Immunorecovered but Exhausted: Persistent PD-1/PD-L1 Expression Despite Virologic Suppression and CD4 Recovery in PLWH
Abstract
1. Introduction
1.1. The PD-1/PD-L1 Pathway in HIV
1.2. Study Hypothesis
2. Materials and Methods
2.1. Immunophenotyping
2.2. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.1.1. Newly Diagnosed Group
3.1.2. Long-Term Treatment Group (Ukraine Refugees Group)
3.2. Biochemical and Immunological Data
3.3. Assessment of the Immune Response in Both Subgroups
3.4. Assessment of Immune Exhaustion in Both Subgroups
3.5. Linear Regression Evaluation
4. Discussion
4.1. Summary of Findings
4.2. Interpretation of Immune Exhaustion During ART Therapy in PLWH
4.3. Possible Explanations for Findings
4.4. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aksak-Wąs, B.; Skonieczna-Żydecka, K.; Parczewski, M.; Hrynkiewicz, R.; Lewandowski, F.; Serwin, K.; Mielczak, K.; Lenkiewicz, F.; Niedźwiedzka-Rystwej, P. Rethinking HIV Treatment: How Non-Integrase Strand Regimens May Hold the Key to Better Immune Health. HIV Med. 2025, 26, 879–887. [Google Scholar] [CrossRef]
- Zhang, W.; Ruan, L. Recent Advances in Poor HIV Immune Reconstitution: What Will the Future Look Like? Front. Microbiol. 2023, 14, 1236460. [Google Scholar] [CrossRef]
- Ji, J.; Guo, C.; Li, Z.; Cai, M.; Wang, R.; Chen, X.; Zhang, Y.; Wu, H.; Zhang, T.; Zhang, Y. Rapid Initiation of Antiretroviral Therapy Suppresses T Cell Pathological Proliferation and Improves Immune Recovery in People Living with HIV. Infect. Drug Resist. 2025, 18, 3427–3437. [Google Scholar] [CrossRef]
- Taramasso, L.; Labate, L.; Briano, F.; Brucci, G.; Mora, S.; Blanchi, S.; Giacomini, M.; Bassetti, M.; Di Biagio, A. CD4+ T Lymphocyte Recovery in the Modern Antiretroviral Therapy Era: Toward a New Threshold for Defining Immunological Non-Responders. Front. Virol. 2022, 2, 822153. [Google Scholar] [CrossRef]
- Ron, R.; Martínez-Sanz, J.; Herrera, S.; Ramos-Ruperto, L.; Díez, A.; Sainz, T.; Álvarez-Díaz, N.; Correa-Pérez, A.; Muriel, A.; López-Alcalde, J.; et al. CD4/CD8 Ratio and CD8+ T-Cell Count as Prognostic Markers for Non-AIDS Mortality in People Living with HIV. A Systematic Review and Meta-Analysis. Front. Immunol. 2024, 15, 1343124. [Google Scholar] [CrossRef]
- Han, W.M.; Avihingsanon, A.; Rajasuriar, R.; Tanuma, J.; Mundhe, S.; Lee, M.P.; Choi, J.Y.; Pujari, S.; Chan, Y.J.; Somia, A.; et al. CD4/CD8 Ratio Recovery among People Living with HIV Starting with First-Line Integrase Strand Transfer Inhibitors: A Prospective Regional Cohort Analysis. J. Acquir. Immune Defic. Syndr. (1988) 2023, 92, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Villar, S.; Martínez-Sanz, J.; Ron, R.; Talavera-Rodríguez, A.; Fernández-Felix, B.M.; Herrera, S.; Muriel, A.; Fanjul, F.; Portilla, J.; Muñoz, J.; et al. Effects of First-Line Antiretroviral Therapy on the CD4/CD8 Ratio and CD8 Cell Counts in CoRIS: A Prospective Multicentre Cohort Study. Lancet HIV 2020, 7, e565–e573. