana, D.; Kumar, S. Concurrent Manifestations of Type 1 Diabetes Mellitus and Nephrotic Syndrome in a Child With Unilateral Renal Hypo-dysplasia: A Case Report with Review of Literature. Indian Pediatr. Case Rep. 2025, 5, 5–8. [Google Scholar] [CrossRef]
- Jansson Sigfrids, F.; Groop, P.H. Progrssion and regression of kidney disease in type 1 diabetes. Front. Nephrol. 2023, 3, 1282818. [Google Scholar] [CrossRef]
- Zajec, A.; Trebšak Podkraješk, K.; Tesovnik, T.; Šket, R.; Čugalj Kern, B.; Jenko Bizjan, B.; Šmigoc Schweiger, D.; Battelino, T.; Kovač, J. Pathogenesis of Type 1 Diabetes: Estabilished Facts and New Insights. Genes 2022, 13, 706. [Google Scholar] [CrossRef]
- Tang, S.C.W.; Sharma, K. Pathogenesis, Clinical Manifestations, and Natural History of Diabetic Kidney Disease. In Comperhensive Clinical Nephrology, 7th ed.; Johnson, R.J., Floege, J., Tonelli, M., Eds.; Elsevier: Philadelphia, PA, USA, 2024; pp. 363–379. [Google Scholar]
- Takahashi, T.; Okamoto, T.; Sato, Y.; Hayashi, A.; Ueda, Y.; Ariga, T. Glucose metabolism disorders in children with refractory nephrotic syndrome. Pediatr. Nephrol. 2020, 35, 649–657. [Google Scholar] [CrossRef]
- Niaudet, P. Steroid-sensitive nephrotic syndrome in children. In Pediatric Nephrology; Avner, E.D., Harmon, W.E., Neasden, P., Eds.; Lippincott Williams and Wilkins: Philadelphia, PA, USA, 2004; pp. 543–556. [Google Scholar]
- Rego Filho, E.A.; Mello, S.F.; Omuro, A.M.; Loli, J.O. Simultaneous onset of steroid-sensitive nephrotic syndrome and type 1 diabetes. J. Pediatr. 2003, 79, 557–560. (In Portuguese) [Google Scholar] [CrossRef] [PubMed]
- Kitahara, M.; Kurata, K. Slowly Progressive Type 1 Diabetes following Steroid-Sensitive Relapsing Nephrotic Syndrome in Childhood: A Case Report. Biomed. Hub. 2025, 10, 81–85. [Google Scholar] [CrossRef]
- Otukesh, H.; Torabi, A.; Hosein, R.; Kheirkhah Rahimabad, P.; Mehrazma, M. Co-existence of type 1 Diabetes Mellitus and Nephrotic Syndrome with Membranous Glomerulonephritis in a 6 Year Old Boy: Report of a Case. IJCA 2016, 2, 25–27. [Google Scholar]
- Chen, J.; Liu, Q.; He, J.; Li, J. Immune responses in diabetes nephropathy. Pathogenic mechanisms and therapeutuc target. Front. Immunol. 2022, 13, 958790. [Google Scholar] [CrossRef]
- Roep, B.O.; Thomaidou, S.; van Tienhoven, R.; Zaldumbide, A. Type 1 diabetes mellitus as a disease of the B-cell (do not blame the immune system?). Nat. Rev. Endocrinol. 2021, 17, 150–161. [Google Scholar] [CrossRef] [PubMed]
- Moyses Neto, M.; Silva, G.E.; Costa, R.S.; Romão, E.A.; Vieira Neto, O.M.; Dantas, M. Minimal change disease associated with type 1 and type 2 diabetes mellitus. Arch. Endocrinol. Metab. 2012, 56, 331–335. [Google Scholar] [CrossRef] [PubMed]
- Kari, J.A.; El-Desoky, S.M.; Mokhtar, G.; Jalalah, S. Simultaneous onset of steroid resistant nephrotic syndrome and IDDM in two young children. BMJ Case Rep. 2010, 2010, bcr0420102916. [Google Scholar] [CrossRef]
- Nazar, C.M. Diabetic nephropathy; principles of diagnosis and treatment of diabetic kidney disease. J. Nephropharmacol. 2014, 3, 15–20. [Google Scholar]
- Goldman, M.; Hébert, D.; Geary, D.F. Management of steroid-sensitive nephrotic syndrome in children with type 1 diabetes. Pediatr. Nephrol. 2002, 17, 351–354. [Google Scholar] [CrossRef]
