Association Between Incident Chronic Kidney Disease and Body Size Phenotypes in Apparently Healthy Adults: An Observational Study Using the Korean National Health and Nutrition Examination Survey (2019–2021)
Abstract
1. Introduction
2. Material and Methods
2.1. Study Population
2.2. Measurement and Classification of Variables
2.3. Definition of CKD
2.4. Statistical Analysis
3. Results
3.1. Basic Demographic and Clinical Characteristics
3.2. Clinical Characteristics and Chronic Kidney Status According to Body Size Phenotype
3.3. Association Between Chronic Kidney Status and Body Size Phenotype
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CKD | Chronic kidney disease |
MHNW | Metabolically healthy normal weight |
MANW | Metabolically abnormal normal weight |
MHO | Metabolically healthy obese |
MAO | Metabolically abnormal obese |
BMI | Body mass index |
KNHANES | Korean National Health and Nutrition Examination Survey |
FPG | Fasting plasma glucose |
eGFR | Estimated glomerular filtration rate |
UACR | Urine albumin-to-creatinine ratio |
References
- Jha, V.; Garcia-Garcia, G.; Iseki, K.; Li, Z.; Naicker, S.; Plattner, B.; Saran, R.; Wang, A.Y.; Yang, C.W. Chronic kidney disease: Global dimension and perspectives. Lancet 2013, 382, 260–272. [Google Scholar] [CrossRef]
- Levin, A.; Okpechi, I.G.; Caskey, F.J.; Yang, C.-W.; Tonelli, M.; Jha, V. Perspectives on early detection of chronic kidney disease: The facts, the questions, and a proposed framework for 2023 and beyond. Kidney Int. 2023, 103, 1004–1008. [Google Scholar] [CrossRef]
- Rubino, F.; Cummings, D.E.; Eckel, R.H.; Cohen, R.V.; Wilding, J.P.; Brown, W.A.; Stanford, F.C.; Batterham, R.L.; Farooqi, I.S.; Farpour-Lambert, N.J. Definition and diagnostic criteria of clinical obesity. Lancet Diabetes Endocrinol. 2025, 13, 221–262. [Google Scholar] [CrossRef]
- St-Onge, M.P.; Janssen, I.; Heymsfield, S.B. Metabolic syndrome in normal-weight Americans: New definition of the metabolically obese, normal-weight individual. Diabetes Care 2004, 27, 2222–2228. [Google Scholar] [CrossRef] [PubMed]
- Karelis, A.D.; St-Pierre, D.H.; Conus, F.; Rabasa-Lhoret, R.; Poehlman, E.T. Metabolic and body composition factors in subgroups of obesity: What do we know? J. Clin. Endocrinol. Metab. 2004, 89, 2569–2575. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Ryu, S.; Choi, Y.; Zhang, Y.; Cho, J.; Kwon, M.J.; Hyun, Y.Y.; Lee, K.B.; Kim, H.; Jung, H.S.; et al. Metabolically Healthy Obesity and Development of Chronic Kidney Disease: A Cohort Study. Ann. Intern. Med. 2016, 164, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Niratharakumar, K.; Gokhale, K.; Tahrani, A.A.; Taverner, T.; Thomas, G.N.; Dasgupta, I. Obesity Without Metabolic Abnormality and Incident CKD: A Population-Based British Cohort Study. Am. J. Kidney Dis. 2022, 79, 24–35.e1. [Google Scholar] [CrossRef]
- Nam, K.H.; Yun, H.R.; Joo, Y.S.; Kim, J.; Lee, S.; Lee, C.; Park, K.S.; Park, J.T.; Chang, T.I.; Kang, E.W. Changes in obese metabolic phenotypes over time and risk of incident chronic kidney disease. Diabetes Obes. Metab. 2018, 20, 2778–2791. [Google Scholar] [CrossRef]
- WHO Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 2004, 363, 157–163. [Google Scholar] [CrossRef]
- Korea Centers for Disease Control and Prevention. Korea National Health and Nutrition Examination Survey 2013–2015 [Internet]; KCDC: Cheongju, Republic of Korea; Available online: https://knhanes.kdca.go.kr/knhanes/main.do (accessed on 24 July 2025).
