The Impact of Green Tea and Its Bioactive Compounds on Mood Disorder Symptomology and Brain Derived Neurotrophic Factor: A Systematic Review of Randomized Controlled Trials
Abstract
1. Introduction
2. Materials and Methods
2.1. Protocol Registration
2.2. Search Strategy and Eligibility Criteria
2.3. Study Selection
2.4. Data Extraction
2.5. Risk of Bias Tools
3. Results
3.1. Search Results
3.2. Study Characteristics
3.3. Study Interventions and Dosages
3.4. Outcome Measures
3.4.1. Anxiety
3.4.2. Depression
Author and Year | Study Population | Sample Size All (M; F) | Age (y) (mean ± SD) | Intervention, Dose | Duration of Intervention | Mood Outcome Measure | Result |
---|---|---|---|---|---|---|---|
Unno 2022 [40] | Healthy adults | 81 (18 M; 63 F) | 52.3 ± 15.7 (Group A), 54.5 ± 15.4 (Group B) | Green tea (3.9–4.7 CE/TA ratio), 3 × 1.5 g/day | 2 weeks | Japanese STAI Form X-1, SDS | Group B: Significant decrease in STAI; depressive scores improved in both groups. |
Unno 2017 [41] | 5th year pharmaceutical science students | 20 (10 M; 10 F) | 23.2 ± 0.6 (Low caffeine), 22.4 ± 0.2 (Placebo) | Low-caffeine green tea (714 ± 79 mL/day), ~15 mg theanine/day | 17 days | Japanese STAI Form X-1, VAS for stress | Low-caffeine group showed significantly lower stress (VAS) and reduced post-stress salivary α-amylase activity. |
Sadowska 2019 [42] | Cross-Fit Trained Physical Education Faculty | 16 (16 M) | 22.0 ± 1.1 (GTE), 23.1 ± 1.7 (Placebo) | Green tea extract capsules (250 mg, 245 mg polyphenols/day) | 6 weeks | BDNF levels | No marked differences; BDNF increased slightly after exercise in both groups. |
Yoto 2014 [43] | Healthy adults | 18 (9 M; 9 F) | 23.4 ± 1.85 | Shaded white tea (192 mg/caffeine, 223 mg/catechins) or Sagara green tea (87 mg/caffeine, 304 mg/catechins), or warm water | Single session, 3 trials over 3 weeks | POMS, TMD scores | Shaded white tea significantly reduced TMD scores of POMS and improved task performance compared to warm water. |
Lu 2004 [44] | Healthy adults | 16 (12 M; 4 F) | 24.8 ± 5.4 (M), 29.0 ± 1.4 (F) | L-theanine (200 mg), alprazolam (1 mg) or placebo | 3 days over 3 weeks | BAI, STAI, VAMS | L-theanine significantly reduced VAMS tranquil-troubled subscale score compared to placebo in relaxed condition. |
Unno 2018 [45] | Healthy university students | 39 (23 M; 16 F) | 23 ± 1.1 | Matcha tea (3 g/day) or placebo-matcha | 15 days | Japanese STAI Form X-1 | Matcha significantly reduced anxiety compared to placebo. |
Yoto 2012 [46] | Healthy adults | 16 (8 M; 8 F) | 22.8 ± 2.1 | L-theanine (200 mg) + placebo, caffeine (100 mg) + placebo or placebo | Single session, 3 trials over 3 weeks | POMS, VAS | L-theanine significantly reduced tension-anxiety scores compared to placebo. |
Zhang 2013 [47] | Healthy adults | 74 (46 completed: 23 M; 23 F) | 25.7 ± 4.7 | Green tea powder (400 mg, 3x/day) or cellulose placebo | 5 weeks | MADRS, HRSD-17 | Green tea significantly improved depressive symptoms (MADRS and HRSD-17 scores) compared to placebo. |