- Kim, D.W.; Kim, H.J.; Seong, E.Y.; Kim, S.S.; Lee, S.; Kim, S.; Kwon, C.H.; Song, S.H. Virtual diagnosis of diabetic nephropathy using metabolomics in place of kidney biopsy: The DIAMOND study. Diabetes Res. Clin. Pract. 2023, 205, 110986. [Google Scholar] [CrossRef]
- Peces, R.; Riera, J.R.; Lopez Larrea, C.; Alvarez, J. Steroid-responsive relapsing nephrotic syndrome associated with early diabetic glomerulopathy in a child. Nephron 1987, 46, 78–82. [Google Scholar] [CrossRef]
- Banderali, G.; Salvatici, E.; Rovelli, V.; Jaeken, J. PMM2-CDG and nephrotic syndrome: A case report. Clin. Case Rep. 2022, 10, e05347. [Google Scholar] [CrossRef]
- Jaeken, J. Congenital Disorders of Glucosylation. In Handbook of Clinical Neurology, 3rd ed.; Dulac, O., Lassonde, M., Sarnat, H.B., Eds.; Pediatric Neurology Part II; Elsevier BV: Amsterdam, The Netherlands, 2013; Volume 113, pp. 1737–1743. [Google Scholar]
- Chang, I.J.; He, M.; Lau, C.T. Congenital disorders of glycosylation. Ann. Transl. Med. 2018, 6, 477. [Google Scholar] [CrossRef]
- Grünewald, S. Congenital disorders of glycosylation: Rapidly enlarging group of (neuro)metabolic disorders. Early Hum. Dev. 2007, 83, 825–830. [Google Scholar] [CrossRef] [PubMed]
- Freez, H.H.; Aebi, M. Altered gucan structures: The molecular basis of congenital disorders of glycosylation. Curr. Opin. Struct. Biol. 2005, 15, 490–498. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Zabotma, O.A. Cortical Determinants in ER-Golgi Trafficinkg of Enzymes Involved in Glycosylation. Plants 2022, 11, 428. [Google Scholar] [CrossRef]
- Jaeken, J.; Matthijs, G. Congenital disorders of glycosylation. Annu. Rev. Genom. Hum. Genet. 2001, 2, 129–151. [Google Scholar] [CrossRef]
- Ng, B.G.; Freeze, H.H. Pespectives on Glycosylation and Its Congenital Disorders. Trends Genet. 2018, 34, 466–476. [Google Scholar] [CrossRef]
- Tiam, M.; Li, X.; Yu, L.; Qian, J.X.; Bai, X.J.; Yang, J.; Deng, R.J.; Lu, C.; Zhao, H.; Liu, Y. Glycosylation as an intricate post-translational modofication process takes part in glycoproteins related immunity. Cell Commun. Signal. 2025, 23, 214. [Google Scholar] [CrossRef]
- Hao, C.; Zou, Q.; Bai, X.; Shi, W. Effect of glycosylation on protein folding: From biological roles to chemical protein synthesis. iScience 2025, 28, 112605. [Google Scholar] [CrossRef]
- Sinha, M.D.; Horsfield, C.; Komaromy, D.; Booth, C.J.; Champion, M.P. Congenital disorders of glycosylation: A rare cause of nephrotic syndrome. Nephrol. Dial. Transplant. 2009, 24, 2591–2594. [Google Scholar] [CrossRef]
- Lipinski, P.; Tylki-Szymanska, A. Congenital Disorders of Glycosylation: What Clinicians Need to Know? Front. Pediatr. 2021, 9, 715151. [Google Scholar] [CrossRef]
- Paprocka, J.; Jezela-Stanek, A.; Tylki-Szymanska, A.; Grunewald, S. Congenital Disorders of Glycosylation from aNeurological Perspective. Brain Sci. 2021, 11, 88. [Google Scholar] [CrossRef]
- Freeze, H.H.; Eklund, E.A.; Ng, B.G.; Patterson, M.C. Neurological aspects of human glycosylation disorders. Annu. Rev. Neurosci. 2015, 38, 105–125. [Google Scholar] [CrossRef] [PubMed]