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Yan, J.; Luo, H.; Wang, X.; Ruan, L. Incomplete Immune Reconstitution and Its Predictors in People Living with HIV in Wuhan, China. BMC Public Health 2023, 23, 1808. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Yan, P.; Wang, R.; Lu, X.; Zhang, Y.; Su, B.; Zhang, X.; Yuan, L.; Liu, Z.; Jiang, W.; et al. Persistent T Cell Proliferation and MDSCs Expansion Precede Incomplete CD4+ T Cell Recovery in People with Acute HIV-1 Infection with Early ART. Heliyon 2023, 9, e15590. [Google Scholar] [CrossRef]
- Pino, M.; Ribeiro, S.P.; Pagliuzza, A.; Ghneim, K.; Khan, A.; Ryan, E.; Harper, J.L.; King, C.T.; Welbourn, S.; Micci, L.; et al. Increased Homeostatic Cytokines and Stability of HIV-Infected Memory CD4 T-Cells Identify Individuals with Suboptimal CD4 T-Cell Recovery on-ART. PLoS Pathog. 2021, 17, e1009825. [Google Scholar] [CrossRef]
- Aksak-Wąs, B.J.; Urbańska, A.; Scheibe, K.; Serwin, K.; Leszczyszyn-Pynka, M.; Rafalska-Kosior, M.; Gołąb, J.; Chober, D.; Parczewski, M. Factors Influencing Immune Restoration in People Living with HIV/AIDS. J. Clin. Med. 2022, 11, 1887. [Google Scholar] [CrossRef]
- Aksak-Wąs, B.J.; Kowalska, J.D.; Ząbek, P.; Serwin, K.; Rafalska-Kosior, M.; Gołąb, J.; Chober, D.; Skonieczna-Żydecka, K.; Hackiewicz, M.; Parczewski, M. Immune Restoration Affects 10-Year Survival in People Living with HIV/AIDS. HIV Med. 2023, 24, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Aksak-Was, B.J.; Parczewski, M.; Urbanska, A.; Hackiewicz, M.; Kowalska, J.D. Influence of HLA-B*5701 on 20 Year Survival Rate among Patients Living with HIV. PLoS ONE 2021, 16, e0255834. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Xue, J. Expression Profile and Biological Role of Immune Checkpoints in Disease Progression of HIV/SIV Infection. Viruses 2022, 14, 581. [Google Scholar] [CrossRef]
- Aksak-Wąs, B.J.; Urbańska, A.; Leszczyszyn-Pynka, M.; Chober, D.; Parczewski, M. Clinical Parameters, Selected HLA and Chemokine Gene Variants Associated with Late Presentation into Care of People Living with HIV/AIDS. Infect. Genet. Evol. 2022, 97, 105180. [Google Scholar] [CrossRef]
- Sun, X.; Xie, Z.; Wu, Z.; Song, M.; Zhang, Y.; Zhang, Z.; Cui, X.; Liu, A.; Li, K. Mechanisms of HIV-Immunologic Non-Responses and Research Trends Based on Gut Microbiota. Front. Immunol. 2024, 15, 1378431. [Google Scholar] [CrossRef]
- Rasmussen, T.A.; Zerbato, J.M.; Rhodes, A.; Tumpach, C.; Dantanarayana, A.; McMahon, J.H.; Lau, J.S.Y.; Chang, J.J.; Gubser, C.; Brown, W.; et al. Memory CD4+ T Cells That Co-Express PD1 and CTLA4 Have Reduced Response to Activating Stimuli Facilitating HIV Latency. Cell Rep. Med. 2022, 3, 100766. [Google Scholar] [CrossRef]