Kimura 2007 [48] | Healthy Undergraduate students | 12 (12 M) | 21.5 ± 1.38 | L-theanine (200 mg, 2 conditions) or placebo | Single session, 4 trials | STAI, VAS | L-theanine reduced stress (VAS) and state anxiety (STAI). |
Loftis 2013 [38] | DSM-4-TR Axis I Diagnosis of schizophrenia, schizoaffective or bipolar disorder | 34 (25 completed) | 18 years or older | EGCG capsules (150 mg) or cellulose placebo capsules | 8 weeks | HAM-D, HAM-A, PANSS | EGCG did not significantly affect psychiatric symptoms compared to placebo due to both groups seeing significant decreases. |
Seyed Ali 2021 [39] | People with HIV undergoing antiretroviral therapy with diagnosed mild to moderate depression | 50 (32 M; 18 F) | 18–65 years | Green tea extract capsules (400 mg, 2x/day) or placebo | 12 weeks | HDRS | GTE significantly improved (HDRS) depressive symptoms compared to placebo. |
Hidese 2019 [49] | Healthy adults | 30 (9 M; 21 F) | 48.3 ± 11.9 | L-theanine (200 mg/day) or placebo | 4 weeks (crossover) | SDS, STAI, PSQI | L-theanine improved depression, anxiety, and sleep quality compared to placebo. |
Scholey 2012 [50] | Healthy adults | 31 (12 M; 19 F) | 27.7 ± 9.3 | EGCG (300 mg, caffeine-free) or placebo | Single session, 2 trials | Bond-Lader mood scale | EGCG increased calmness and reduced stress compared to placebo. |
3.4.3. Stress
3.4.4. Sleep
3.4.5. BDNF
3.5. Risk of Bias Assessment
4. Discussion
4.1. L-Theanine
4.2. Green Tea Extracts
4.3. Green Tea and BDNF
4.4. Limitations
5. Conclusions
Future Directions and Clinical Implications
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BDNF | Brain-derived neurotrophic factor |
EGCG | Epigallocatechin gallate |
GTE | Green tea extract |
L-theanine | An amino acid found in tea |
DSM-5 | Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition |
CDC | Centers for Disease Control |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta Analyses |
PICOS | Population, Intervention, Comparison, Outcome, Study Design |
STAI | State-Trait Anxiety Inventory |
POMS | Profile of Mood States |
HDRS | Hamilton Depression Rating Scale |
VAS | Visual Analog Scale |
PANSS | Positive and Negative Syndrome Scale |
HAM-A | Hamilton Anxiety Rating Scale |
MADRS | Montgomery-Asberg Depression Rating |
References
- Sekhon, S.; Gupta, V. Mood Disorder. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK558911/ (accessed on 8 May 2023).
- Spijker, J.; Claes, S. Mood disorders in the DSM-5. Tijdschr. Psychiatr. 2014, 56, 173–176. [Google Scholar] [PubMed]
- Arnett, J.J.; Žukauskienė, R.; Sugimura, K. The new life stage of emerging adulthood at ages 18–29 years: Implications for mental health. Lancet Psychiatry 2014, 1, 569–576. [Google Scholar] [CrossRef] [PubMed]
- QuickStats: Mental Health Treatment Trends Among Adults Aged ≥18 Years, by Age Group—United States, 2019–2023. MMWR Morb. Mortal. Wkly. Rep. 2024, 73, 1150. [CrossRef] [PubMed]
- Zimmerman, M.; Posternak, M.A.; Chelminski, I. Symptom severity and exclusion from antidepressant efficacy trials. J. Clin. Psychopharmacol. 2002, 22, 610–614. [Google Scholar] [CrossRef]
