Insights into the Molecular Mechanisms and Novel Therapeutic Strategies of Stenosis Fibrosis in Crohn’s Disease
Abstract
1. Introduction
2. Histopathological Characteristics of Fibrotic Stenosis in Crohn’s Disease
3. The Mechanism of Intestinal Fibrosis in Crohn’s Stenosis
3.1. Fibrosis Factors
3.1.1. TGF-β
3.1.2. IGF
3.1.3. CTGF
3.1.4. RAAS
3.1.5. Other Protein Molecules
3.1.6. Upregulation Gene
3.2. Antifibrotic Factors
3.2.1. mTOR
3.2.2. PPAR
3.2.3. Adiponectin
3.2.4. Downregulation Gene
3.3. Other Factors
3.3.1. Intestinal Microbiota and Intestinal Wall Fibrosis
3.3.2. Autophagy
4. Therapeutic Strategies for Fibrosis and Crohn’s Disease Stricture
4.1. Medications
4.1.1. Conventional Agents
4.1.2. Biological Agents
4.1.3. Immunosuppressants
4.2. Procedural and Surgical Interventions
4.2.1. Endoscopic Balloon Dilation (EBD)
4.2.2. Stricturotomy
4.2.3. Endoscopic Stent Placement
5. Future Perspectives and Treatment of Stenosis Fibrosis in Crohn’s Disease
5.1. ECM Dysregulation
5.2. TGF-β/Smad and Antioxidant Pathways
5.3. Targeting EMT
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Torres, J.; Mehandru, S.; Colombel, J.F.; Peyrin-Biroulet, L. Crohn’s disease. Lancet 2017, 389, 1741–1755. [Google Scholar] [CrossRef] [PubMed]
- Veauthier, B.; Hornecker, J.R. Crohn’s Disease: Diagnosis and Management. Am. Fam. Physician 2018, 98, 661–669. [Google Scholar] [PubMed]
- Yoo, J.H.; Holubar, S.; Rieder, F. Fibrostenotic strictures in Crohn’s disease. Intest. Res. 2020, 18, 379–401. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schmitt, H.; Neurath, M.F.; Atreya, R. Role of the IL23/IL17 Pathway in Crohn’s Disease. Front. Immunol. 2021, 12, 622934. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chan, W.P.W.; Mourad, F.; Leong, R.W. Crohn’s disease associated strictures. J. Gastroenterol. Hepatol. 2018, 33, 998–1008. [Google Scholar] [CrossRef] [PubMed]
- Solitano, V.; Dal Buono, A.; Gabbiadini, R.; Wozny, M.; Repici, A.; Spinelli, A.; Vetrano, S.; Armuzzi, A. Fibro-Stenosing Crohn’s Disease: What Is New and What Is Next? J. Clin. Med. 2023, 12, 3052. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bouhnik, Y.; Carbonnel, F.; Laharie, D.; Stefanescu, C.; Hébuterne, X.; Abitbol, V.; Nachury, M.; Brixi, H.; Bourreille, A.; Picon, L.; et al. Efficacy of adalimumab in patients with Crohn’s disease and symptomatic small bowel stricture: A multicentre, prospective, observational cohort (CREOLE) study. Gut 2018, 67, 53–60. [Google Scholar] [CrossRef]
- Rimola, J.; Capozzi, N. Differentiation of fibrotic and inflammatory component of Crohn’s disease-associated strictures. Intest. Res. 2020, 18, 144–150. [Google Scholar] [CrossRef]
- Levy, A.N. Diagnosis and Classification of Inflammatory Bowel Disease Strictures. Gastrointest. Endosc. Clin. N. Am. 2022, 32, 615–629. [Google Scholar] [CrossRef] [PubMed]
- Bak, M.T.J.; Demers, K.; Hammoudi, N.; Allez, M.; Silverberg, M.S.; Fuhler, G.M.; Parikh, K.; Pierik, M.J.; Stassen, L.P.S.; van der Woude, C.J.; et al. Systematic review: Patient-related, microbial, surgical, and histopathological risk factors for endoscopic post-operative recurrence in patients with Crohn’s disease. Aliment. Pharmacol. Ther. 2024, 60, 310–326. [Google Scholar] [CrossRef] [PubMed]
- Dolinger, M.; Torres, J.; Vermeire, S. Crohn’s disease. Lancet 2024, 403, 1177–1191. [Google Scholar] [CrossRef] [PubMed]
- Scheibe, K.; Kersten, C.; Schmied, A.; Vieth, M.; Primbs, T.; Carlé, B.; Knieling, F.; Claussen, J.; Klimowicz, A.C.; Zheng, J.; et al. Inhibiting Interleukin 36 Receptor Signaling Reduces Fibrosis in Mice With Chronic Intestinal Inflammation. Gastroenterology 2019, 156, 1082–1097. [Google Scholar] [CrossRef]
- Mao, R.; Kurada, S.; OGordon, I.; EBaker, M.; Gandhi, N.; McDonald, C.; Coffey, J.C.; Rieder, F. The mesenteric fat and intestinal muscle interface: Creeping fat influencing stricture formation in Crohn’s Disease. Inflamm. Bowel Dis. 2019, 25, 421–426. [Google Scholar] [CrossRef]
- Visschedijk, M.C.; Spekhorst, L.M.; Cheng, S.C.; van Loo, E.S.; Jansen, B.H.D.; Blokzijl, T.; Kil, H.; de Jong, D.J.; Pierik, M.; Maljaars, J.P.W.J.; et al. Genomic and Expression Analyses Identify a Disease-Modifying Variant for Fibrostenotic Crohn’s Disease. J. Crohn’s Colitis. 2018, 12, 582–588. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, Y.; Nakase, H. The Molecular Mechanisms of Intestinal Inflammation and Fibrosis in Crohn’s Disease. Front. Physiol. 2022, 13, 845078. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Esmaeilzadeh, A.; Mohammadi, V.; Elahi, R. Transforming growth factor β (TGF-β) pathway in the immunopathogenesis of multiple sclerosis (MS); molecular approaches. Mol. Biol. Rep. 2023, 50, 6121–6131. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.K.; Sheppard, D.; Chapman, H.A. TGF-β1 Signaling and Tissue Fibrosis. Cold Spring Harb. Perspect. Biol. 2018, 10, a022293. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Latella, G.; Sferra, R.; Speca, S.; Vetuschi, A.; Gaudio, E. Can we prevent, reduce or reverse intestinal fibrosis in IBD? Eur. Rev. Med. Pharmacol. Sci. 2013, 17, 1283–1304. [Google Scholar] [PubMed]