- Kweon, S.; Kim, Y.; Jang, M.-j.; Kim, Y.; Kim, K.; Choi, S.; Chun, C.; Khang, Y.-H.; Oh, K. Data resource profile: The Korea national health and nutrition examination survey (KNHANES). Int. J. Epidemiol. 2014, 43, 69–77. [Google Scholar] [CrossRef]
- Eknoyan, G.; Lameire, N.; Eckardt, K.; Kasiske, B.; Wheeler, D.; Levin, A.; Stevens, P.; Bilous, R.; Lamb, E.; Coresh, J. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. 2013, 3, 5–14. [Google Scholar]
- Adair, K.E.; von Waaden, N.; Rafalski, M.; Hess, B.W.; Weaver, S.P.; Bowden, R.G. Metabolic phenotypes and chronic kidney disease: A cross-sectional assessment of patients from a large federally qualified health center. Life 2021, 11, 175. [Google Scholar] [CrossRef] [PubMed]
- Jam, S.A.; Moloudpour, B.; Najafi, F.; Darbandi, M.; Pasdar, Y. Metabolic obesity phenotypes and chronic kidney disease: A cross-sectional study from the RaNCD cohort study. BMC Nephrol. 2022, 23, 233. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zou, Y.; Wu, Y.; Cai, L.; Zhao, Y.; Wang, Y.; Xiao, X.; Yang, Q.; Yang, J.; Ren, H.; et al. Metabolic phenotypes and risk of end-stage kidney disease in patients with type 2 diabetes. Front. Endocrinol. 2023, 14, 1103251. [Google Scholar] [CrossRef]
- Vart, P.; Gansevoort, R.T.; Joosten, M.M.; Bültmann, U.; Reijneveld, S.A. Socioeconomic disparities in chronic kidney disease: A systematic review and meta-analysis. Am. J. Prev. Med. 2015, 48, 580–592. [Google Scholar] [CrossRef]
- Nicholas, S.B.; Kalantar-Zadeh, K.; Norris, K.C. Socioeconomic disparities in chronic kidney disease. Adv. Chronic Kidney Dis. 2015, 22, 6–15. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Chen, X.; Chen, L.; Liu, Y.; Huang, J.; Li, P.; Liang, D.; Chen, J. The impact of social determinants of health on chronic kidney disease risk: Evidence from the CHARLS study. Front. Public. Health 2025, 13, 1532372. [Google Scholar] [CrossRef]
- Czaja-Stolc, S.; Potrykus, M.; Stankiewicz, M.; Kaska, Ł.; Małgorzewicz, S. Pro-inflammatory profile of adipokines in obesity contributes to pathogenesis, nutritional disorders, and cardiovascular risk in chronic kidney disease. Nutrients 2022, 14, 1457. [Google Scholar] [CrossRef]
- Arabi, T.; Shafqat, A.; Sabbah, B.N.; Ashraf, N.; Shah, H.; Abdulkader, H.; Razak, A.; Sabbah, A.N.; Arabi, Z. Obesity-related kidney disease: Beyond hypertension and insulin-resistance. Front. Endocrinol. 2023, 13, 1095211. [Google Scholar] [CrossRef]
- Briffa, J.F.; McAinch, A.J.; Poronnik, P.; Hryciw, D.H. Adipokines as a link between obesity and chronic kidney disease. Am. J. Physiol. Ren. Physiol. 2013, 305, F1629–F1636. [Google Scholar] [CrossRef]
