The Role of Aldosterone and the Mineralocorticoid Receptor in Metabolic Dysfunction-Associated Steatotic Liver Disease
Abstract
1. Introduction
2. Mechanisms Involving Aldosterone and MR in MASLD
2.1. General Mechanisms of Aldosterone and Mineralocorticoid Receptor (MR)- Induced Inflammation and Fibrosis
2.2. Mechanisms Involving Aldosterone and MR in Experimental Models of MASLD
2.3. Human Studies Linking Aldosterone and Mineralocorticoid Receptor to MASLD
2.3.1. Observational Studies
2.3.2. Interventional Studies
3. The Gap of Knowledge and Evidence Regarding the Relationship Between Aldosterone and MASLD
3.1. Gap of Knowledge in the Mechanisms Implicating Aldosterone and MR in MASLD
3.2. Gap of Knowledge in Human Interventional Studies
4. Conclusions–Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease—Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016, 64, 73–84. [Google Scholar] [CrossRef]
- Tana, C.; Ballestri, S.; Ricci, F.; Di Vincenzo, A.; Ticinesi, A.; Gallina, S.; Giamberardino, M.A.; Cipollone, F.; Sutton, R.; Vettor, R.; et al. Cardiovascular Risk in Non-Alcoholic Fatty Liver Disease: Mechanisms and Therapeutic Implications. Int. J. Environ. Res. Public Health 2019, 16, 3104. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Anstee, Q.M.; Marietti, M.; Hardy, T.; Henry, L.; Eslam, M.; George, J.; Bugianesi, E. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Goossens, N.; Bellentani, S.; Cerny, A.; Dufour, J.-F.; Jornayvaz, F.R.; Mertens, J.; Moriggia, A.; Muellhaupt, B.; Negro, F.; Razavi, H.; et al. Nonalcoholic fatty liver disease burden—Switzerland 2018–2030. Swiss Med. Wkly. 2019, 149, w20152. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD). J Hepatol. 2024, 81, 492–542. [Google Scholar] [CrossRef]
- Watt, M.J.; Miotto, P.M.; De Nardo, W.; Montgomery, M.K. The Liver as an Endocrine Organ—Linking NAFLD and Insulin Resistance. Endocr. Rev. 2019, 40, 1367–1393. [Google Scholar] [CrossRef]
- Paschos, P.; Tziomalos, K. Nonalcoholic fatty liver disease and the renin-angiotensin system: Implications for treatment. World J. Hepatol. 2012, 4, 327–331. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, X.; Chen, Q.; Yu, C. Non-Alcoholic Fatty Liver Disease and Hypokalemia in Primary Aldosteronism Among Chinese Population. Front. Endocrinol. 2021, 12, 565714. [Google Scholar] [CrossRef]
- Romanowski, M.D.; Parolin, M.B.; Freitas, A.C.T.; Piazza, M.J.; Basso, J.; Urbanetz, A.A. Prevalence of non-alcoholic fatty liver disease in women with polycystic ovary syndrome and its correlation with metabolic syndrome. Arq. Gastroenterol. 2015, 52, 117–123. [Google Scholar] [CrossRef]
- Tarantino, G.; Finelli, C. Pathogenesis of hepatic steatosis: The link between hypercortisolism and non-alcoholic fatty liver disease. World J. Gastroenterol. 2013, 19, 6735–6743. [Google Scholar] [CrossRef]