- Barone, R.; Fiumara, A.; Jaeken, J. Congenital disorders of glycosylation with emphasis on cerebellar involvement. Semin. Neurol. 2014, 34, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Weixel, T.; Wolfe, L.; Macnamara, E.F. Genetic counseling for congenital disorders of glycosylation (CDG). J. Genet. Couns. 2024, 33, 1358–1364. [Google Scholar] [CrossRef] [PubMed]
- Francisco, R.; Marques-da-Silva, D.; Brasil, S.; Pascoal, C.; Dos Reis Ferreira, V.; Morava, E.; Jaeken, J. The challenge of CDG diagnosis. Mol. Genet. Metab. 2019, 126, 1–5. [Google Scholar] [CrossRef]
- Péanne, R.; de Lonlay, P.; Foulquier, F.; Kornak, U.; Lefeber, D.J.; Morava, E.; Pérez, B.; Seta, N.; Thiel, C.; Van Schaftingen, E.; et al. Congenital disorders of glycosylation (CDG): Quo vadis? Eur. J. Med. Genet. 2018, 61, 643–663. [Google Scholar] [CrossRef]
- Verheijen, J.; Tahata, S.; Kozicz, T.; Witters, P.; Morava, E. Therapeutic approaches in Congenital Disorders of Glycosylation (CDG) involving N-linked glycosylation: An update. Genet. Med. 2020, 22, 268–279. [Google Scholar] [CrossRef]
- Quelhas, D.; Jaeken, J. Treatment of congenital disorders of glycosylation: An overview. Mol. Genet. Metab. 2024, 143, 108567. [Google Scholar] [CrossRef]
- Park, J.H.; Marquardt, T. Treatment Options in Congenital Disorders of Glycosylation. Front. Genet. 2021, 12, 735348. [Google Scholar] [CrossRef]
- Monticelli, M.; Francisco, R.; Brasil, S.; Marques-da-Silva, D.; Rijoff, T.; Pascoal, C.; Jaeken, J.; Videira, P.A.; Dos Reis Ferreira, V. Stakeholders’ views on drug development: The congenital disorders of glycosylation community perspective. Orphanet J. Rare Dis. 2022, 17, 303. [Google Scholar] [CrossRef]
- Harshman, L.A.; Ng, B.G.; Freeze, H.H.; Trapane, P.; Dolezal, A.; Brophy, P.D.; Brumbaugh, J.E. Congenital nephrotic syndrome in an infant with ALG1-congenital disorder of glycosylation. Pediatr. Int. 2016, 58, 785–788. [Google Scholar] [CrossRef]
- Aboobacker, I.N.; Krishnakumar, A.; Narayanan, S.; Hafeeque, B.; Gopinathan, J.C.; Aziz, F. Nail-Patella Syndrome: A Rare Cause of Nephrotic Syndrome in Pregnancy. Indian J. Nephrol. 2018, 28, 76–78. [Google Scholar] [CrossRef]
- Carinelli, S.; Blanco, O.A.; Perdomo-Ramirez, A.; Claverie-Martin, F. Nail-Patella syndrome with early onset end-stage renal disease in a child with a novel heterozygous missense mutation in the LMX1B homeodomain: A case report. Biomed. Rep. 2020, 13, 49. [Google Scholar] [CrossRef]
- Morello, R.; Scott, D.; Lee, B. Nail-Patella Syndrome. In Genetic Diseases of the Kidney; Lifton, R.P., Somlo, S., Giebisch, G.H., Seldin, D.W., Eds.; Academic Press: Cambridge, MA, USA, 2009; pp. 545–557. [Google Scholar] [CrossRef]
- Sato, U.; Kitanaka, S.; Sekine, T.; Takahashi, S.; Ashida, A.; Igarashi, T. Functional characterization of LMX1B mutations associated with nail-patella syndrome. Pediatr. Res. 2005, 57, 783–788. [Google Scholar] [CrossRef]
- Marini, M.; Giacopelli, F.; Seri, M.; Ravazzolo, R. Interaction of the LMX1B and PAX2 gene products suggests possible molecular basis of differential phenotypes in Nail-Patella syndrome. Eur. J. Hum. Genet. 2005, 13, 789–792. [Google Scholar] [CrossRef]