- McKaig, B.C.; Hughes, K.; Tighe, P.J.; Mahida, Y.R. Differential expression of TGF-beta isoforms by normal and inflammatory bowel disease intestinal myofibroblasts. Am. J. Physiol. Cell Physiol. 2002, 282, C172–C182. [Google Scholar] [CrossRef] [PubMed]
- Rieder, F.; Mukherjee, P.K.; Massey, W.J.; Wang, Y.; Fiocchi, C. Fibrosis in IBD: From pathogenesis to therapeutic targets. Gut 2024, 73, 854–866. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mahavadi, S.; Flynn, R.S.; Grider, J.R.; Qiao, L.Y.; Murthy, K.S.; Hazelgrove, K.B.; Kuemmerle, J.F. Amelioration of excess collagen IαI, fibrosis, and smooth muscle growth in TNBS-induced colitis in IGF-I(+/−) mice. Inflamm. Bowel Dis. 2011, 17, 711–719. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Razzaque, M.S.; Foster, C.S.; Ahmed, A.R. Role of connective tissue growth factor in the pathogenesis of conjunctival scarring in ocular cicatricial pemphigoid. Investig. Ophthalmol. Vis. Sci. 2003, 44, 1998–2003. [Google Scholar] [CrossRef] [PubMed]
- Sands, B.E. Biomarkers of Inflammation in Inflammatory Bowel Disease. Gastroenterology 2015, 149, 1275–1285.e2. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.W.; Zhang, Y.Y.; Ke, X.J.; Wu, X.J.; Chen, Z.F.; Chi, P. Pirfenidone prevents radiation-induced intestinal fibrosis in rats by inhibiting fibroblast proliferation and differentiation and suppressing the TGF-β1/Smad/CTGF signaling pathway. Eur. J. Pharmacol. 2018, 822, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Vargas Vargas, R.A.; Varela Millán, J.M.; Fajardo Bonilla, E. Renin-angiotensin system: Basic and clinical aspects-A general perspective. Endocrinol. Diabetes Nutr. (Engl. Ed.) 2022, 69, 52–62. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wengrower, D.; Zanninelli, G.; Latella, G.; Necozione, S.; Metanes, I.; Israeli, E.; Lysy, J.; Pines, M.; Papo, O.; Goldin, E. Losartan reduces trinitrobenzene sulphonic acid-induced colorectal fibrosis in rats. Can. J. Gastroenterol. 2012, 26, 33–39. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- 51 LeFort, K.R.; Rungratanawanich, W.; Song, B.J. Contributing roles of mitochondrial dysfunction and hepatocyte apoptosis in liver diseases through oxidative stress, post-translational modifications, inflammation, and intestinal barrier dysfunction. Cell Mol. Life Sci. 2024, 81, 34. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhu, E.; Liu, Y.; Zhong, M.; Liu, Y.; Jiang, X.; Shu, X.; Li, N.; Guan, H.; Xia, Y.; Li, J.; et al. Targeting NK-1R attenuates renal fibrosis via modulating inflammatory responses and cell fate in chronic kidney disease. Front. Immunol. 2023, 14, 1142240. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, S.; Hong, H.S. Substance P alleviates liver fibrosis by modulating inflammation and mobilizing reparative stem cells. Int. Immunopharmacol. 2024, 142 Pt B, 113211. [Google Scholar] [CrossRef] [PubMed]
- Honzawa, Y.; Nakase, H.; Shiokawa, M.; Yoshino, T.; Imaeda, H.; Matsuura, M.; Kodama, Y.; Ikeuchi, H.; Andoh, A.; Sakai, Y.; et al. Involvement of interleukin-17A-induced expression of heat shock protein 47 in intestinal fibrosis in Crohn’s disease. Gut 2014, 63, 1902–1912. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.V.; Fraga, C.A.; Barros, L.O.; Pereira, C.S.; Santos, S.H.; Basile, J.R.; Gomez, R.S.; Guimarães, A.L.; De-Paula, A.M. High expression of S100A4 and endoglin is associated with metastatic disease in head and neck squamous cell carcinoma. Clin. Exp. Metastasis 2014, 31, 639–649. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zeng, W.; Xia, Y. TWEAK/Fn14 axis is an important player in fibrosis. J. Cell Physiol. 2021, 236, 3304–3316. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhang, Y.; Zhu, H.; Hu, J.; Xie, Z. MiR-34a/miR-93 target c-Ski to modulate the proliferaton of rat cardiac fibroblasts and extracellular matrix deposition in vivo and in vitro. Cell. Signal. 2018, 46, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Wang, Y.; Lin, L.; Wang, P.; Jiang, L.; Liu, J.; Wang, X. Overexpression of miR-133a-3p inhibits fibrosis and proliferation of keloid fibroblasts by regulating IRF5 to inhibit the TGF-β/Smad2 pathway. Mol. Cell. Probes 2020, 52, 101563. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.; Wang, Y.; Zhang, Y.; Zhang, Y.; Huang, Q.; Yin, Z.; Cai, G.; Chen, X.; Sun, X. Regulation of connective tissue growth factor expression by miR-133b for the treatment of renal interstitial fibrosis in aged mice with unilateral ureteral obstruction. Stem Cell Res. Ther. 2021, 12, 171. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Su, M.; Tang, D.; Hao, L.; Xun, X.-H.; Huang, Y. Ligustrazin increases lung cell autophagy and ameliorates paraquat-induced pulmonary fibrosis by inhibiting PI3K/Akt/mTOR and hedgehog signalling via increasing miR-193a expression. BMC Pulm. Med. 2019, 19, 35. [Google Scholar] [CrossRef]