- Armanini, D.; Bordin, L.; Donà, G.; Sabbadin, C.; Bakdounes, L.; Ragazzi, E.; Giorgino, F.L.; Fiore, C. Polycystic ovary syndrome: Implications of measurement of plasma aldosterone, renin activity and progesterone. Steroids 2012, 77, 655–658. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.M.; Roh, J.-H.; Lee, S.; Yoon, J.-H. Clinical implications of renin–angiotensin system inhibitors for development and progression of non-alcoholic fatty liver disease. Sci. Rep. 2021, 11, 2884. [Google Scholar] [CrossRef] [PubMed]
- Das, U.N. Renin–angiotensin–aldosterone system in insulin resistance and metabolic syndrome. J. Transl. Intern. Med. 2016, 4, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Underwood, P.C.; Adler, G.K. The Renin Angiotensin Aldosterone System and Insulin Resistance in Humans. Curr. Hypertens. Rep. 2013, 15, 59–70. [Google Scholar] [CrossRef]
- Hawkins, U.A.; Gomez-Sanchez, E.P.; Gomez-Sanchez, C.M.; Gomez-Sanchez, C.E. The Ubiquitous Mineralocorticoid Receptor: Clinical Implications. Curr. Hypertens. Rep. 2012, 14, 573–580. [Google Scholar] [CrossRef]
- Young, M.J. Mechanisms of mineralocorticoid receptor-mediated cardiac fibrosis and vascular inflammation. Curr. Opin. Nephrol. Hypertens. 2008, 17, 174–180. [Google Scholar] [CrossRef]
- Luther, J.M.; Fogo, A.B. The role of mineralocorticoid receptor activation in kidney inflammation and fibrosis. Kidney Int. Suppl. 2022, 12, 63–68. [Google Scholar] [CrossRef]
- Di Cristofano, A. SGK1: The Dark Side of PI3K Signaling. Curr. Top. Dev. Biol. 2017, 123, 49–71. [Google Scholar] [CrossRef]
- Valinsky, W.C.; Touyz, R.M.; Shrier, A. Aldosterone, SGK1, and ion channels in the kidney. Clin. Sci. 2018, 132, 173–183. [Google Scholar] [CrossRef]
- Huang, W.; Xu, C.; Kahng, K.W.; Noble, N.A.; Border, W.A.; Huang, Y. Aldosterone and TGF-β1 synergistically increase PAI-1 and decrease matrix degradation in rat renal mesangial and fibroblast cells. Am. J. Physiol.-Ren. Physiol. 2008, 294, F1287–F1295. [Google Scholar] [CrossRef]
- Lang, F.; Böhmer, C.; Palmada, M.; Seebohm, G.; Strutz-Seebohm, N.; Vallon, V. (Patho)physiological Significance of the Serum- and Glucocorticoid-Inducible Kinase Isoforms. Physiol. Rev. 2006, 86, 1151–1178. [Google Scholar] [CrossRef] [PubMed]
- Artunc, F.; Lang, F. Mineralocorticoid and SGK1-Sensitive Inflammation and Tissue Fibrosis. Nephron Physiol. 2014, 128, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Briet, M.; Schiffrin, E.L. Aldosterone: Effects on the kidney and cardiovascular system. Nat. Rev. Nephrol. 2010, 6, 261–273. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Zhang, Y.; Li, S.; Wu, L.; Fejes-Toth, G.; Naray-Fejes-Toth, A.; Soukas, A.A. Serum- and glucocorticoid-induced kinase drives hepatic insulin resistance by directly inhibiting AMP-activated protein kinase. Cell Rep. 2021, 37, 109785. [Google Scholar] [CrossRef]
- Sierra-Ramos, C.; Velazquez-Garcia, S.; Vastola-Mascolo, A.; Hernández, G.; Faresse, N.; de la Rosa, D.A. SGK1 activation exacerbates diet-induced obesity, metabolic syndrome and hypertension. J. Endocrinol. 2020, 244, 149–162. [Google Scholar] [CrossRef]