- Rabezanahary, H.; Moukambi, F.; Palesch, D.; Clain, J.; Racine, G.; Andreani, G.; Benmadid-Laktout, G.; Zghidi-Abouzid, O.; Soundaramourty, C.; Tremblay, C.; et al. Despite Early Antiretroviral Therapy Effector Memory and Follicular Helper CD4 T Cells Are Major Reservoirs in Visceral Lymphoid Tissues of SIV-Infected Macaques. Mucosal Immunol. 2019, 13, 149. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, Q.; Xu, P.; Zhang, T.; Wu, H.; Zhang, X.; Moog, C.; Su, B. Impaired Immune Reconstitution in HIV Infection: The Role of CD4+ T-Cell-Associated NKG2D Ligands, CD4+ T-Cell Subsets Imbalance, and Immune Function Deficiency. Front. Immunol. 2025, 16, 1541574. [Google Scholar] [CrossRef]
- Jachymek, M.; Wójcik, Ł.; Peregud-Pogorzelska, M.; Parczewski, M.; Dembowska, A.; Aksak-Wąs, B.J. Cardiovascular Risk in People Living with Human Immunodeficiency (HIV) Viremia Suppression in a Young, Mid-Eastern European Population-Preliminary Study. Vasc. Health Risk Manag. 2024, 20, 435–445. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Zheng, H.Y.; Li, W.; He, X.Y.; Zhang, M.; Li, X.; Tian, R.R.; Dong, X.Q.; Shen, Z.Q.; Zheng, Y.T. Limited Restoration of T Cell Subset Distribution and Immune Function in Older People Living with HIV-1 Receiving HAART. Immun. Ageing 2025, 22, 3. [Google Scholar] [CrossRef]
- Jachymek, M.; Peregud-Pogorzelska, M.; Parczewski, M.; Dembowska, A.; Wójcik, Ł.; Aksak-Wąs, B. Unveiling the Heart of the Matter: Echocardiographic Insights into Diastolic Function and Left Ventricular and Atrial Changes in HIV Patients with Controlled Viremia. J. Clin. Med. 2024, 13, 463. [Google Scholar] [CrossRef]
- Day, C.L.; Kaufmann, D.E.; Kiepiela, P.; Brown, J.A.; Moodley, E.S.; Reddy, S.; Mackey, E.W.; Miller, J.D.; Leslie, A.J.; DePierres, C.; et al. PD-1 Expression on HIV-Specific T Cells Is Associated with T-Cell Exhaustion and Disease Progression. Nature 2006, 443, 350–354. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Song, B.; Cao, L.; Zhang, L.; Liu, S.; Wang, X.; Chen, X.; Li, S. PD-1 Suppression Enhances HIV Reactivation and T-Cell Immunity via MAPK/NF-ΚB Signaling. Eur. J. Med. Res. 2025, 30, 237. [Google Scholar] [CrossRef]
- Harper, J.; Gordon, S.; Chan, C.N.; Wang, H.; Lindemuth, E.; Galardi, C.; Falcinelli, S.D.; Raines, S.L.M.; Read, J.L.; Nguyen, K.; et al. CTLA-4 and PD-1 Dual Blockade Induces SIV Reactivation without Control of Rebound after Antiretroviral Therapy Interruption. Nat. Med. 2020, 26, 519–528. [Google Scholar] [CrossRef]
- Dong, M.; Yu, T.; Tse, G.; Lin, Z.; Lin, C.; Zhang, N.; Wang, R.; Liu, T.; Zhong, L. PD-1/PD-L1 Blockade Accelerates the Progression of Atherosclerosis in Cancer Patients. Curr. Probl. Cardiol. 2023, 48, 101527. [Google Scholar] [CrossRef]
- Benito, J.M.; Restrepo, C.; García-Foncillas, J.; Rallón, N. Immune Checkpoint Inhibitors as Potential Therapy for Reverting T-Cell Exhaustion and Reverting HIV Latency in People Living with HIV. Front. Immunol. 2023, 14, 1270881. [Google Scholar] [CrossRef] [PubMed]