- Qiu, Z.; Zhong, Z.; Zhang, Y.; Tan, H.; Deng, B.; Meng, G. Human umbilical cord mesenchymal stem cell-derived exosomal miR-335-5p attenuates the inflammation and tubular epithelial-myofibroblast transdifferentiation of renal tubular epithelial cells by reducing ADAM19 protein levels. Stem Cell Res. Ther. 2022, 13, 373. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, X.; He, S.; Zhang, F.; Li, Y. Gypenosides suppress fibrosis of the renal NRK-49F cells by targeting miR-378a-5p through the PI3K/AKT signaling pathway. J. Ethnopharmacol. 2023, 311, 116466. [Google Scholar] [CrossRef]
- McLarren, K.W.; Cole, A.E.; Weisser, S.B.; Voglmaier, N.S.; Conlin, V.S.; Jacobson, K.; Popescu, O.; Boucher, J.L.; Sly, L.M. SHIP-deficient mice develop spontaneous intestinal inflammation and arginase-dependent fibrosis. Am. J. Pathol. 2011, 179, 180–188. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Petryszyn, P.; Dudkowiak, R.; Gruca, A.; Jaźwińska-Tarnawska, E.; Ekk-Cierniakowski, P.; Poniewierka, E.; Wiela-Hojeńska, A.; Głowacka, K. C3435T Polymorphism of the ABCB1 Gene in Polish Patients with Inflammatory Bowel Disease: A Case-Control and Meta-Analysis Study. Genes 2021, 12, 1419. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cummings, J.R.; Cooney, R.M.; Clarke, G.; Beckly, J.; Geremia, A.; Pathan, S.; Hancock, L.; Guo, C.; Cardon, L.R.; Jewell, D.P. The genetics of NOD-like receptors in Crohn’s disease. Tissue Antigens 2010, 76, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Foerster, E.G.; Mukherjee, T.; Cabral-Fernandes, L.; Rocha, J.D.B.; Girardin, S.E.; Philpott, D.J. How autophagy controls the intestinal epithelial barrier. Autophagy 2022, 18, 86–103. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Custódio, M.; Sedassari, B.T.; Altemani, A.; Rodrigues, M.F.S.D.; Nunes, F.D.; de Sousa, S.C.O.M. Expression of upstream and downstream targets of mTOR pathway in seven cases of secretory carcinoma of salivary gland origin. Eur. Arch. Otorhinolaryngol. 2021, 278, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Burke, J.P.; Mulsow, J.J.; O’Keane, C.; Docherty, N.G.; Watson, R.W.; O’Connell, P.R. Fibrogenesis in Crohn’s disease. Am. J. Gastroenterol. 2007, 102, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Xiong, Z.; Yin, S.; Xiong, J.; Li, X.; Jin, L.; Zhang, F.; Chen, H.; Lan, P.; Lian, L. Adiponectin alleviates intestinal fibrosis by enhancing AMP-activated protein kinase phosphorylation. Dig. Dis. Sci. 2021, 67, 2232–2243. [Google Scholar] [CrossRef]
- Stintzing, S.; Wissniowski, T.T.; Lohwasser, C.; Alinger, B.; Neureiter, D.; Ocker, M. Role of cannabinoid receptors and RAGE in inflammatory bowel disease. Histol. Histopathol. 2011, 26, 735–745. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Lu, Y.; Zheng, S. Peroxisome proliferator-activated receptor-γ cross-regulation of signaling events implicated in liver fibrogenesis. Cell. Signal. 2012, 24, 596–605. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, C.; Chen, N.; Obermeier, F.; Paul, G.; Büchler, C.; Kopp, A.; Falk, W.; Schäffler, A. C1q/TNF-related protein-3 (CTRP-3) is secreted by visceral adipose tissue and exerts antiinflammatory and antifibrotic effects in primary human colonic fibroblasts. Inflamm. Bowel Dis. 2011, 17, 2462–2471. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhou, C.Z.; Zhu, R.; Fan, H.; Liu, X.X.; Duan, X.Y.; Tang, Q.; Shou, Z.X.; Zuo, D.M. miR-200b-containing microvesicles attenuate experimental colitis associated intestinal fibrosis by inhibiting epithelial-mesenchymal transition. J. Gastroenterol. Hepatol. 2017, 32, 1966–1974. [Google Scholar] [CrossRef] [PubMed]
- Jerala, M.; Remic, T.; Hauptman, N.; Zidar, N. Fibrosis-Related microRNAs in Crohn’s Disease with Fibrostenosis and Inflammatory Stenosis. Int. J. Mol. Sci. 2024, 25, 8826. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Larabi, A.; Barnich, N.; Nguyen, H.T.T. New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD. Autophagy 2020, 16, 38–51. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ha, C.W.; Martin, A.; Sepich-Poore, G.D.; Shi, B.; Wang, Y.; Gouin, K.; Humphrey, G.; Sanders, K.; Ratnayake, Y.; Chan, K.S.; et al. Translocation of Viable Gut Microbiota to Mesenteric Adipose Drives Formation of Creeping Fat in Humans. Cell 2020, 183, 666–683.e17. [Google Scholar] [CrossRef]