- Sweeney, E.; Fryer, A.; Mountford, R.; Green, A.; McIntosh, I. Nail-Patella syndrome: A review of the phenotype aided by developmental biology. J. Med. Genet. 2003, 40, 153–162. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, I.; Dunston, J.A.; Liu, L.; Hoover-Fong, J.E.; Sweeney, E. Nail-Patella syndrome revisited: 50 years after linkage. Ann. Hum. Genet. 2005, 69 Pt 4, 349–363. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.H.; Cho, T.J.; Choi, H.J.; Kang, H.K.; Lim, I.S.; Park, Y.H.; HA, I.S.; Choi, Y.; Cheong, H.I. Clinico-genetic study of nail-patella syndrome. J. Korean Med. Sci. 2009, 24, s82–s86. [Google Scholar] [CrossRef] [PubMed]
- Lemley, K.V. Kidney disease in nail-patella syndrome. Pediatr. Nephrol. 2009, 24, 2345–2354. [Google Scholar] [CrossRef]
- Witzgall, R. How are podocytes affected in nail-patella syndrome? Pediatr. Nephrol. 2008, 23, 1017–1020. [Google Scholar] [CrossRef]
- Chaturvedi, S.; Pulimodd, A.; Agarwal, I. Quiz page December 2013: Hypoplastic nails, bowed elbows, and nephrotic syndrome. Nail-patella syndrome (hereditary osteo-onychodysplasia, Turner-Keiser syndrome, Fong disease). Am. J. Kidney Dis. 2013, 62, A25–A27. [Google Scholar] [CrossRef]
- Najafian, B.; Smith, K.; Lusco, M.A.; Alpers, C.E.; Fogo, A.B. AJKD Atlas of Renal Pathology: Nail-Patella Syndrome-Associated Nephropathy. Am. J. Kidney Dis. 2017, 70, e19–e20. [Google Scholar] [CrossRef]
- Bunjes, B.G.; Fernandes, M.C.F. Do you know this syndrome? Nail Patella Syndrome: A pathognomonic dermatologic finding. An. Bras. Dermatol. 2017, 92, 273–274. [Google Scholar] [CrossRef]
- Tigchelaar, S.; Rooy, J.D.; Hannink, G.; Koëter, S.; van Kampen, A.; Bongers, E. Radiological characteristics of the knee joint in nail patella syndrome. Bone Jt. J. 2016, 98-B, 483–489. [Google Scholar] [CrossRef]
- Lippacher, S.; Mueller-Rossberg, E.; Reichel, H.; Nelitz, M. Correction of malformative patellar instability in patients with nail-patella syndrome: A case report and review of the literature. Orthop. Traumatol. Surg. Res. 2013, 99, 749–754. [Google Scholar] [CrossRef]
- Proesmans, W.; Van Dyck, M.; Devriendt, K. Nail-patella syndrome, infantile nephrotic syndrome: Complete remission with antiproteinuric treatment. Nephrol. Dial. Transplant. 2009, 24, 1335–1338. [Google Scholar] [CrossRef] [PubMed]
- Tigchelaar, S.; Lenting, A.; Bongers, E.M.; van Kampen, A. Nail patella syndrome: Knee symptoms and surgical outcomes. A questionnaire-based survey. Orthop. Traumatol. Surg. Res. 2015, 101, 959–962. [Google Scholar] [CrossRef] [PubMed]
- Stokman, M.F.; Bijnsdorp, I.V.; Schelfhorst, T.; Pham, T.V.; Piersma, S.R.; Knol, J.C.; Giles, R.H.; Bongers, E.M.; Knoers, N.V.; Lilien, M.R.; et al. Changes in the urinary extracellular vesicle proteome are associated with nephronophthisis-related ciliopathies. J. Proteom. 2019, 192, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Song, C.C.; Hong, Q.; Geng, X.D.; Wang, X.; Wang, S.Q.; Cui, S.Y.; Guo, M.D.; Li, O.; Cai, G.Y.; Chen, X.M.; et al. New Mutation of Coenzyme Q10 Monooxygenase 6 Causing Podocyte Injury in a Focal Segmental Glomerulosclerosis Patient. Chin. Med. J. 2018, 131, 2666–2675. [Google Scholar] [CrossRef]
- Kleiner, G.; Barca, E.; Ziosi, M.; Emmanuele, V.; Xu, Y.; Hidalgo-Gutierrez, A.; Qiao, C.; Tadesse, S.; Area-Gomez, E.; Lopez, L.C.; et al. CoQ10 supplementation rescues nephrotic syndrome through normalization of H2S oxidation pathway. Biochim. Biophys. Acta (BBA)—Mol. Basis Dis. 2018, 1864, 3708–3722. [Google Scholar] [CrossRef]