- Ivanov, I.; Schwartz, J.M. Why Psychotropic Drugs Don’t Cure Mental Illness-But Should They? Front. Psychiatry 2021, 12, 579566. [Google Scholar] [CrossRef]
- Picardi, A.; Gaetano, P. Psychotherapy of mood disorders. Clin. Pract. Epidemiol. Ment. Health 2014, 10, 140–158. [Google Scholar] [CrossRef]
- Fenn, M.K.; Byrne, D.M. The key principles of cognitive behavioural therapy. InnovAiT: Educ. Inspir. Gen. Pract. 2013, 6, 579–585. [Google Scholar] [CrossRef]
- Schaffler, Y.; Probst, T.; Jesser, A.; Humer, E.; Pieh, C.; Stippl, P.; Haid, B.; Schigl, B. Perceived Barriers and Facilitators to Psychotherapy Utilisation and How They Relate to Patient’s Psychotherapeutic Goals. Healthcare 2022, 10, 2228. [Google Scholar] [CrossRef]
- Graham, H.N. Green tea composition, consumption, and polyphenol chemistry. Prev. Med. 1992, 21, 334–350. [Google Scholar] [CrossRef]
- Yamamoto, T.; Juneja, L.R.; Chu, D.-C.; Kim, M. Chemistry and Applications of Green Tea; CRC Press: Boca Raton, FL, USA, 1997. [Google Scholar]
- Cabrera, C.; Artacho, R.; Giménez, R. Beneficial Effects of Green Tea—A Review. J. Am. Coll. Nutr. 2006, 25, 79–99. [Google Scholar] [CrossRef]
- Potenza, M.A.; Marasciulo, F.L.; Tarquinio, M.; Tiravanti, E.; Colantuono, G.; Federici, A.; Kim, J.-A.; Quon, M.J.; Montagnani, M. EGCG, a green tea polyphenol, improves endothelial function and insulin sensitivity, reduces blood pressure, and protects against myocardial I/R injury in SHR. Am. J. Physiol. Endocrinol. Metab. 2007, 292, E1378–E1387. [Google Scholar] [CrossRef] [PubMed]
- Mokra, D.; Joskova, M.; Mokry, J. Therapeutic Effects of Green Tea Polyphenol (−)-Epigallocatechin-3-Gallate (EGCG) in Relation to Molecular Pathways Controlling Inflammation, Oxidative Stress, and Apoptosis. Int. J. Mol. Sci. 2022, 24, 340. [Google Scholar] [CrossRef] [PubMed]
- Talib, W.H.; Awajan, D.; Alqudah, A.; Alsawwaf, R.; Althunibat, R.; Abu AlRoos, M.; Al Safadi, A.; Abu Asab, S.; Hadi, R.W.; Al Kury, L.T. Targeting Cancer Hallmarks with Epigallocatechin Gallate (EGCG): Mechanistic Basis and Therapeutic Targets. Molecules 2024, 29, 1373. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.; Gulzar, M.; Akhtar, M.S.; Rashid, S.; Zulfareen; Tanuja; Shamsi, A.; Hassan, I. Epigallocatechin-3-gallate therapeutic potential in human diseases: Molecular mechanisms and clinical studies. Mol. Biomed. 2024, 5, 73. [Google Scholar] [CrossRef]
- Onishi, S.; Meguro, S.; Pervin, M.; Kitazawa, H.; Yoto, A.; Ishino, M.; Shimba, Y.; Mochizuki, Y.; Miura, S.; Tokimitsu, I.; et al. Green Tea Extracts Attenuate Brain Dysfunction in High-Fat-Diet-Fed SAMP8 Mice. Nutrients 2019, 11, 821. [Google Scholar] [CrossRef]
- Ko, S.; Jang, W.S.; Jeong, J.-H.; Ahn, J.W.; Kim, Y.-H.; Kim, S.; Chae, H.K.; Chung, S. (−)-Gallocatechin gallate from green tea rescues cognitive impairment through restoring hippocampal silent synapses in post-menopausal depression. Sci. Rep. 2021, 11, 910. [Google Scholar] [CrossRef]
- Baba, Y.; Inagaki, S.; Nakagawa, S.; Kobayashi, M.; Kaneko, T.; Takihara, T. Effects of Daily Matcha and Caffeine Intake on Mild Acute Psychological Stress-Related Cognitive Function in Middle-Aged and Older Adults: A Randomized Placebo-Controlled Study. Nutrients 2021, 13, 1700. [Google Scholar] [CrossRef]