- Macatangay, B.J.C.; Gandhi, R.T.; Jones, R.B.; McMahon, D.K.; Lalama, C.M.; Bosch, R.J.; Cyktor, J.C.; Thomas, A.S.; Borowski, L.; Riddler, S.A.; et al. T Cells with High PD-1 Expression Are Associated with Lower HIV-Specific Immune Responses despite Long-Term Antiretroviral Therapy. AIDS 2020, 34, 15. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Zheng, Z.; Xun, J.; Liu, L.; Wang, J.; Zhang, X.; Shao, Y.; Shen, Y.; Zhang, R.; Zhang, M.; et al. Anti-PD-L1 Antibody ASC22 in Combination with a Histone Deacetylase Inhibitor Chidamide as a “Shock and Kill” Strategy for ART-Free Virological Control: A Phase II Single-Arm Study. Signal Transduct. Target. Ther. 2024, 9, 1–11. [Google Scholar] [CrossRef]
- Wang, L.; Vulesevic, B.; Vigano, M.L.; As’sadiq, A.; Kang, K.; Fernandez, C.; Samarani, S.; Anis, A.H.; Ahmad, A.; Costiniuk, C.T. The Impact of HIV on B Cell Compartment and Its Implications for COVID-19 Vaccinations in People with HIV. Vaccines 2024, 12, 1372. [Google Scholar] [CrossRef]
- Martínez, L.E.; Ibarrondo, J.; Guo, Y.; Penichet, M.L.; Epeldegui, M. Follicular CD8+ T Cells Are Elevated in HIV Infection and Induce PD-L1 on B Cells. J. Immunol. 2023, 210, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Martin, G.E.; Sen, D.R.; Pace, M.; Robinson, N.; Meyerowitz, J.; Adland, E.; Thornhill, J.P.; Jones, M.; Ogbe, A.; Parolini, L.; et al. Epigenetic Features of HIV-Induced T-Cell Exhaustion Persist Despite Early Antiretroviral Therapy. Front. Immunol. 2021, 12, 647688. [Google Scholar] [CrossRef] [PubMed]
- Labuschagne Naidoo, R.B.; Steel, H.C.; Theron, A.J.; Anderson, R.; Tintinger, G.R.; Rossouw, T.M. Persistently Elevated Expression of Systemic, Soluble Co-Inhibitory Immune Checkpoint Molecules in People Living with HIV before and One Year after Antiretroviral Therapy. Pathogens 2024, 13, 540. [Google Scholar] [CrossRef] [PubMed]
- Rueger, S.; Gruener, E.; Wang, D.; Abdool, F.S.; Ober, V.; Vallée, T.; Stirner, R.; Conca, R.; Andrä, I.; Rogers, L.; et al. Early Treatment and PD1 Inhibition Enhance HIV-Specific Functionality of Follicular CD8+ T Cells. JCI Insight 2025, 10, e180309. [Google Scholar] [CrossRef]
Long-Term-Treated Patients (Ukraine Refugees Group) (n = 27) | Newly Diagnosed Indyviduals (n = 52) | p Value | |
---|---|---|---|
Total cholesterol (median, IQR, mg/dL) | 172 | 165 | 0.6344 |
155.50 to 194.25 | 145.50 to 204.50 | ||
Non-HDL cholesterol (median, IQR, mg/dL) | 124.8 | 116.55 | 0.9753 |
103.33 to 136.55 | 90.20 to 152.50 | ||
HDL cholesterol (median, IQR, mg/dL) | 52.2 | 49.15 | 0.1537 |
43.80 to 66.28 | 41.85 to 56.25 | ||
LDL cholesterol (median, IQR, mg/dL) | 120 | 123 | 0.8443 |
106.00 to 134.75 | 87.50 to 148.50 | ||
Triacylglycerols (median, IQR, mg/dL) | 86 | 96 | 0.0551 |
62.50 to 98.50 | 76.50 to 157.50 | ||
SCORE 2 | 0.02 | 0.02 | 0.6918 |
0.0025 to 0.040 | 0.00 to 0.040 |
Long-Term-Treated Patients (Ukraine Refugees Group) (n = 27) | Newly Diagnosed Individuals (n = 52) | p Value | |
---|---|---|---|
Th_CD4+ (median, IQR, cells/μL) | 621 | 596.5 | 0.22 |
487 to 882 | 285.0 to 811.0 | ||