- Carney, E.F. Benefits of CoQ10 supplementation in patients with SRNS due to primary CoQ10 deficiency. Nat. Rev. Nephrol. 2022, 18, 481. [Google Scholar] [CrossRef]
- Drovandi, S.; Lipska-Ziętkiewicz, B.S.; Ozaltin, F.; Emma, F.; Gulhan, B.; Boyer, O.; Trautmann, A.; Xu, H.; Shen, Q.; Rao, J.; et al. Oral Coenzyme Q10 supplementation leads to better preservation of kidney function in steroid-resistant nephrotic syndrome due to primary Coenzyme Q10 deficiency. Kidney Int. 2022, 102, 604–612. [Google Scholar] [CrossRef]
- Starr, M.C.; Chang, I.J.; Finn, L.S.; Sun, A.; Larson, A.A.; Goebel, J.; Hanevold, C.; Thies, J.; Van Hove, J.L.; Hingorani, S.R.; et al. COQ2 nephropathy: A treatable cause of nephrotic syndrome in children. Pediatr. Nephrol. 2018, 33, 1257–1261. [Google Scholar] [CrossRef] [PubMed]
- Heeringa, S.F.; Chernin, G.; Chaki, M.; Zhou, W.; Sloan, A.J.; Ji, Z.; Xie, L.X.; Salviati, L.; Hurd, T.W.; Vega-Warner, V.; et al. COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness. J. Clin. Investig. 2011, 121, 2013–2024. [Google Scholar] [CrossRef] [PubMed]
- Quinzii, C.M.; Hirano, M.; DiMauro, S. CoQ10 deficiency diseases in adults. Mitochondrion 2007, 7, S122–S126. [Google Scholar] [CrossRef] [PubMed]
- Perrin, J.R.; Rousset-Rouvière, C.; Garaix, F.; Cano, A.; Conrath, J.; Boyer, O.; Tsimaratos, M. COQ6 mutation in patients with nephrotic syndrome, sensorineural deafness, and optic atrophy. JIMD Rep. 2020, 54, 37–44. [Google Scholar] [CrossRef]
- Mundel, P.; Reiser, J.; Zúñiga Mejía Borja, A.; Pavenstädt, H.; Davidson, G.R.; Kriz, W.; Zeller, R. Rearrangements of the cytoskeleton and cell contacts induce process formation during differentiation of conditionally immortalized mouse podocyte cell lines. Exp. Cell Res. 1997, 236, 248–258. [Google Scholar] [CrossRef]
- Schijvens, A.M.; van de Kar, N.C.; Bootsma-Robroeks, C.M.; Cornelissen, E.A.; van den Heuvel, L.P.; Schreuder, M.F. Mitochondrial Disease and the Kidney With a Special Focus on CoQ10 Deficiency. Kidney Int. Rep. 2020, 5, 2146–2159. [Google Scholar] [CrossRef]
- Quinzii, C.M.; Emmanuele, V.; Hirano, M. Clinical presentations of coenzyme q10 deficiency syndrome. Mol. Syndromol. 2014, 5, 141–146. [Google Scholar] [CrossRef]
- Mantle, D.; Hargreaves, I. Coenzyme Q10 and Degenerative Disorders Affecting Longevity: An Overview. Antioxidants 2019, 8, 44. [Google Scholar] [CrossRef]
- Frehat, M.Q., Sr.; Alhadidi, A.; Almhairat, A.; Alkhatib, L.; Al Thaher, S.; Al Assaf, R.; Al Qawaqenah, M.; Mansour, B.; Khair, F. Success of Coenzyme Q10 in Treating Steroid-Resistant Nephrotic Syndrome in Jordan: A Case Series. Cureus 2025, 17, e83231. [Google Scholar] [CrossRef]
- Abe, Y.; Nishiwaki, H.; Suzuki, T.; Noma, H.; Watanabe, Y.; Ota, E.; Hasegawa, T. Renoprotective effects of coenzyme Q10 supplementation in patients with chronic kidney disease: A protocol for a systematic review. BMJ Open 2024, 14, e084088. [Google Scholar] [CrossRef]
- Tan, W.; Airik, R. Primary coenzyme Q10 nephropathy, a potentially treatable form of steroid-resistant nephrotic syndrome. Pediatr. Nephrol. 2021, 36, 3515–3527. [Google Scholar] [CrossRef]