- Kakuda, T.; Nozawa, A.; Sugimoto, A.; Niino, H. Inhibition by theanine of binding of [3H]AMPA, [3H]kainate, and [3H]MDL 105,519 to glutamate receptors. Biosci. Biotechnol. Biochem. 2002, 66, 2683–2686. [Google Scholar] [CrossRef]
- Moshfeghinia, R.; Sanaei, E.; Mostafavi, S.; Assadian, K.; Sanaei, A.; Ayano, G. The effects of L-theanine supplementation on the outcomes of patients with mental disorders: A systematic review. BMC Psychiatry 2024, 24, 886. [Google Scholar] [CrossRef]
- Hidese, S.; Ota, M.; Wakabayashi, C.; Noda, T.; Ozawa, H.; Okubo, T.; Kunugi, H. Effects of chronicl-theanine administration in patients with major depressive disorder: An open-label study. Acta Neuropsychiatr. 2016, 29, 72–79. [Google Scholar] [CrossRef]
- Yokogoshi, H.; Kobayashi, M.; Mochizuki, M.; Terashima, T. Effect of Theanine, r-Glutamylethylamide, on Brain Monoamines and Striatal Dopamine Release in Conscious Rats. Neurochem. Res. 1998, 23, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Ritsner, M.S.; Miodownik, C.; Ratner, Y.; Shleifer, T.; Mar, M.; Pintov, L.; Lerner, V. L-theanine relieves positive, activation, and anxiety symptoms in patients with schizophrenia and schizoaffective disorder: An 8-week, randomized, double-blind, placebo-controlled, 2-center study. J. Clin. Psychiatry 2010, 71, 10913. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-C.; Huang, T.-L. Brain-derived neurotrophic factor and mental disorders. Biomed. J. 2020, 43, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Gliwińska, A.; Czubilińska-Łada, J.; Więckiewicz, G.; Świętochowska, E.; Badeński, A.; Dworak, M.; Szczepańska, M. The Role of Brain-Derived Neurotrophic Factor (BDNF) in Diagnosis and Treatment of Epilepsy, Depression, Schizophrenia, Anorexia Nervosa and Alzheimer’s Disease as Highly Drug-Resistant Diseases: A Narrative Review. Brain Sci. 2023, 13, 163. [Google Scholar] [CrossRef]
- Kulkarni, S.K.; Bhutani, M.K.; Bishnoi, M. Antidepressant activity of curcumin: Involvement of serotonin and dopamine system. Psychopharmacology 2008, 201, 435–442. [Google Scholar] [CrossRef]
- Brunoni, A.R.; Lopes, M.; Fregni, F. A systematic review and meta-analysis of clinical studies on major depression and BDNF levels: Implications for the role of neuroplasticity in depression. Int. J. Neuropsychopharmacol. 2008, 11, 1169–1180. [Google Scholar] [CrossRef]
- Martinowich, K.; Manji, H.; Lu, B. New insights into BDNF function in depression and anxiety. Nat. Neurosci. 2007, 10, 1089–1093. [Google Scholar] [CrossRef]
- Castrén, E.; Monteggia, L.M. Brain-Derived Neurotrophic Factor Signaling in Depression and Antidepressant Action. Biol. Psychiatry 2021, 90, 128–136. [Google Scholar] [CrossRef]
- A Siuciak, J.; Lewis, D.R.; Wiegand, S.J.; Lindsay, R.M. Antidepressant-Like Effect of Brain-derived Neurotrophic Factor (BDNF). Pharmacol. Biochem. Behav. 1997, 56, 131–137. [Google Scholar] [CrossRef]
- Huang, E.J.; Reichardt, L.F. Trk Receptors: Roles in Neuronal Signal Transduction. Annu. Rev. Biochem. 2003, 72, 609–642. [Google Scholar] [CrossRef]