- Lu, R.; Zhang, Y.; Zhao, H.; Guo, R.; Jiang, Z.; Guo, R. SGK1, a Critical Regulator of Immune Modulation and Fibrosis and a Potential Therapeutic Target in Chronic Graft-Versus-Host Disease. Front. Immunol. 2022, 13, 822303. [Google Scholar] [CrossRef]
- Zhang, L.; Hao, J.-B.; Ren, L.-S.; Ding, J.-L.; Hao, L.-R. The aldosterone receptor antagonist spironolactone prevents peritoneal inflammation and fibrosis. Lab. Investig. 2014, 94, 839–850. [Google Scholar] [CrossRef]
- Leader, C.J.; Wilkins, G.T.; Walker, R.J. The effect of spironolactone on cardiac and renal fibrosis following myocardial infarction in established hypertension in the transgenic Cyp1a1Ren2 rat. PLoS ONE 2021, 16, e0260554. [Google Scholar] [CrossRef]
- Muñoz-Durango, N.; Arrese, M.; Hernández, A.; Jara, E.; Kalergis, A.M.; Cabrera, D. A Mineralocorticoid Receptor Deficiency in Myeloid Cells Reduces Liver Steatosis by Impairing Activation of CD8+ T Cells in a Nonalcoholic Steatohepatitis Mouse Modell. Front. Immunol. 2020, 11, 563434. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Z.; Zhu, X.; Wu, H.; Gao, H.; Yang, C. Effect of aldosterone and its antagonist on the expression of PAI-1 and TGF-β1 in rat hepatic stellate cells. Int. J. Clin. Exp. Med. 2014, 7, 4677. [Google Scholar]
- Noguchi, R.; Yoshiji, H.; Ikenaka, Y.; Kaji, K.; Shirai, Y.; Aihara, Y.; Yamazaki, M.; Namisaki, T.; Kitade, M.; Yoshii, J.; et al. Selective aldosterone blocker ameliorates the progression of non-alcoholic steatohepatitis in rats. Int. J. Mol. Med. 2010, 26, 407–413. [Google Scholar] [CrossRef]
- Wada, T.; Miyashita, Y.; Sasaki, M.; Aruga, Y.; Nakamura, Y.; Ishii, Y.; Sasahara, M.; Kanasaki, K.; Kitada, M.; Koya, D.; et al. Eplerenone ameliorates the phenotypes of metabolic syndrome with NASH in liver-specific SREBP-1c Tg mice fed high-fat and high-fructose diet. Am. J. Physiol. Metab. 2013, 305, E1415–E1425. [Google Scholar] [CrossRef]
- Luo, P.; Dematteo, A.; Wang, Z.; Zhu, L.; Wang, A.; Kim, H.-S.; Pozzi, A.; Stafford, J.M.; Luther, J.M. Aldosterone deficiency prevents high-fat-feeding-induced hyperglycaemia and adipocyte dysfunction in mice. Diabetologia 2013, 56, 901–910. [Google Scholar] [CrossRef] [PubMed]
- Pizarro, M.; Solís, N.; Quintero, P.; Barrera, F.; Cabrera, D.; Santiago, P.R.; Arab, J.P.; Padilla, O.; Roa, J.C.; Moshage, H.; et al. Beneficial effects of mineralocorticoid receptor blockade in experimental non-alcoholic steatohepatitis. Liver Int. 2015, 35, 2129–2138. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Li, X.; Wu, P.; Meng, Y.; Li, S.; Lai, W. CYP11B2 Expression in Rat Liver and the Effect of Spironolactone on Hepatic Fibrogenesis. Horm. Res. Paediatr. 2000, 53, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, Y.; Chen, T.; Huang, Y.; Zhang, Y.; Geng, S.; Li, X. Role of aldosterone in the activation of primary mice hepatic stellate cell and liver fibrosis via NLRP3 inflammasome. J. Gastroenterol. Hepatol. 2020, 35, 1069–1077. [Google Scholar] [CrossRef]