- Li, Y.; Liu, R.; Wu, J.; Li, X. Self-eating: Friend or foe? The emerging role of autophagy in fibrotic diseases. Theranostics 2020, 10, 7993–8017. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhou, M.; Xu, W.; Wang, J.; Yan, J.; Shi, Y.; Zhang, C.; Ge, W.; Wu, J.; Du, P.; Chen, Y. Boosting mTOR-dependent autophagy via upstream TLR4-MyD88-MAPK signalling and downstream NF-κB pathway quenches intestinal inflammation and oxidative stress injury. EBioMedicine 2018, 35, 345–360. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Deretic, V.; Levine, B. Autophagy balances inflammation in innate immunity. Autophagy 2018, 14, 243–251. [Google Scholar] [CrossRef]
- Lu, C.; Baraty, B.; Lee Robertson, H.; Filyk, A.; Shen, H.; Fung, T.; Novak, K.; Ma, C.; Panaccione, R.; Achkar, J.P.; et al. Stenosis Therapy and Research (STAR) Consortium. Systematic review: Medical therapy for fibrostenosing Crohn’s disease. Aliment. Pharmacol. Ther. 2020, 51, 1233–1246. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hanauer, S.B.; Feagan, B.G.; Lichtenstein, G.R.; Mayer, L.F.; Schreiber, S.; Colombel, J.F.; Rachmilewitz, D.; Wolf, D.C.; Olson, A.; Bao, W.; et al. Maintenance infliximab for Crohn’s disease: The ACCENT I randomised trial. Lancet 2002, 359, 1541–1549. [Google Scholar] [CrossRef] [PubMed]
- D’Haens, G.; Reinisch, W.; Schreiber, S.; Cummings, F.; Irving, P.M.; Ye, B.D.; Kim, D.H.; Yoon, S.; Ben-Horin, S. Subcutaneous Infliximab Monotherapy Versus Combination Therapy with Immunosuppressants in Inflammatory Bowel Disease: A Post Hoc Analysis of a Randomised Clinical Trial. Clin. Drug Investig. 2023, 43, 277–288. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jongsma, M.M.E.; Aardoom, M.A.; Cozijnsen, M.A.; van Pieterson, M.; de Meij, T.; Groeneweg, M.; Norbruis, O.F.; Wolters, V.M.; van Wering, H.M.; Hojsak, I.; et al. First-line treatment with infliximab versus conventional treatment in children with newly diagnosed moderate-to-severe Crohn’s disease: An open-label multicentre randomised controlled trial. Gut 2022, 71, 34–42. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bravata, I.; Lavie, F.; Daperno, M.; Lukáš, M.; Armuzzi, A.; Löwenberg, M.; Gaya, D.R.; Peyrin-Biroulet, L.; STARDUST Study Group. Treat to target versus standard of care for patients with Crohn’s disease treated with ustekinumab (STARDUST): An open-label, multicentre, randomised phase 3b trial. Lancet Gastroenterol. Hepatol. 2022, 7, 294–306, Erratum in: Lancet Gastroenterol. Hepatol. 2022, 7, e8. https://doi.org/10.1016/S2468-1253(22)00055-3. [Google Scholar] [CrossRef]
- Colombel, J.F.; Sandborn, W.J.; Rutgeerts, P.; Enns, R.; Hanauer, S.B.; Panaccione, R.; Schreiber, S.; Byczkowski, D.; Li, J.; Kent, J.D.; et al. Adalimumab for maintenance of clinical response and remission in patients with Crohn’s disease: The CHARM trial. Gastroenterology 2007, 132, 52–65. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, H.; So, R.; Matsuoka, K.; Kobayashi, T.; Shinzaki, S.; Matsuura, M.; Okabayashi, S.; Kataoka, Y.; Tsujimoto, Y.; Furukawa, T.A.; et al. Certolizumab pegol for induction of remission in Crohn’s disease. Cochrane Database Syst. Rev. 2019, 8, CD012893. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schreiber, S.; Lawrance, I.C.; Thomsen, O.Ø.; Hanauer, S.B.; Bloomfield, R.; Sandborn, W.J. Randomised clinical trial: Certolizumab pegol for fistulas in Crohn’s disease—Subgroup results from a placebo-controlled study. Aliment. Pharmacol. Ther. 2011, 33, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Colombel, J.F.; Ungaro, R.C.; Sands, B.E.; Siegel, C.A.; Wolf, D.C.; Valentine, J.F.; Feagan, B.G.; Neustifter, B.; Kadali, H.; Nazarey, P.; et al. Vedolizumab, Adalimumab, and Methotrexate Combination Therapy in Crohn’s Disease (EXPLORER). Clin. Gastroenterol. Hepatol. 2024, 22, 1487–1496.e12. [Google Scholar] [CrossRef] [PubMed]
- Vermeire, S.; D’Haens, G.; Baert, F.; Danese, S.; Kobayashi, T.; Loftus, E.V.; Bhatia, S.; Agboton, C.; Rosario, M.; Chen, C.; et al. Efficacy and Safety of Subcutaneous Vedolizumab in Patients With Moderately to Severely Active Crohn’s Disease: Results From the VISIBLE 2 Randomised Trial. J. Crohn’s Colitis. 2022, 16, 27–38. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- D’Haens, G.; Taxonera, C.; Lopez-Sanroman, A.; Nos, P.; Danese, S.; Armuzzi, A.; Roblin, X.; Peyrin-Biroulet, L.; West, R.; Mares, W.G.N.; et al. Vedolizumab to prevent postoperative recurrence of Crohn’s disease (REPREVIO): A multicentre, double-blind, randomised, placebo-controlled trial. Lancet Gastroenterol. Hepatol. 2025, 10, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Sands, B.E.; Irving, P.M.; Hoops, T.; Izanec, J.L.; Gao, L.L.; Gasink, C.; Greenspan, A.; Allez, M.; Danese, S.; Hanauer, S.B.; et al. Ustekinumab versus adalimumab for induction and maintenance therapy in biologic-naive patients with moderately to severely active Crohn’s disease: A multicentre, randomised, double-blind, parallel-group, phase 3b trial. Lancet 2022, 399, 2200–2211. [Google Scholar] [CrossRef] [PubMed]