- Jang, S.-W.; Liu, X.; Yepes, M.; Shepherd, K.R.; Miller, G.W.; Liu, Y.; Wilson, W.D.; Xiao, G.; Blanchi, B.; Sun, Y.E.; et al. A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone. Proc. Natl. Acad. Sci. USA 2010, 107, 2687–2692. [Google Scholar] [CrossRef] [PubMed]
- Saarelainen, T.; Hendolin, P.; Lucas, G.; Koponen, E.; Sairanen, M.; MacDonald, E.; Agerman, K.; Haapasalo, A.; Nawa, H.; Aloyz, R.; et al. Activation of the TrkB Neurotrophin Receptor Is Induced by Antidepressant Drugs and Is Required for Antidepressant-Induced Behavioral Effects. J. Neurosci. 2003, 23, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Adachi, M.; Barrot, M.; Autry, A.E.; Theobald, D.; Monteggia, L.M. Selective Loss of Brain-Derived Neurotrophic Factor in the Dentate Gyrus Attenuates Antidepressant Efficacy. Biol. Psychiatry 2008, 63, 642–649. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- McGuinness, L.A.; Higgins, J.P.T. Risk-of-bias VISualization (robvis): An R package and Shiny web app for visu-alizing risk-of-bias assessments. Res. Synth. Methods 2021, 12, 55–61. [Google Scholar] [CrossRef]
- Loftis, J.M.; Wilhelm, C.J.; Huckans, M. Effect of epigallocatechin gallate supplementation in schizophrenia and bipolar disorder: An 8-week, randomized, double-blind, placebo-controlled study. Ther. Adv. Psychopharmacol. 2012, 3, 21–27. [Google Scholar] [CrossRef]
- Ali, D.M.S.; Alireza, M.S.; Reza, S.M.; Jayran, Z.; SeyedAhmad, S.; Ali, R.S.; Saeid, M.S.; Ali, A.-A. Effect of green tea consumption in treatment of mild to moderate depression in Iranian patients living with HIV: A double-blind randomized clinical trial. Chin. Herb. Med. 2020, 13, 136–141. [Google Scholar] [CrossRef]
- Unno, K.; Furushima, D.; Tanaka, Y.; Tominaga, T.; Nakamura, H.; Yamada, H.; Taguchi, K.; Goda, T.; Nakamura, Y. Improvement of Depressed Mood with Green Tea Intake. Nutrients 2022, 14, 2949. [Google Scholar] [CrossRef]
- Unno, K.; Yamada, H.; Iguchi, K.; Ishida, H.; Iwao, Y.; Morita, A.; Nakamura, Y. Anti-stress Effect of Green Tea with Lowered Caffeine on Humans: A Pilot Study. Biol. Pharm. Bull. 2017, 40, 902–909. [Google Scholar] [CrossRef]
- Sadowska-Krępa, E.; Domaszewski, P.; Pokora, I.; Żebrowska, A.; Gdańska, A.; Podgórski, T. Effects of medium-term green tea extract supplementation combined with CrossFit workout on blood antioxidant status and serum brain-derived neurotrophic factor in young men: A pilot study. J. Int. Soc. Sports Nutr. 2019, 16, 13. [Google Scholar] [CrossRef]
- Yoto, A.; Murao, S.; Nakamura, Y.; Yokogoshi, H. Intake of green tea inhibited increase of salivary chromogranin A after mental task stress loads. J. Physiol. Anthr. 2014, 33, 20. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.; Gray, M.A.; Oliver, C.; Liley, D.T.; Harrison, B.J.; Bartholomeusz, C.F.; Phan, K.L.; Nathan, P.J. The acute effects of L-theanine in comparison with alprazolam on anticipatory anxiety in humans. Hum. Psychopharmacol. Clin. Exp. 2004, 19, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Unno, K.; Furushima, D.; Hamamoto, S.; Iguchi, K.; Yamada, H.; Morita, A.; Horie, H.; Nakamura, Y. Stress-Reducing Function of Matcha Green Tea in Animal Experiments and Clinical Trials. Nutrients 2018, 10, 1468. [Google Scholar] [CrossRef] [PubMed]