- Adeyanju, O.A.; Falodun, T.O.; Michael, O.S.; Soetan, O.A.; Oyewole, A.L.; Agbana, R.D. Spironolactone reversed hepato-ovarian triglyceride accumulation caused by letrozole-induced polycystic ovarian syndrome: Tissue uric acid—A familiar foe. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2020, 393, 1055–1066. [Google Scholar] [CrossRef]
- Bene, N.C.; Alcaide, P.; Wortis, H.H.; Jaffe, I.Z. Mineralocorticoid receptors in immune cells: Emerging role in cardiovascular disease. Steroids 2014, 91, 38–45. [Google Scholar] [CrossRef]
- Brummer, C.; Singer, K.; Renner, K.; Hellerbrand, C.; Dorn, C.; Reichelt-Wurm, S.; Gronwald, W.; Pukrop, T.; Herr, W.; Banas, M.; et al. The spleen-liver axis supports obesity-induced systemic and fatty liver inflammation via MDSC and NKT cell enrichment. Mol. Cell. Endocrinol. 2025, 601, 112518. [Google Scholar] [CrossRef]
- Liu, H.; Yu, J.; Xia, T.; Xiao, Y.; Zhang, Q.; Liu, B.; Guo, Y.; Deng, J.; Deng, Y.; Chen, S.; et al. Hepatic serum- and glucocorticoid-regulated protein kinase 1 (SGK1) regulates insulin sensitivity in mice via extracellular-signal-regulated kinase 1/2 (ERK1/2). Biochem. J. 2014, 464, 281–289. [Google Scholar] [CrossRef]
- Chatterjee, A.; Basu, A.; Das, K.; Singh, P.; Mondal, D.; Bhattacharya, B.; Roychoudhury, S.; Majumder, P.P.; Chowdhury, A.; Basu, P. Hepatic transcriptome signature correlated with HOMA-IR explains early nonalcoholic fatty liver disease pathogenesis. Ann. Hepatol. 2020, 19, 472–481. [Google Scholar] [CrossRef] [PubMed]
- Kosmala, W.; Przewlocka-Kosmala, M.; Szczepanik-Osadnik, H.; Mysiak, A.; O’Moore-Sullivan, T.; Marwick, T.H. A randomized study of the beneficial effects of aldosterone antagonism on LV function, structure, and fibrosis markers in metabolic syndrome. JACC Cardiovasc. Imaging 2011, 4, 1239–1249. [Google Scholar] [CrossRef] [PubMed]
- Maron, M.S.; Chan, R.H.; Kapur, N.K.; Jaffe, I.Z.; McGraw, A.P.; Kerur, R.; Maron, B.J.; Udelson, J.E. Effect of Spironolactone on Myocardial Fibrosis and Other Clinical Variables in Patients with Hypertrophic Cardiomyopathy. Am. J. Med. 2018, 131, 837–841. [Google Scholar] [CrossRef] [PubMed]
- Guney, I.; Selcuk, N.Y.; Altintepe, L.; Atalay, H.; Başarali, M.K.; Büyükbaş, S. Antifibrotic Effects of Aldosterone Receptor Blocker (Spironolactone) in Patients with Chronic Kidney Disease. Ren. Fail. 2009, 31, 779–784. [Google Scholar] [CrossRef]
- Kumar, A.; Blackshear, C.; Subauste, J.S.; Esfandiari, N.H.; Oral, E.A.; Subauste, A.R. Fatty Liver Disease, Women, and Aldosterone: Finding a Link in the Jackson Heart Study. J. Endocr. Soc. 2017, 1, 460–469. [Google Scholar] [CrossRef]
- Fallo, F.; Pozza, A.D.; Tecchio, M.; Tona, F.; Sonino, N.; Ermani, M.; Catena, C.; Bertello, C.; Mulatero, P.; Sabato, N.; et al. Nonalcoholic Fatty Liver Disease in Primary Aldosteronism: A Pilot Study. Am. J. Hypertens. 2010, 23, 2–5. [Google Scholar] [CrossRef]
- Shibayama, Y.; Wada, N.; Baba, S.; Obara, S.; Sakai, H.; Usubuchi, H.; Terae, S.; Nakamura, A.; Atsumi, T. The risk factors for hepatic steatosis in patients with primary aldosteronism. Endocr. J. 2020, 67, 623–629. [Google Scholar] [CrossRef]