- Sandborn, W.J.; Rebuck, R.; Wang, Y.; Zou, B.; Adedokun, O.J.; Gasink, C.; Sands, B.E.; Hanauer, S.B.; Targan, S.; Ghosh, S.; et al. Five-Year Efficacy and Safety of Ustekinumab Treatment in Crohn’s Disease: The IM-UNITI Trial. Clin. Gastroenterol. Hepatol. 2022, 20, 578–590.e4. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Roblin, X.; Williet, N.; Boschetti, G.; Phelip, J.-M.; Del Tedesco, E.; Berger, A.-E.; Vedrines, P.; Duru, G.; Peyrin-Biroulet, L.; Nancey, S.; et al. Addition of azathioprine to the switch of anti-TNF in patients with IBD in clinical relapse with undetectable anti-TNF trough levels and antidrug antibodies: A prospective randomised trial. Gut 2020, 69, 1206–1212. [Google Scholar] [CrossRef]
- Rubin de Celix, C.; Chaparro, M.; Gisbert, J.P. Real-world evidence of the effectiveness and safety of ustekinumab for the treatment of Crohn’s disease: Systematic review and meta-analysis of observational studies. J. Clin. Med. 2022, 11, 4202. [Google Scholar] [CrossRef]
- Rutgeerts, P.; Gasink, C.; Chan, D.; Lang, Y.; Pollack, P.; Colombel, J.-F.; Wolf, D.C.; Jacobstein, D.; Johanns, J.; Szapary, P.; et al. Efficacy of Ustekinumab for Inducing Endoscopic Healing in Patients With Crohn’ s Disease. Gastroenterology 2018, 155, 1045–1058. [Google Scholar] [CrossRef] [PubMed]
- Dittrich, A.E.; Sutton, R.T.; Haynes, K.; Wang, H.; Fedorak, R.N.; Kroeker, K.I. Incidence Rates for Surgery in Crohn’s Disease Have Decreased: A Population-based Time-trend Analysis. Inflamm. Bowel Dis. 2020, 26, 1909–1916. [Google Scholar] [CrossRef] [PubMed]
- Ley, D.; Leroyer, A.; Dupont, C.; Sarter, H.; Bertrand, V.; Spyckerelle, C.; Guillon, N.; Wils, P.; Savoye, G.; Turck, D.; et al. New Therapeutic Strategies Have Changed the Natural History of Pediatric Crohn’s Disease: A Two-Decade Population-Based Study. Clin. Gastroenterol. Hepatol. 2022, 20, 2588–2597.e1. [Google Scholar] [CrossRef]
- Carrasco, A.; Tristán, E.; Fernández-Bañares, F.; Martín-Cardona, A.; Aceituno, M.; Zabana, Y.; Fluvià, L.; Hernández, J.M.; Lorén, V.; Manyé, J.; et al. Mucosal Interleukin-10 depletion in steroid-refractory Crohn’s disease patients. Immun. Inflamm. Dis. 2022, 10, e710. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- He, X.; Wang, Y.; Sun, J.; Li, Y.; Ruan, G.; Li, Y.; Zheng, W.; Zhang, X.; Zhan, R.; Ding, X.; et al. Effectiveness comparison between ustekinumab and infliximab for Crohn’s disease complicated with intestinal stenosis: A multicenter real-world study. Therap Adv. Gastroenterol. 2024, 17, 17562848241290663. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McDonald, J.W.; Wang, Y.; Tsoulis, D.J.; MacDonald, J.K.; Feagan, B.G. Methotrexate for induction of remission in refractory Crohn’s disease. Cochrane Database Syst. Rev. 2014, 2014, CD003459. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Laharie, D.; Reffet, A.; Belleannée, G.; Chabrun, E.; Subtil, C.; Razaire, S.; Capdepont, M.; de Lédinghen, V. Mucosal healing with methotrexate in Crohn’s disease: A prospective comparative study with azathioprine and infliximab. Aliment. Pharmacol. Ther. 2011, 33, 714–721. [Google Scholar] [CrossRef] [PubMed]
- Bettenworth, D.; Gustavsson, A.; Atreja, A.; Lopez, R.; Tysk, C.; van Assche, G.; Rieder, F. A Pooled Analysis of Efficacy, Safety, and Long-term Outcome of Endoscopic Balloon Dilation Therapy for Patients with Stricturing Crohn’s Disease. Inflamm. Bowel Dis. 2017, 23, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Hirai, F.; Andoh, A.; Ueno, F.; Watanabe, K.; Ohmiya, N.; Nakase, H.; Kato, S.; Esaki, M.; Endo, Y.; Yamamoto, H.; et al. Efficacy of Endoscopic Balloon Dilation for Small Bowel Strictures in Patients With Crohn’s Disease: A Nationwide, Multi-centre, Open-label, Prospective Cohort Study. J. Crohn’s Colitis. 2018, 12, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Mohy-Ud-Din, N.; Kochhar, G.S. Endoscopic Stricturotomy Is an Efficacious Option for Management of Strictures in Patients With Inflammatory Bowel Disease. Crohn’s Colitis 360 2020, 2, otaa069. [Google Scholar] [CrossRef]
- Lan, N.; Shen, B. Endoscopic Stricturotomy Versus Balloon Dilation in the Treatment of Anastomotic Strictures in Crohn’s Disease. Inflamm. Bowel Dis. 2018, 24, 897–907. [Google Scholar] [CrossRef]
- Chandan, S.; Dhindsa, B.S.; Khan, S.R.; Deliwala, S.; Kassab, L.L.; Mohan, B.P.; Chandan, O.C.; Loras, C.; Shen, B.; Kochhar, G.S. Endoscopic Stenting in Crohn’ s Disease-related Strictures: A Systematic Review and Meta-analysis of Outcomes. Inflamm. Bowel Dis. 2023, 29, 1145–1152. [Google Scholar] [CrossRef]