- Yoto, A.; Motoki, M.; Murao, S.; Yokogoshi, H. Effects of L-theanine or caffeine intake on changes in blood pressure under physical and psychological stresses. J. Physiol. Anthr. 2012, 31, 28. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, H.; Wang, J.; Li, A.; Zhang, W.; Cui, X.; Wang, K. Effect of green tea on reward learning in healthy individuals: A randomized, double-blind, placebo-controlled pilot study. Nutr. J. 2013, 12, 84. [Google Scholar] [CrossRef]
- Kimura, K.; Ozeki, M.; Juneja, L.R.; Ohira, H. l-Theanine reduces psychological and physiological stress responses. Biol. Psychol. 2007, 74, 39–45. [Google Scholar] [CrossRef]
- Hidese, S.; Ogawa, S.; Ota, M.; Ishida, I.; Yasukawa, Z.; Ozeki, M.; Kunugi, H. Effects of L-Theanine Administration on Stress-Related Symptoms and Cognitive Functions in Healthy Adults: A Randomized Controlled Trial. Nutrients 2019, 11, 2362. [Google Scholar] [CrossRef]
- Scholey, A.; Downey, L.A.; Ciorciari, J.; Pipingas, A.; Nolidin, K.; Finn, M.; Wines, M.; Catchlove, S.; Terrens, A.; Barlow, E.; et al. Acute neurocognitive effects of epigallocatechin gallate (EGCG). Appetite 2012, 58, 767–770. [Google Scholar] [CrossRef]
- Peng, B.; Liu, Z.; Lin, Y.; Lin, H.; Huang, J.A. The ameliorative effect of L-theanine on chronic unpredictable mild stress-induced depression in rats. J. Tea Sci. 2014, 34, 355–363. [Google Scholar]
- Shamabadi, A.; Fattollahzadeh-Noor, S.; Fallahpour, B.; Basti, F.A.; Ardakani, M.-R.K.; Akhondzadeh, S. L-Theanine adjunct to risperidone in the treatment of chronic schizophrenia inpatients: A randomized, double-blind, placebo-controlled clinical trial. Psychopharmacology 2023, 240, 2631–2640. [Google Scholar] [CrossRef]
- Akbarialiabad, H.; Dahroud, M.D.; Khazaei, M.M.; Razmeh, S.; Zarshenas, M.M. Green Tea, A Medicinal Food with Promising Neurological Benefits. Curr. Neuropharmacol. 2021, 19, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, M.-T.; Lin, C.-C.; Lee, C.-T.; Huang, T.-L. Abnormal Brain-Derived Neurotrophic Factor Exon IX Promoter Methylation, Protein, and mRNA Levels in Patients with Major Depressive Disorder. J. Clin. Med. 2019, 8, 568. [Google Scholar] [CrossRef] [PubMed]
- Schröter, K.; Brum, M.; Brunkhorst-Kanaan, N.; Tole, F.; Ziegler, C.; Domschke, K.; Reif, A.; Kittel-Schneider, S. Longitudinal multi-level biomarker analysis of BDNF in major depression and bipolar disorder. Eur. Arch. Psychiatry Clin. Neurosci. 2019, 270, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Martinotti, G.; Pettorruso, M.; De Berardis, D.; Varasano, P.A.; Pressanti, G.L.; De Remigis, V.; Valchera, A.; Ricci, V.; Di Nicola, M.; Janiri, L.; et al. Agomelatine Increases BDNF Serum Levels in Depressed Patients in Correlation with the Improvement of Depressive Symptoms. Int. J. Neuropsychopharmacol. 2016, 19, pyw003. [Google Scholar] [CrossRef]