CTLs_CD8+ (median, IQR, cells/μL) | 620 | 872 | 0.028 |
494.0 to 936.00 | 603.0 to 1250.75 | ||
Th_CD4+/CTLs_CD8+ (median, IQR, ratio) | 1.05 | 0.57 | 0.0027 |
0.69 to 1.55 | 0.35 to 1.05 |
Long-Term-Treated Patients (Ukraine Refugees Group) (n = 20) | Newly Diagnosed Individuals (n = 52) | p Value | |
---|---|---|---|
B_CD19+ PD-1 (median, IQR, %) | 0 | 0.6 | 0.0418 |
0.00 to 4.10 | 0.30 to 1.20 | ||
B_CD19+ PD-L1 (median, IQR, %) | 0 | 0.2 | 0.0044 |
0.00 to 0.00 | 0.00 to 0.60 | ||
T_CD3+ PD-1 (median, IQR, %) | 12.35 | 27.3 | <0.0001 |
3.75 to 18.35 | 21.10 to 36.40 | ||
T_CD3+ PD-L1 (median, IQR, %) | 0 | 0.8 | 0.0029 |
0.00 to 1.65 | 0.20 to 5.00 | ||
Th_CD4+ PD-1 (median, IQR, %) | 3.85 | 24.4 | 0.0002 |
0.00 to 21.75 | 18.95 to 32.70 | ||
Th_CD4+ PD-L1 (median, IQR, %) | 0 | 0.45 | <0.0001 |
0.00 to 0.00 | 0.050 to 5.30 |
Variable | Coefficient (β) | p-Value |
---|---|---|
T_CD3+ (%) | +21.92 | <0.001 |
T_CD3+ PD-1 (%) | +8.03 | 0.11 |
T_CD3+ PD-1L (%) | −0.043 | 0.97 |
CTLs_CD8+ cells | +167.33 | 0.27 |
Th_CD4+ cells | −165.50 | 0.097 |
Th_CD4+ (%) | +28.87 | <0.0001 |
Th_CD4+ PD-1 (%) | +5.11 | 0.42 |
Th_CD4+ PD-L1 (%) | +2.26 | 0.069 |
B_CD19+ (%) | +8.73 | 0.002 |
B_CD19+ PD-1 (%) | −2.10 | 0.097 |
B_CD19+ PD-L1 (%) | −0.02 | 0.97 |
CD4+/CD8+ | −0.44 | 0.014 |
RR systolic | −4.07 | 0.33 |
LDL | +10.53 | 0.35 |
Non-HDL | +7.92 | 0.36 |
TAG | +26.23 | 0.18 |
Total cholesterol | 2.57 | 0.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aksak-Wąs, B.; Skonieczna-Żydecka, K.; Parczewski, M.; Hrynkiewicz, R.; Lewandowski, F.; Serwin, K.; Mielczak, K.; Majchrzak, A.; Bruss, M.; Niedźwiedzka-Rystwej, P. Immunorecovered but Exhausted: Persistent PD-1/PD-L1 Expression Despite Virologic Suppression and CD4 Recovery in PLWH. Biomedicines 2025, 13, 1885. https://doi.org/10.3390/biomedicines13081885
Aksak-Wąs B, Skonieczna-Żydecka K, Parczewski M, Hrynkiewicz R, Lewandowski F, Serwin K, Mielczak K, Majchrzak A, Bruss M, Niedźwiedzka-Rystwej P. Immunorecovered but Exhausted: Persistent PD-1/PD-L1 Expression Despite Virologic Suppression and CD4 Recovery in PLWH. Biomedicines. 2025; 13(8):1885. https://doi.org/10.3390/biomedicines13081885
Chicago/Turabian StyleAksak-Wąs, Bogusz, Karolina Skonieczna-Żydecka, Miłosz Parczewski, Rafał Hrynkiewicz, Filip Lewandowski, Karol Serwin, Kaja Mielczak, Adam Majchrzak, Mateusz Bruss, and Paulina Niedźwiedzka-Rystwej. 2025. "Immunorecovered but Exhausted: Persistent PD-1/PD-L1 Expression Despite Virologic Suppression and CD4 Recovery in PLWH" Biomedicines 13, no. 8: 1885. https://doi.org/10.3390/biomedicines13081885
APA StyleAksak-Wąs, B., Skonieczna-Żydecka, K., Parczewski, M., Hrynkiewicz, R., Lewandowski, F., Serwin, K., Mielczak, K., Majchrzak, A., Bruss, M., & Niedźwiedzka-Rystwej, P. (2025). Immunorecovered but Exhausted: Persistent PD-1/PD-L1 Expression Despite Virologic Suppression and CD4 Recovery in PLWH. Biomedicines, 13(8), 1885. https://doi.org/10.3390/biomedicines13081885