- Caleyachetty, R.; Thomas, G.N.; Toulis, K.A.; Mohammed, N.; Gokhale, K.M.; Balachandran, K.; Nirantharakumar, K. Metabolically Healthy Obese and Incident Cardiovascular Disease Events Among 3.5 Million Men and Women. J. Am. Coll. Cardiol. 2017, 70, 1429–1437. [Google Scholar] [CrossRef] [PubMed]
- Eckel, N.; Meidtner, K.; Kalle-Uhlmann, T.; Stefan, N.; Schulze, M.B. Metabolically healthy obesity and cardiovascular events: A systematic review and meta-analysis. Eur. J. Prev. Cardiol. 2016, 23, 956–966. [Google Scholar] [CrossRef]
- Zheng, R.; Zhou, D.; Zhu, Y. The long-term prognosis of cardiovascular disease and all-cause mortality for metabolically healthy obesity: A systematic review and meta-analysis. J. Epidemiol. Community Health 2016, 70, 1024–1031. [Google Scholar] [CrossRef]
- Prasad, G.R. Metabolic syndrome and chronic kidney disease: Current status and future directions. World J. Nephrol. 2014, 3, 210. [Google Scholar] [CrossRef]
- Scurt, F.G.; Ganz, M.J.; Herzog, C.; Bose, K.; Mertens, P.R.; Chatzikyrkou, C. Association of metabolic syndrome and chronic kidney disease. Obes. Rev. 2024, 25, e13649. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Gonzalez, J.F.; Mora-Fernandez, C. The role of inflammatory cytokines in diabetic nephropathy. J. Am. Soc. Nephrol. 2008, 19, 433–442. [Google Scholar] [CrossRef] [PubMed]
No CKD | CKD b | p-Value | |
---|---|---|---|
Number (%) | 7863 | 364 | |
Sex (%) | |||
Male | 3595 (45.7) | 144 (39.6) | |
Female | 4268 (54.3) | 220 (60.4) | 0.024 |
Age (years) | 43.98 ± 14.98 | 52.17 ± 16.60 | 0.001 |
BMI (kg/m2) | 23.60 ± 3.68 | 24.56 ± 4.32 | 0.001 |
WC (cm) | 81.77 ± 10.54 | 84.95 ± 11.59 | 0.001 |
SBP (mmHg) | 115.08 ± 14.68 | 125.89 ± 19.84 | 0.001 |
DBP (mmHg) | 74.82 ± 9.68 | 79.66 ± 12.80 | 0.001 |
FPG (mg/dL) | 95.86 ± 14.43 | 107.23 ± 36.99 | 0.001 |
HbA1c (%) | 5.55 ± 0.51 | 5.95 ± 1.24 | 0.001 |
LDL-C (mg/dL) | 122.99 ± 33.48 | 120.17 ± 39.19 | 0.250 |
HDL-C (mg/dL) | 53.90 ± 13.04 | 52.09 ± 12.61 | 0.005 |
TG (mg/dL) | 123.48 ± 106.61 | 149.95 ± 174.61 | 0.001 |
Creatinine (mg/dL) | 0.79 ± 0.16 | 0.81 ± 0.22 | 0.001 |
eGFR (mL/min/1.73 m2) | 101.79 ± 18.06 | 96.29 ± 23.00 | 0.001 |
UACR (mg/g) | 6.32 ± 4.29 | 100.88 ± 176.58 | 0.001 |
Family income percentile (%) | |||
<25 | 838 (10.7) | 88 (24.3) | |
25–50 | 1812 (23.2) | 98 (27.1) | |
50–75 | 2325 (29.7) | 81 (22.4) | |
≥75 | 2850 (36.4) | 95 (26.2) | 0.001 |
Education (%) | |||
More than high school education | 6517 (87.3) | 249 (75.7) | |
Less than high school education | 946 (12.7) | 80 (24.3) | 0.001 |
Residence (%) | |||
Urban area | 6541 (83.2) | 259 (71.2) | |
Non-urban area | 1322 (16.8) | 105 (28.8) | 0.001 |
Smoking | |||
Never | 4699 (59.8) | 228 (62.6) | |
Past | 1647 (20.9) | 72 (19.8) | |
Current | 1478 (18.8) | 62 (17.0) | 0.728 |
Alcohol drinking | |||
Yes | 4707 (59.9) | 195 (53.6) | |
No | 3156 (40.1) | 169 (46.4) | 0.017 |
Regular exercise a | |||