- Basnayake, K.; Stringer, S.J.; Hutchison, C.A.; Cockwell, P. The biology of immunoglobulin free light chains and kidney injury. Kidney Int. 2011, 79, 1289–1301. [Google Scholar] [CrossRef] [PubMed]
- Leung, N.; Bridoux, F.; Batuman, V.; Chaidos, A.; Cockwell, P.; D’Agati, V.D.; Dispenzieri, A.; Fervenza, F.C.; Fermand, J.P.; Gibbs, S.; et al. The evaluation of monoclonal gammopathy of renal significance: A consensus report of the International Kidney and Monoclonal Gammopathy Research Group. Nature reviews. Nephrology 2019, 15, 45–59. [Google Scholar] [CrossRef] [PubMed]
- Maack, T.; Johnson, V.; Kau, S.T.; Figueiredo, J.; Sigulem, D. Renal filtration, transport, and metabolism of low-molecular-weight proteins: A review. Kidney Int. 1979, 16, 251–270. [Google Scholar] [CrossRef] [PubMed]
- Pozzi, C.; D’Amico, M.; Fogazzi, G.B.; Curioni, S.; Ferrario, F.; Pasquali, S.L.; Quattrocchio, G.; Rollino, C.; Segagni, S.; Locatelli, F. Light chain deposition disease with renal involvement: Clinical characteristics and prognostic factors. Am. J. Kidney Dis. 2003, 42, 1154–1163. [Google Scholar] [CrossRef]
- Hesius, E.; Bunthof, K.; Steenbergen, E.; de Kort, E.; Klein, I.; Wetzels, J. Monoclonal gammopathy of renal significance presenting with cryoglobulinaemia type I associated severe thrombotic microangiopathy. Clin. Kidney J. 2022, 15, 1425–1428. [Google Scholar] [CrossRef]
- Amaador, K.; Peeters, H.; Minnema, M.C.; Nguyen, T.Q.; Dendooven, A.; Vos, J.M.I.; Croockewit, A.J.; van de Donk, N.W.C.J.; Jacobs, J.F.M.; Wetzels, J.F.M.; et al. Monoclonal gammopathy of renal significance (MGRS) histopathologic classification, diagnostic workup, and therapeutic options. Neth. J. Med. 2019, 77, 243–254. [Google Scholar]
- Bridoux, F.; Leung, N.; Hutchison, C.A.; Touchard, G.; Sethi, S.; Fermand, J.P.; Picken, M.M.; Herrera, G.A.; Kastritis, E.; Merlini, G.; et al. Diagnosis of monoclonal gammopathy of renal significance. Kidney Int. 2015, 87, 698–711. [Google Scholar] [CrossRef]
- Kashio, T.; Horino, T.; Yagyu, K.; Osakabe, Y.; Inotani, S.; Terada, Y. Monoclonal gammopathy of renal significance: Overlap of AL amyloidosis and immunotactoid glomerulopathy. QJM Int. J. Med. 2025, 118, 306–307. [Google Scholar] [CrossRef]
- Alonso-Titos, J.; Martínez-Esteban, M.D.; López, V.; León, M.; Martin-Reyes, G.; Ruiz-Esteban, P.; Hernández, D. Monoclonal gammopathy of renal significance: Early diagnosis is key. Nefrología 2021, 41, 502–513. [Google Scholar] [CrossRef]
- Sethi, S.; Rajkumar, S.V. Monoclonal gammopathy-associated proliferative glomerulonephritis. Mayo Clin. Proc. 2013, 88, 1284–1293. [Google Scholar] [CrossRef]
- Correia, S.O.; Santos, S.; Martins, L.S.; Santos, J. Diagnosis of monoclonal gammopathy of renal significance. Port. J. Nephrol. Hypertens. 2018, 32, 52–56. [Google Scholar]
Disorder | Genetic Basis | Primary Pathophysiological Mechanism | Secondary Effects | Key Histopathological Changes |
---|---|---|---|---|
Schimke Syndrome | SMARCAL1 gene mutation | Disorder of chromatin remodeling and gene expression | Genomic instability, DNA fragmentation | FSGS; podocyte infolding glomerulopathy |