- Attar, A.; Branche, J.; Coron, E.; Privat, J.; Caillo, L.; Chevaux, J.B.; Vuitton, L.; Amiot, A.; Belkhodja, H.; Dray, X. An Anti-migration Self-expandable and removable Metal Stent for Crohn’s Disease Strictures: A Nationwide Study From GETAID and SFED. J. Crohn’s Colitis 2021, 15, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Ponsioen, C.Y.; de Groof, E.J.; Eshuis, E.J.; Gardenbroek, T.J.; Bossuyt, P.M.M.; Hart, A.; Warusavitarne, J.; Buskens, C.J.; van Bodegraven, A.A.; Brink, M.A.; et al. LIR!C study group. Laparoscopic ileocaecal resection versus infliximab for terminal ileitis in Crohn’s disease: A randomised controlled, open-label, multicentre trial. Lancet Gastroenterol. Hepatol. 2017, 2, 785–792, Erratum in: Lancet Gastroenterol. Hepatol. 2017, 2, e7. https://doi.org/10.1016/S2468-1253(17)30301-1. [Google Scholar] [CrossRef] [PubMed]
- Bemelman, W.A.; Warusavitarne, J.; Sampietro, G.M.; Serclova, Z.; Zmora, O.; Luglio, G.; de Buck van Overstraeten, A.; Burke, J.P.; Buskens, C.J.; Colombo, F.; et al. ECCO-ESCP Consensus on Surgery for Crohn’s Disease. J. Crohn’s Colitis 2018, 12, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Bislenghi, G.; Sucameli, F.; Fieuws, S.; Ferrante, M.; Sabino, J.; Wolthuis, A.; Vermeire, S.; D’Hoore, A. Non-conventional Versus Conventional Strictureplasties for Crohn’s Disease. A Systematic Review and Meta-analysis of Treatment Outcomes. J. Crohn’s Colitis 2022, 16, 319–330. [Google Scholar] [CrossRef]
- Fischer, S.; Neurath, M.F. Precision Medicine in Inflammatory Bowel Diseases. Clin. Pharmacol. Ther. 2017, 102, 623–632. [Google Scholar] [CrossRef]
- De Buck Van Overstraeten, A.; Wolthuis, A.; D’hoor, E.A. Surgery for Crohn’s disease in the era of biologicals: A reduced need or delayed verdict? World J. Gastroenterol. 2012, 18, 3828–3832. [Google Scholar] [CrossRef]
- Lewis, A.; Nijhuis, A.; Berti, G.; Bishop, C.L.; Feakins, R.; OLindsay, J.; Silver, A. P035 Pharmacological inhibition of the canonical WNT signalling pathway represents a potential novel therapy for fibrosis in Crohn’s disease. J. Crohn’s Colitis 2019, 13 (Suppl. S1), S103–S104. [Google Scholar] [CrossRef]
- Holvoet, T.; Devriese, S.; Castermans, K.; Boland, S.; Leysen, D.; Vandewynckel, Y.-P.; Devisscher, L.; Van den Bossche, L.; Van Welden, S.; Dullaers, M.; et al. Treatment of intestinal fibrosis in experimental inflammatory bowel disease by the pleiotropic actions of a local Rho kinase inhibitor. Gastroenterology 2017, 153, 1054–1067. [Google Scholar] [CrossRef]
- Vetuschi, A.; Pompili, S.; Gaudio, E.; Latella, G.; Sferra, R. PPAR-gamma with its anti-inflammatory and anti-fibrotic action could be an effective therapeutic target in IBD. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 8839–8848. [Google Scholar]
- Kuk, N.; Correia, J.; Alhomrani, M.; Lim, R.; Sievert, W.; Hodge, A.; Moore, G. DOP060 Human amnion epithelial cells and their conditioned media reduces intestinal inflammation and fibrosis in a murine model of chronic colitis. J. Crohn’s Colitis 2018, 12 (Suppl. 1), S072. [Google Scholar] [CrossRef]
- Latella, G.; Di Gregorio, J.; Flati, V.; Rieder, F.; Lawrance, I.C. Mechanisms of initiation and progression of intestinal fibrosis in IBD. Scand. J. Gastroenterol. 2015, 50, 53–65. [Google Scholar] [CrossRef]
- Rieder, F.; Zimmermann, E.M.; Remzi, F.H.; Sandborn, W.J. Crohn’s disease complicated by strictures: A systematic review. Gut 2013, 62, 1072–1084. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lightner, A.L.; McKenna, N.P.; Tse, C.S.; Raffals, L.E.; Loftus, E.V., Jr.; Mathis, K.L. Postoperative outcomes in vedolizumab-treated Crohn’s disease patients undergoing major abdominal operations. Aliment. Pharmacol. Ther. 2018, 47, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Speca, S.; Giusti, I.; Rieder, F.; Latella, G. Cellular and molecular mechanisms of intestinal fibrosis. World J. Gastroenterol. 2012, 18, 3635–3661. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lewis, A.; Nijhuis, A.; Mehta, S.; Kumagai, T.; Feakins, R.; Lindsay, J.O.; Silver, A. Intestinal fibrosis in Crohn’s disease: Role of microRNAs as fibrogenic modulators, serum biomarkers, and therapeutic targets. Inflamm. Bowel Dis. 2015, 21, 1141–1150. [Google Scholar] [CrossRef] [PubMed]
- van den Blink, B.; Dillingh, M.R.; Ginns, L.C.; Morrison, L.D.; Moerland, M.; Wijsenbeek, M.; Trehu, E.G.; Bartholmai, B.J.; Burggraaf, J. Recombinant human pentraxin-2 therapy in patients with idiopathic pulmonary fibrosis: Safety, pharmacokinetics and exploratory efficacy. Eur. Respir. J. 2016, 47, 889–897. [Google Scholar] [CrossRef] [PubMed]
- Truffi, M.; Sorrentino, L.; Monieri, M.; Fociani, P.; Mazzucchelli, S.; Bonzini, M.; Zerbi, P.; Sampietro, G.M.; Di Sabatino, A.; Corsi, F. Inhibition of fibroblast activation protein restores a balanced extracellular matrix and reduces fibrosis in Crohn’s disease strictures ex vivo. Inflamm. Bowel Dis. 2018, 24, 332–345. [Google Scholar] [CrossRef]
- Kadir, S.I.; Kragstrup, T.W.; Dige, A.; Jensen, S.K.; Dahlerup, J.F.; Kelsen, J. Pirfenidone inhibits the proliferation of fibroblasts from patients with active Crohn’s disease. Scand. J. Gastroenterol. 2016, 51, 1321–1325. [Google Scholar] [CrossRef]