Yes | 3481 (46.6) | 147 (44.7) | |
No | 3982 (53.4) | 182 (55.3) | 0.484 |
Total energy intake (kcal) | 1926.75 ± 866.82 | 1824 ± 826.92 | 0.001 |
Carbohydrate intake (g) | 268.67 ± 110.78 | 269.95 ± 113.86 | 0.845 |
Protein intake (g) | 73.14 ± 39.71 | 65.57 ±34.66 | 0.001 |
Fat intake (g) | 51.8 ± 37.15 | 43.0 ± 33.36 | 0.001 |
Metabolic phenotype (%) | |||
MHNW | 5093 (64.8) | 166 (45.6) | |
MANW | 394 (5.0) | 46 (12.6) | |
MHO | 1337 (17.0) | 56 (15.4) | |
MAO | 1039 (13.2) | 96 (26.4) | 0.001 |
MHNW | MANW | MHO | MAO | p-Value | |
---|---|---|---|---|---|
Number (%) | 5259 (63.9) | 440 (5.3) | 1393 (16.9) | 1135 (13.7) | |
Sex (%) | |||||
Male | 2044 (38.8) | 238 (53.1) | 811 (58.2) | 718 (63.2) | 0.001 |
Female | 3349 (62.1) | 210 (46.9) | 606 (42.8) | 427 (37.3) | 0.001 |
Age (years) | 43.45 ± 15.15 | 56.78 ± 13.54 | 41.98 ± 14.40 | 46.80 ± 14.00 | 0.001 |
BMI (kg/m2) | 21.58 ± 2.03 | 23.13 ± 1.51 | 27.44 ± 2.44 | 28.67 ± 3.22 | 0.001 |
WC (cm) | 76.24 ± 7.02 | 84.75 ± 6.32 | 91.00 ± 7.54 | 95.91 ± 7.53 | 0.010 |
SBP (mmHg) | 111.64 ± 13.76 | 129.74 ± 16.74 | 117.00 ± 12.00 | 126.38 ± 14.99 | 0.001 |
DBP (mmHg) | 72.57 ± 8.98 | 81.02 ± 10.23 | 75.94 ± 8.46 | 82.87 ± 10.17 | 0.001 |
FPG (mg/dL) | 93.00 ± 11.26 | 110.14 ± 28.19 | 94.84 ± 10.17 | 108.48 ± 24.92 | 0.001 |
HbA1c (%) | 5.46 ± 0.39 | 5.98 ± 1.00 | 5.52 ± 0.36 | 5.93 ± 0.90 | 0.001 |
LDL-C (mg/dL) | 120.68 ± 34.30 | 118.64 ± 35.46 | 132.06 ± 30.50 | 123.85 ± 33.16 | 0.523 |
HDL-C (mg/dL) | 57.39 ± 12.70 | 43.50 ± 10.01 | 52.32 ± 10.58 | 43.30 ± 9.72 | 0.001 |
TG (mg/dL) | 97.31 ± 64.79 | 236.91 ± 217.76 | 113.92 ± 70.93 | 220.03 ± 162.78 | 0.001 |
Creatinine (mg/dL) | 0.77 ± 0.16 | 0.80 ± 0.18 | 0.82 ± 0.16 | 0.83 ± 0.16 | 0.002 |
eGFR (mL/min/1.73 m2) a | 102.58 ± 18.12 | 96.74 ± 19.32 | 101.15 ± 17.71 | 99.33 ± 19.07 | 0.414 |
UACR (mg/g) | 9.47 ± 43.27 | 17.7 ± 70.52 | 8.47 ± 17.70 | 14.95 ± 42.53 | 0.001 |
Family income percentile (%) | |||||
<25 | 568 (10.8) | 79 (21.8) | 135 (9.7) | 136 (12.0) | |
25–50 | 1146 (21.8) | 128 (29.2) | 358 (25.7) | 291 (25.7) | |
50–75 | 1557 (29.6) | 93 (21.1) | 430 (30.9) | 339 (29.9) | |
≥75 | 1988 (37.8) | 120 (27.9) | 460 (33.7) | 369 (32.5) | 0.001 |
Education (%) | |||||
More than high school education | 4537 (86.2) | 274 (62.2) | 1203 (86.3) | 894 (78.7) | |
Less than high school education | 856 (16.1) | 174 (39.5) | 214 (15.3) | 251 (22.1) | 0.001 |
Residence (%) | |||||
Urban area | 4433 (84.3) | 303 (69.0) | 1154 (82.9) | 904 (79.7) | |
Non-urban area | 826 (15.7) | 137 (31.0) | 239 (17.1) | 231 (20.3) | 0.001 |
Smoking | |||||
Never | 3413 (64.9) | 216 (49.3) | 744 (53.4) | 549 (48.4) | |
Past | 962 (18.3) | 112 (25.4) | 350 (25.1) | 296 (26.1) | |
Current | 884 (16.2) | 112 (24.6) | 299 (21.2) | 290 (25.1) | 0.001 |
Alcohol drinking | |||||