Lecithin-Cholesterol Acyltransferase (LCAT) Deficiency—fish-eye disease | Partial deficiency of LCAT | Disorder of lipoprotein metabolism | Accumulation of non-esterified cholesterol | Foam cells, GBM thickening, mesangial proliferation, lipid vacuoles in endothelial cells |
Lecithin-Cholesterol Acyltransferase (LCAT) Deficiency—familial form | p.Leu364Pro mutation | Disorder of lipoprotein metabolism | Complete lack of LCAT enzyme | Thickening of capillary walls, foam cells, lacunar spaces in the GBM and electron-dense deposits in the mesangium |
Nephrotic Syndrome Co-existing with Type 1 Diabetes | HLA antigens A24, DR4, DR53 | Immunological dysregulation | Oxidative stress, inflammation | MCD in the early stages, diffuse glomerulosclerosis in the later stages |
Congenital Disorders of Glycosylation | Mutations of PMM2, ALG1, ALG6, ALG3 | Disorder of protein N-glycosylation | Disorder of protein folding and function | Diffuse mesangial sclerosis |
Nail–Patella Syndrome | Mutations of the LMX1B gene | Disorder of podocyte development | Abnormal cleft diaphragms | GBM “eaten by moths” |
Coenzyme Q10 deficiency | involved in CoQ10 biosynthesis (COQ2, COQ4, COQ6, COQ7, COQ8A, COQ8B, COQ9) | Impaired mitochondrial function and energy production | Increased oxidative stress, disruption of podocyte cytoskeleton | Podocyte foot process effacement, abnormal mitochondria, interstitial fibrosis |
Monoclonal gammopathy with renal significance | Clonal proliferation of plasma cells or B lymphocytes (not primarily genetic) | Excessive production and deposition of monoclonal immunoglobulins | Direct toxicity, complement activation, inflammatory response | Amyloid fibrils, light-chain deposits, heavy-chain deposits, glomerular lesions, tubular damage |
Syndrome | Renal Manifestations | Extrarenal Manifestations | Age | Therapeutic Approach |
---|---|---|---|---|
Schimke syndrome | Steroid-resistant nephrotic syndrome | Growth retardation, spondyloepiphyseal dysplasia, defect in T-cell immunity | Childhood | Corticosteroid therapy (often resistant). Immunosuppressive drugs. Symptomatic therapy. Kidney transplantation in terminal renal failure. |
LCAT deficiency—fish-eye disease | Mild to severe proteinuria | Corneal clouding, dyslipidemia | Adolescence/adulthood | Control of lipid status. Statins and other hypolipemic agents. Plasmapheresis. Enzyme replacement therapy (experimental). Kidney transplantation in terminal renal failure. |
LCAT deficiency—familial form | Severe proteinuria, progressive renal failure | Corneal clouding, anemia, dyslipidemia | Childhood/adolescence | Control of lipid status. Statins and other hypolipemic agents. Plasmapheresis. Enzyme replacement therapy (experimental). Kidney transplantation in terminal renal failure. |
Nephrotic Syndrome Co-existing with Type 1 Diabetes | Proteinuria, edema, hypoalbuminemia | Hyperglycemia, polyuria, polydipsia, weight loss | Variable | Glycemic control (insulin). Corticosteroid therapy for nephrotic syndrome. ACE inhibitors or ARBs for proteinuria. Blood pressure control. |
Congenital Disorders of Glycosylation | Nephrotic syndrome in infancy or early childhood | Neurological disorders, skeletal system abnormalities, liver dysfunction | Infancy/early childhood | Specific therapy depending on the type of CDG (eg mannose supplementation for PMM2-CDG). Symptomatic therapy. Dietary interventions. |