- Arefi, S.; Mottaghi, S.; Sharifi, A.M. Studying the correlation of renin-angiotensin-system (RAS) components and insulin resistance in polycystic ovary syndrome (PCOs). Gynecol. Endocrinol. 2013, 29, 470–473. [Google Scholar] [CrossRef]
- Hu, J.; Cai, X.; Zhu, Q.; Heizhati, M.; Wen, W.; Luo, Q.; Hong, J.; Dang, Y.; Yang, W.; Li, N. Relationship Between Plasma Aldosterone Concentrations and Non-Alcoholic Fatty Liver Disease Diagnosis in Patients with Hypertension: A Retrospective Cohort Study. Diabetes Metab. Syndr. Obes. 2023, 16, 1625–1636. [Google Scholar] [CrossRef]
- Zeng, Q.; Luo, X.; Chen, X.; Luo, W.; Li, R.; Yang, S.; Yang, J.; Shu, X.; Li, Q.; Hu, J.; et al. Renin-independent aldosteronism and metabolic dysfunction-associated steatotic liver disease and cirrhosis: A genetic association study. Clin. Nutr. 2025, 44, 193–200. [Google Scholar] [CrossRef]
- Polyzos, S.A.; Kountouras, J.; Mantzoros, C.S.; Polymerou, V.; Katsinelos, P. Effects of combined low-dose spironolactone plus vitamin E vs vitamin E monotherapy on insulin resistance, non-invasive indices of steatosis and fibrosis, and adipokine levels in non-alcoholic fatty liver disease: A randomized controlled triall. Diabetes Obes. Metab. 2017, 19, 1805–1809. [Google Scholar] [CrossRef]
- Johansen, M.L.; Schou, M.; Rossignol, P.; Holm, M.R.; Rasmussen, J.; Brandt, N.; Frandsen, M.; Chabanova, E.; Dela, F.; Faber, J.; et al. Effect of the mineralocorticoid receptor antagonist eplerenone on liver fat and metabolism in patients with type 2 diabetes: A randomized, double-blind, placebo-controlled trial (MIRAD trial). Diabetes Obes. Metab. 2019, 21, 2305–2314. [Google Scholar] [CrossRef]
- Díaz, M.; Gallego-Escuredo, J.M.; López-Bermejo, A.; de Zegher, F.; Villarroya, F.; Ibáñez, L. Low-Dose Spironolactone-Pioglitazone-Metformin Normalizes Circulating Fetuin-A Concentrations in Adolescent Girls with Polycystic Ovary Syndrome. Int. J. Endocrinol. 2018, 2018, 4192940. [Google Scholar] [CrossRef] [PubMed]
- Ibáñez, L.; del Río, L.; Díaz, M.; Sebastiani, G.; Pozo, Ó.J.; López-Bermejo, A.; de Zegher, F. Normalizing Ovulation Rate by Preferential Reduction of Hepato-Visceral Fat in Adolescent Girls with Polycystic Ovary Syndrome. J. Adolesc. Health 2017, 61, 446–453. [Google Scholar] [CrossRef] [PubMed]
- Ibarrola, J.; Sadaba, R.; Martinez-Martinez, E.; Garcia-Peña, A.; Arrieta, V.; Alvarez, V.; Fernández-Celis, A.; Gainza, A.; Cachofeiro, V.; Santamaria, E.; et al. Aldosterone Impairs Mitochondrial Function in Human Cardiac Fibroblasts via A-Kinase Anchor Protein 12. Sci. Rep. 2018, 8, 6801. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Choi, J.; Son, T.; Wee, H.-J.; Bae, S.-J.; Seo, J.H.; Park, J.H.; Ryu, S.H.; Lee, D.; Jang, M.K.; et al. Altered AKAP12 expression in portal fibroblasts and liver sinusoids mediates transition from hepatic fibrogenesis to fibrosis resolution. Exp. Mol. Med. 2018, 50, 1–13. [Google Scholar] [CrossRef]