No | 2183 (41.5) | 192 (43.5) | 513 (36.8) | 445 (39.2) | |
Yes | 3076 (58.5) | 248 (56.5) | 880 (63.2) | 690 (60.8) | 0.006 |
Regular exercise a | |||||
No | 2.803 (53.3) | 284 (64.6) | 659 (47.3) | 648 (57.1) | |
Yes | 2456 (46.7) | 156 (35.4) | 734 (52.7) | 487 (42.9) | 0.001 |
Total energy intake (kcal) | 1877.20 ± 822.24 | 1955.24 ± 848.89 | 1996.67 ± 886.45 | 2029.18 ± 1004.35 | 0.001 |
Carbohydrate intake (g) | 264.78 ± 108.06 | 289.38 ± 109.44 | 270.64 ± 115.33 | 278.55 ± 118.32 | 0.001 |
Protein intake (g) | 70.92 ± 37.68 | 70.06 ± 37.68 | 77.52 ± 41.09 | 76.73 ± 45.29 | 0.001 |
Fat intake (g) | 51.06 ± 36.21 | 43.50 ± 33.07 | 54.54 ± 37.66 | 52.20 ± 40.97 | 0.001 |
CKD diagnosis b | 168 (3.2) | 46 (10.5) | 56 (4.0) | 96 (8.5) | 0.001 |
Fully Adjusted OR (95% Cl) | ||||||||
---|---|---|---|---|---|---|---|---|
MAO | p-Value * | MANW | p-Value * | MHO | p-Value * | |||
MAO/MHNW | MANW/MHNW | MHO/MHNW | ||||||
CKD (−) | Reference | CKD (−) | Reference | CKD (−) | Reference | |||
CKD (+) | 3.770 (2.648–5.367) | <0.001 | CKD (+) | 2.492 (1.547–4.016) | <0.001 | CKD (+) | 1.974 (1.358–2.870) | 0.005 |
MAO/MANW | MANW/MHO | |||||||
CKD (−) | Reference | CKD (−) | Reference | |||||
CKD (+) | 1.242 (0.757–2.037) | 0.539 | CKD (+) | 1.477 (0.977–2.232) | 0.124 | |||
MAO/MHO | ||||||||
CKD (−) | Reference | |||||||
CKD (+) | 1.897 (1.221–2.945) | 0.014 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyu, Y.S.; Yoon, Y.; Kim, J.H.; Kim, S.Y. Association Between Incident Chronic Kidney Disease and Body Size Phenotypes in Apparently Healthy Adults: An Observational Study Using the Korean National Health and Nutrition Examination Survey (2019–2021). Biomedicines 2025, 13, 1886. https://doi.org/10.3390/biomedicines13081886
Lyu YS, Yoon Y, Kim JH, Kim SY. Association Between Incident Chronic Kidney Disease and Body Size Phenotypes in Apparently Healthy Adults: An Observational Study Using the Korean National Health and Nutrition Examination Survey (2019–2021). Biomedicines. 2025; 13(8):1886. https://doi.org/10.3390/biomedicines13081886
Chicago/Turabian StyleLyu, Young Sang, Youngmin Yoon, Jin Hwa Kim, and Sang Yong Kim. 2025. "Association Between Incident Chronic Kidney Disease and Body Size Phenotypes in Apparently Healthy Adults: An Observational Study Using the Korean National Health and Nutrition Examination Survey (2019–2021)" Biomedicines 13, no. 8: 1886. https://doi.org/10.3390/biomedicines13081886
APA StyleLyu, Y. S., Yoon, Y., Kim, J. H., & Kim, S. Y. (2025). Association Between Incident Chronic Kidney Disease and Body Size Phenotypes in Apparently Healthy Adults: An Observational Study Using the Korean National Health and Nutrition Examination Survey (2019–2021). Biomedicines, 13(8), 1886. https://doi.org/10.3390/biomedicines13081886