- Cheng, S.-M.; Lee, S.-D. Exercise Training Enhances BDNF/TrkB Signaling Pathway and Inhibits Apoptosis in Diabetic Cerebral Cortex. Int. J. Mol. Sci. 2022, 23, 6740. [Google Scholar] [CrossRef]
- Borges, C.; Ellis, J.G.; Marques, D.R. The Role of Sleep Effort as a Mediator Between Anxiety and Depression. Psychol. Rep. 2023, 127, 2287–2306. [Google Scholar] [CrossRef]
- Nguyen, V.V.; Zainal, N.H.; Newman, M.G. Why Sleep is Key: Poor Sleep Quality is a Mechanism for the Bidirectional Relationship between Major Depressive Disorder and Generalized Anxiety Disorder Across 18 Years. J. Anxiety Disord. 2022, 90, 102601. [Google Scholar] [CrossRef]
- Han, Z.; Wang, L.; Zhu, H.; Tu, Y.; He, P.; Li, B. Uncovering the effects and mechanisms of tea and its components on depression, anxiety, and sleep disorders: A comprehensive review. Food Res. Int. 2024, 197, 115191. [Google Scholar] [CrossRef]
- Chellappa, S.L.; Aeschbach, D. Sleep and anxiety: From mechanisms to interventions. Sleep Med. Rev. 2022, 61, 101583. [Google Scholar] [CrossRef]
Parameter | Criteria |
---|---|
Population | Adults over 18 years Healthy individuals and/or those with a diagnosis of mood disorders, including but not limited to, depression, anxiety, bipolar, stress, and sleep disorders Individuals with elevated levels of stress, anxiety, depression, or sleep disturbance at study screening |
Intervention | Experimental studies with green tea or its bioactive compounds (i.e., EGCG, L-theanine, etc.) on mood and BDNF levels. |
Comparison | Experimental studies with a placebo, control, or no intervention group |
Outcome | Mood disorder symptomology using validated clinical scales and questionnaires and BDNF levels |
Study Design | Randomized Controlled Trials |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavanah, A.M.; Robinson, L.A.; Mattingly, M.L.; Frugé, A.D. The Impact of Green Tea and Its Bioactive Compounds on Mood Disorder Symptomology and Brain Derived Neurotrophic Factor: A Systematic Review of Randomized Controlled Trials. Biomedicines 2025, 13, 1656. https://doi.org/10.3390/biomedicines13071656
Cavanah AM, Robinson LA, Mattingly ML, Frugé AD. The Impact of Green Tea and Its Bioactive Compounds on Mood Disorder Symptomology and Brain Derived Neurotrophic Factor: A Systematic Review of Randomized Controlled Trials. Biomedicines. 2025; 13(7):1656. https://doi.org/10.3390/biomedicines13071656
Chicago/Turabian StyleCavanah, Aidan M., Laura A. Robinson, Madison L. Mattingly, and Andrew D. Frugé. 2025. "The Impact of Green Tea and Its Bioactive Compounds on Mood Disorder Symptomology and Brain Derived Neurotrophic Factor: A Systematic Review of Randomized Controlled Trials" Biomedicines 13, no. 7: 1656. https://doi.org/10.3390/biomedicines13071656
APA StyleCavanah, A. M., Robinson, L. A., Mattingly, M. L., & Frugé, A. D. (2025). The Impact of Green Tea and Its Bioactive Compounds on Mood Disorder Symptomology and Brain Derived Neurotrophic Factor: A Systematic Review of Randomized Controlled Trials. Biomedicines, 13(7), 1656. https://doi.org/10.3390/biomedicines13071656