- Suppli, M.P.; Rigbolt, K.T.G.; Veidal, S.S.; Heebøll, S.; Eriksen, P.L.; Demant, M.; Bagger, J.I.; Nielsen, J.; Oró, D.; Thrane, S.W.; et al. Hepatic transcriptome signatures in patients with varying degrees of nonalcoholic fatty liver disease compared with healthy normal-weight individuals. Am. J. Physiol.-Gastrointest. Liver Physiol. 2019, 316, G462–G472. [Google Scholar] [CrossRef]
- Behar-Cohen, F.F.; Nigoghossian, M.D.; Levy, R.; Zhao, M.; Andrieu-Soler, C. Mechanism of action of mineralocorticoid receptor in the retina: Evidences from transcriptomic analyses. Investig. Ophthalmol. Vis. Sci. 2016, 57. [Google Scholar]
- Sekizawa, N.; Yoshimoto, T.; Hayakawa, E.; Suzuki, N.; Sugiyama, T.; Hirata, Y. Transcriptome analysis of aldosterone-regulated genes in human vascular endothelial cell lines stably expressing mineralocorticoid receptor. Mol. Cell. Endocrinol. 2011, 341, 78–88. [Google Scholar] [CrossRef]
- Latouche, C.; Sainte-Marie, Y.; Steenman, M.; Chaves, P.C.; Naray-Fejes-Toth, A.; Fejes-Toth, G.; Farman, N.; Jaisser, F. Molecular Signature of Mineralocorticoid Receptor Signaling in Cardiomyocytes: From Cultured Cells to Mouse Heart. Endocrinology 2010, 151, 4467–4476. [Google Scholar] [CrossRef]
- García-Martínez, J.M.; Alessi, D.R. mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). Biochem. J. 2008, 416, 375–385. [Google Scholar] [CrossRef]
- Gleason, C.E.; Oses-Prieto, J.A.; Li, K.H.; Saha, B.; Situ, G.; Burlingame, A.L.; Pearce, D. Phosphorylation at distinct subcellular locations underlies specificity in mTORC2-mediated activation of SGK1 and Akt. J. Cell Sci. 2019, 132, jcs224931. [Google Scholar] [CrossRef]
- Lu, M.; Wang, J.; Jones, K.T.; Ives, H.E.; Feldman, M.E.; Yao, L.-J.; Shokat, K.M.; Ashrafi, K.; Pearce, D. mTOR Complex-2 Activates ENaC by Phosphorylating SGK1. J. Am. Soc. Nephrol. 2010, 21, 811–818. [Google Scholar] [CrossRef]
- Chen, H. Nutrient mTORC1 signaling contributes to hepatic lipid metabolism in the pathogenesis of non-alcoholic fatty liver disease. Liver Res. 2020, 4, 15–22. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barigou, M.; Ramzan, I.; Chartoumpekis, D.V. The Role of Aldosterone and the Mineralocorticoid Receptor in Metabolic Dysfunction-Associated Steatotic Liver Disease. Biomedicines 2025, 13, 1792. https://doi.org/10.3390/biomedicines13081792
Barigou M, Ramzan I, Chartoumpekis DV. The Role of Aldosterone and the Mineralocorticoid Receptor in Metabolic Dysfunction-Associated Steatotic Liver Disease. Biomedicines. 2025; 13(8):1792. https://doi.org/10.3390/biomedicines13081792
Chicago/Turabian StyleBarigou, Mohammed, Imran Ramzan, and Dionysios V. Chartoumpekis. 2025. "The Role of Aldosterone and the Mineralocorticoid Receptor in Metabolic Dysfunction-Associated Steatotic Liver Disease" Biomedicines 13, no. 8: 1792. https://doi.org/10.3390/biomedicines13081792
APA StyleBarigou, M., Ramzan, I., & Chartoumpekis, D. V. (2025). The Role of Aldosterone and the Mineralocorticoid Receptor in Metabolic Dysfunction-Associated Steatotic Liver Disease. Biomedicines, 13(8), 1792. https://doi.org/10.3390/biomedicines13081792