- Hotta, Y.; Uchiyama, K.; Takagi, T.; Kashiwagi, S.; Nakano, T.; Mukai, R.; Toyokawa, Y.; Yasuda, T.; Ueda, T.; Suyama, Y.; et al. Transforming growth factor β1-induced collagen production in myofibroblasts is mediated by reactive oxygen species derived from NADPH oxidase 4. Biochem. Biophys. Res. Commun. 2018, 506, 557–562. [Google Scholar] [CrossRef] [PubMed]
- Pompili, S.; Sferra, R.; Gaudio, E.; Viscido, A.; Frieri, G.; Vetuschi, A.; Latella, G. Can Nrf2 modulate the development of intestinal fibrosis and cancer in inflammatory bowel disease? Int. J. Mol. Sci. 2019, 20, 4061. [Google Scholar] [CrossRef] [PubMed]
- Koo, J.B.; Nam, M.O.; Jung, Y.; Yoo, J.; Kim, D.H.; Kim, G.; Shin, S.J.; Lee, K.M.; Hahm, K.B.; Kim, J.W.; et al. Anti-fibrogenic effect of PPAR-γ agonists in human intestinal myofibroblasts. BMC Gastroenterol. 2017, 17, 73. [Google Scholar] [CrossRef] [PubMed]
- Izzo, R.; Bevivino, G.; De Simone, V.; Sedda, S.; Monteleone, I.; Marafini, I.; Di Giovangiulio, M.; Rizzo, A.; Franzè, E.; Colantoni, A.; et al. Knockdown of Smad7 with a specific antisense oligonucleotide attenuates colitis and colitis-driven colonic fibrosis in mice. Inflamm. Bowel Dis. 2018, 24, 1213–1224. [Google Scholar] [CrossRef]
- Eiro, N.; Fraile, M.; González-Jubete, A.; González, L.O.; Vizoso, F.J. Mesenchymal (Stem) Stromal Cells Based as New Therapeutic Alternative in Inflammatory Bowel Disease: Basic Mechanisms Experimental and Clinical Evidence, and Challenges. Int. J. Mol. Sci. 2022, 23, 8905. [Google Scholar] [CrossRef]
Molecular Pathway | Main Factors | Mechanism | Therapeutic Targeting and Potential | |
---|---|---|---|---|
Fibrosis factors [16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42] | TGF-β, Smad | TGF-β1, TGF-β2, TGF-β3, Smad2, and Smad3 | Activates myofibroblasts and promotes ECM synthesis. | High (targeting TGF-β or Smad3) |
IGF-I, Smad2/3, Smad, MAPK, PKC | IGFBP-3,CTGF, IGFBP-5, TGF-βRII/I, Smad2/3, and COL1A1 | The IGF system contributes significantly to fibrosis development in CD patients, primarily through the upregulation of IGF-I, IGFBP-3, and IGFBP-5 in intestinal smooth muscle cells. | High (targeting TGF-β or Smad3) | |
ROS, ECM | ECM, Angiotensin II, ARBs, and ACEIs | Regulating ganglionic cell growth, differentiation, proliferation, and apoptosis, while also influencing ROS production, cytokine expression, endothelial cell activation, inflammatory responses, ECM synthesis, and fibrogenesis. | High (targeting ROS and ECM) | |
NK-1R | HSP47, NK-1R, and WISP-1 | Inflammatory-induced tissue hypoxia upregulates HIFs, which selectively enhance integrin-β1 expression in fibroblasts, thereby promoting fibroblast contraction and epithelial cell migration, a potential mechanism underlying intestinal fibrosis development in CD; heat shock protein 47 (HSP47), implicated in inflammatory bowel disease-associated fibrosis, has emerged as a promising therapeutic target. | New (targeting HSP47, NK-1R, and WISP-1) | |
Upregulation gene | MiR-93-5p, NOD2/CARD15, DLG5, OCTN-1/2, MMP-3, ATG16L1, and IL-23R | The deposition of ECM increases while the degradation decreases, gene expression reprogramming, and profibrotic phenotype. | High (targeting specific collagens or TIMPs) | |
Antifibrotic [43,44,45,46,47,48,49,50] | PI3K/Akt | PIKK family, mTOR, and TGF-β/Smad3 | The TGF-β/Smad3 pathway can directly activate mTOR signaling, creating a positive feedback loop that enhances collagen production and fibrotic progression. | High (targeting TGF-β or Smad3) |
TGF-β, Smad3 | PPAR, Smad7 protein, and adiponectin | Through lipid metabolism and glucose homeostasis to adjust inflammation modulation and fibrogenesis. | High (targeting TGF-β or Smad3) | |
Downregulation gene | miR-200b, vimentin, and miR-29 | MiR-29b can counteract TGF-β1-mediated collagen accumulation, highlighting its potential as a therapeutic target for intestinal fibrosis. | New (targeting TGF-β or Smad3) | |
Other factors [50,51,52,53,54,55] | Oxygen radicals, lipid peroxides | ROS and ECM | Contributes to ECM deposition, fibroblast activation, and sustained inflammatory responses that drive fibrotic remodeling. | New (targeting ROS and ECM) |
Intestinal microenvironment harbors | TNF-α, IFN-γ, PRRs, NLRs, TLRs, AIE, IL-6, IL-23, IL-17, and IL-10 | Immune dysregulation leads to the formation of a pro-inflammatory microenvironment. | Medium (targeting IL-6/23) | |
Autophagy | IRGM, NOD2, and ATG16L1 | Attenuates intestinal inflammation through immunosuppression and reduces fibrotic progression via autophagy induction. | New (targeting IRGM, NOD2, and ATG16L1) |
Drug Name | Key Clinical Findings in Fibrostenotic CD | Category | Approved | Usage | References |
---|---|---|---|---|---|
Infliximab | 56% reduction in surgery risk vs. placebo (HR 0.44; p = 0.02), 32% stricture improvement on MRI at 1 year | Anti-TNF-ɑ | Remicade CD (1998, FDA; 1999, EMA) | IV/SC (the initial dose is 5 mg/kg, given once in weeks 2 and 6 and then once every 8 weeks). | [57,58,59] |