Nail–Patella Syndrome | Proteinuria with or without hematuria, progressive renal failure | Dysplasia of the nails, hypoplasia of the patella, deformity of the elbows, involvement of the eyes | Variable | ACE inhibitors or ARBs for proteinuria. Blood pressure control. Symptomatic therapy. Kidney transplantation in terminal renal failure. |
CoQ10 Deficiency | Steroid-resistant nephrotic syndrome, proteinuria | Muscle weakness, cardiac dysfunction, neurological manifestations | Can present early in life or later, depending on mutation | CoQ10 supplementation, symptomatic treatment of NS |
Monoclonal Gammopathy with Renal Significance | Various patterns: amyloidosis, LCDD, glomerulonephritis, tubulopathy | Varies based on underlying condition (multiple myeloma, CLL, etc.) | Typically affects older adults | Treatment of underlying clonal disorder, supportive therapy |
Syndrome | Specific Biomarkers | Nonspecific Biomarkers |
---|---|---|
Schimke syndrome | SMARCAL1 expression in kidney biopsy | Proteinuria, hypoalbuminemia, hyperlipidemia |
LCAT deficiency | Activity LCAT plasma enzymes, abnormal lipid profile (↑ Unregistered cholesterol, ↓ HDL) | Proteinuria, hypoalbuminemia |
Nephrotic Syndrome Co-existing with Type 1 Diabetes | Anti-GAD antibodies, HLA typing (A24, DR4, DR53) | Hyperglycemia, glycosuria, proteinuria |
Congenital glycosylation disorders | Abnormal transferrin pattern (isoelectric focus), specific enzyme activity | Proteinuria, hypoalbuminemia |
Nail–Patella Syndrome | Expression of LMX1B in the kidney biopsy | Proteinuria, Hematuria |
CoQ10 deficiency | Levels of coenzyme Q10 in serum | Mitochondrial function tests |
MGRS | Protein electrophoresis, light chains | Serum creatinine |
Clinical Benefits | Research Implications |
---|---|
Facilitates timely diagnosis | Enhances understanding of disease mechanisms |
Informs treatment decisions | Identifies potential therapeutic targets |
Improves patient outcomes | Supports development of novel treatments |
Enables personalized medicine approaches | Facilitates clinical trial design and participant selection |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogdanović, L.; Babić, I.; Prvanović, M.; Mijač, D.; Mladenović-Marković, A.; Popović, D.; Bogdanović, J. Uncommon Factors Leading to Nephrotic Syndrome. Biomedicines 2025, 13, 1907. https://doi.org/10.3390/biomedicines13081907
Bogdanović L, Babić I, Prvanović M, Mijač D, Mladenović-Marković A, Popović D, Bogdanović J. Uncommon Factors Leading to Nephrotic Syndrome. Biomedicines. 2025; 13(8):1907. https://doi.org/10.3390/biomedicines13081907
Chicago/Turabian StyleBogdanović, Ljiljana, Ivana Babić, Mirjana Prvanović, Dragana Mijač, Ana Mladenović-Marković, Dušan Popović, and Jelena Bogdanović. 2025. "Uncommon Factors Leading to Nephrotic Syndrome" Biomedicines 13, no. 8: 1907. https://doi.org/10.3390/biomedicines13081907
APA StyleBogdanović, L., Babić, I., Prvanović, M., Mijač, D., Mladenović-Marković, A., Popović, D., & Bogdanović, J. (2025). Uncommon Factors Leading to Nephrotic Syndrome. Biomedicines, 13(8), 1907. https://doi.org/10.3390/biomedicines13081907