Adalimumab | 41% decreased hospitalization for obstruction, median time to surgery of 2.8 years vs. 0.9 years (untreated) | Anti-TNF-ɑ | Humira CD (2007, FDA; 2006, EMA) | SC (the initial dose is 80 mg each time, followed by an injection of 40 mg in the second week. Then, 40 mg injections are given every one or two weeks to maintain the therapeutic effect). | [60,61,62] |
Vedolizumab | 68% clinical response in anti-TNF refractory strictures, 48% reduced endoscopic progression at 52 weeks | Integrin inhibitor | Entyvio CD (2014, FDA; 2014, EMA) | IV/SC (an intravenous infusion of 300 mg was administered every 30 min during weeks 0, 2, and 6, and then every 8 weeks). | [63,64,65,66] |
Ustekinumab | 63% symptomatic improvement in complex strictures, 3.1-fold lower resection rate vs. conventional therapy | Anti-il-12/23 monoclonal antibody | Stelara CD (2016, FDA; 2018, EMA) | Body weight less than or equal to 55 kg for the first dose of 260 mg; body weight greater than 55 kg and less than or equal to 85 kg for the first dose of 390 mg; body weight less than or equal to 55 kg for the first dose of 260 mg; weights greater than 85 kg were given 520 mg for the first dose, 90 mg after 8 weeks, and 90 mg after 12 weeks | [67,68] |
Surgical Intervention | Author, Year | Study Type | Total Number (185) | Control Group (n) | Observation Group (n) | p-Value | Median Year |
---|---|---|---|---|---|---|---|
Endoscopic Balloon Dilation (EBD) | Bettenworth D, 2017 [78] | Retrospective study | 1463 | N/A | N/A | 0.008 | N/A |
Hirai F, 2018 [79] | Randomized, controlled, open-label, multicenter trial | 112 | 11 | 95 | <0.001 | Short-term outcomes (4 weeks); long-term outcomes (2 years) | |
Stricturotomy | Mohy-Ud-Din N, 2020 [80] | Review | 12 | 11 | 1 | N/A | N/A |
Lan N, 2018 [81] | Observation study | 185 | 21 | 61 | 0.03 | 0.8 (IQR: 0.1–1.6) year and 4.0 (IQR: 0.8–6.9) | |
Endoscopic Stent Placement | Chandan S, 2023 [82] | Review | 163 | N/A | N/A | N/A | Pooled rate of clinical success: 60.9% (95% confidence interval [CI], 51.6–69.5); I2 = 13%); technical success: 93% (95% CI, 87.3–96.3; I2 = 0%). |
Attar A, 2021 [83] | Pembrolizumab | 46 | 27 | 19 | N/A | The overall success rate: 58.7% [n = 27]; median follow-up of 26 months [8–41 months] | |
Operation treatment | Ponsioen C, 2017 [84] | Randomized, controlled, open-label, multicenter trial | 143 | 73 | 70 | 0.25 | 12 months |
Bemelman WA, 2018 [85] | Consensus | N/A | N/A | N/A | N/A | N/A | |
Bislenghi G, 2022 [86] | Review | 1839 | N/A | N/A | N/A | Postoperative complication rates: 15.5% [95% CI 11.2–20.3%]; 7.4% [95% CI 0.2–22.9%]; and 19.2% [95% CI 5–39.6%] |
Agent/Approach | Mechanism | Current Efficacy Evidence | Key Limitations | Future Optimization |
---|---|---|---|---|
Anti-TNF biologics | TNF-α neutralization | Surgery rates (36.2% annual use) [94]; STRIDENT trial: symptom relief | No fibrosis reversal; ECM irreversibility | Combinatorial PPAR-γ agonists |
Vedolizumab | α4β7 integrin blockade | Real-world: fistula closure (34%); stricture data pending [95] | Limited stricture-specific trials | Phase III trials for fibrotic endpoints |
PPAR-γ agonists | Dual TGF-β/Wnt inhibition | Preclinical: collagen I, α-SMA [96,97] | Systemic toxicity (rosiglitazone) | Gut-targeted delivery systems |
Pirfenidone | TGF-β, collagen synthesis | CD myofibroblasts: α-SMA, collagen I (0.5–2 mg/mL) [98] | Limited human data; dosing uncertainty | Localized colonic formulations |
Endoscopic stricturotomy | Mechanical stricture release | 90.5% technical success; surgery vs. EBD (9.5% vs. 33.5%) [84] | Expertise-dependent; long-term durability | Standardized training protocols |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Chen, H.; Wang, Q.; Ye, G.; Ou, Y.; Huang, L.; Wu, X.; Fei, J. Insights into the Molecular Mechanisms and Novel Therapeutic Strategies of Stenosis Fibrosis in Crohn’s Disease. Biomedicines 2025, 13, 1777. https://doi.org/10.3390/biomedicines13071777
Zhou Y, Chen H, Wang Q, Ye G, Ou Y, Huang L, Wu X, Fei J. Insights into the Molecular Mechanisms and Novel Therapeutic Strategies of Stenosis Fibrosis in Crohn’s Disease. Biomedicines. 2025; 13(7):1777. https://doi.org/10.3390/biomedicines13071777
Chicago/Turabian StyleZhou, Yuan, Huiping Chen, Qinbo Wang, Guozeng Ye, Yingjuan Ou, Lihong Huang, Xia Wu, and Jiaxi Fei. 2025. "Insights into the Molecular Mechanisms and Novel Therapeutic Strategies of Stenosis Fibrosis in Crohn’s Disease" Biomedicines 13, no. 7: 1777. https://doi.org/10.3390/biomedicines13071777
APA StyleZhou, Y., Chen, H., Wang, Q., Ye, G., Ou, Y., Huang, L., Wu, X., & Fei, J. (2025). Insights into the Molecular Mechanisms and Novel Therapeutic Strategies of Stenosis Fibrosis in Crohn’s Disease. Biomedicines, 13(7), 1777. https://doi.org/10.3390/biomedicines13071777