Impaired Glucose Tolerance and Altered Body Composition in Obese Young Adults: A Case–Control Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
- Normal weight (BMI 18.5–24.9 kg/m2);
- Overweight (BMI 25.0–29.9 kg/m2);
- Obesity (BMI ≥30.0 kg/m2).
2.2. Anthropometric and Body Composition Assessment
2.3. Glucose Tolerance Testing Young Adults
2.4. Statistical Analysis
3. Results
3.1. Body Height, Weight, and BMI
3.2. Body Composition
3.3. Visceral Fat and Metabolic Consumption
3.4. Glucose Tolerance
4. Discussion
4.1. Implications for Prevention, Clinical Practice, and Future Research
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
T2D | Type 2 Diabetes |
BMI | Body Mass Index |
NW | Normal Weight |
OW | Overweight |
OB | Obesity |
AUC | Area Under Curve |
SES | Socioeconomic Status |
References
- Strati, M.; Moustaki, M.; Psaltopoulou, T.; Vryonidou, A.; Paschou, S.A. Early onset type 2 diabetes mellitus: An update. Endocrine 2024, 85, 965–978. [Google Scholar] [CrossRef] [PubMed]
- Mohamed-Mohamed, H.; Garcia-Morales, V.; Sanchez Lara, E.M.; Gonzalez-Acedo, A.; Pardo-Moreno, T.; Tovar-Galvez, M.I.; Melguizo-Rodriguez, L.; Ramos-Rodriguez, J.J. Physiological Mechanisms Inherent to Diabetes Involved in the Development of Dementia: Alzheimer’s Disease. Neurol. Int. 2023, 15, 1253–1272. [Google Scholar] [CrossRef] [PubMed]
- Perng, W.; Conway, R.; Mayer-Davis, E.; Dabelea, D. Youth-Onset Type 2 Diabetes: The Epidemiology of an Awakening Epidemic. Diabetes Care 2023, 46, 490–499. [Google Scholar] [CrossRef] [PubMed]
- Fishman, B.; Grossman, E.; Zucker, I.; Orr, O.; Lutski, M.; Bardugo, A.; Bendor, C.D.; Leiba, Y.; Cukierman-Yaffe, T.; Derazne, E.; et al. Adolescent Hypertension and Risk for Early-Onset Type 2 Diabetes: A Nationwide Study of 1.9 Million Israeli Adolescents. Diabetes Care 2021, 44, e6–e8. [Google Scholar] [CrossRef]
- Magliano, D.J.; Sacre, J.W.; Harding, J.L.; Gregg, E.W.; Zimmet, P.Z.; Shaw, J.E. Young-onset type 2 diabetes mellitus—implications for morbidity and mortality. Nat. Rev. Endocrinol. 2020, 16, 321–331. [Google Scholar] [CrossRef]
- American Diabetes Association. Type 2 diabetes in children and adolescents. Pediatrics 2000, 105, 671–680. [Google Scholar] [CrossRef]
- Twig, G.; Zucker, I.; Afek, A.; Cukierman-Yaffe, T.; Bendor, C.D.; Derazne, E.; Lutski, M.; Shohat, T.; Mosenzon, O.; Tzur, D.; et al. Adolescent Obesity and Early-Onset Type 2 Diabetes. Diabetes Care 2020, 43, 1487–1495. [Google Scholar] [CrossRef]
- Lascar, N.; Brown, J.; Pattison, H.; Barnett, A.H.; Bailey, C.J.; Bellary, S. Type 2 diabetes in adolescents and young adults. Lancet Diabetes Endocrinol. 2018, 6, 69–80. [Google Scholar] [CrossRef]
- Group, T.S. Effects of metformin, metformin plus rosiglitazone, and metformin plus lifestyle on insulin sensitivity and beta-cell function in TODAY. Diabetes Care 2013, 36, 1749–1757. [Google Scholar] [CrossRef]
- Shah, A.S.; Zeitler, P.S.; Wong, J.; Pena, A.S.; Wicklow, B.; Arslanian, S.; Chang, N.; Fu, J.; Dabadghao, P.; Pinhas-Hamiel, O.; et al. ISPAD Clinical Practice Consensus Guidelines 2022: Type 2 diabetes in children and adolescents. Pediatr. Diabetes 2022, 23, 872–902. [Google Scholar] [CrossRef]
- Karlsson, T.; Rask-Andersen, M.; Pan, G.; Hoglund, J.; Wadelius, C.; Ek, W.E.; Johansson, A. Contribution of genetics to visceral adiposity and its relation to cardiovascular and metabolic disease. Nat. Med. 2019, 25, 1390–1395. [Google Scholar] [CrossRef] [PubMed]
- Sosale, B.; Sosale, A.R.; Mohan, A.R.; Kumar, P.M.; Saboo, B.; Kandula, S. Cardiovascular risk factors, micro and macrovascular complications at diagnosis in patients with young onset type 2 diabetes in India: CINDI 2. Indian J. Endocrinol. Metab. 2016, 20, 114–118. [Google Scholar] [CrossRef] [PubMed]
- En Li Cho, E.; Ang, C.Z.; Quek, J.; Fu, C.E.; Lim, L.K.E.; Heng, Z.E.Q.; Tan, D.J.H.; Lim, W.H.; Yong, J.N.; Zeng, R.; et al. Global prevalence of non-alcoholic fatty liver disease in type 2 diabetes mellitus: An updated systematic review and meta-analysis. Gut 2023, 72, 2138–2148. [Google Scholar] [CrossRef] [PubMed]
- Castorani, V.; Polidori, N.; Giannini, C.; Blasetti, A.; Chiarelli, F. Insulin resistance and type 2 diabetes in children. Ann. Pediatr. Endocrinol. Metab. 2020, 25, 217–226. [Google Scholar] [CrossRef]
- Cree-Green, M.; Triolo, T.M.; Nadeau, K.J. Etiology of insulin resistance in youth with type 2 diabetes. Curr. Diabetes Rep. 2013, 13, 81–88. [Google Scholar] [CrossRef]
- Ushula, T.W.; Mamun, A.; Darssan, D.; Wang, W.Y.S.; Williams, G.M.; Whiting, S.J.; Najman, J.M. Dietary patterns and the risks of metabolic syndrome and insulin resistance among young adults: Evidence from a longitudinal study. Clin. Nutr. 2022, 41, 1523–1531. [Google Scholar] [CrossRef]
- Kerr, J.A.; Collaborators, M. Global, regional, and national prevalence of child and adolescent overweight and obesity, 1990-2021, with forecasts to 2050: A forecasting study for the Global Burden of Disease Study 2021. Lancet 2025, 405, 785–812. [Google Scholar] [CrossRef]
- Ling, C.H.; de Craen, A.J.; Slagboom, P.E.; Gunn, D.A.; Stokkel, M.P.; Westendorp, R.G.; Maier, A.B. Accuracy of direct segmental multi-frequency bioimpedance analysis in the assessment of total body and segmental body composition in middle-aged adult population. Clin. Nutr. 2011, 30, 610–615. [Google Scholar] [CrossRef]
- Malavolti, M.; Mussi, C.; Poli, M.; Fantuzzi, A.L.; Salvioli, G.; Battistini, N.; Bedogni, G. Cross-calibration of eight-polar bioelectrical impedance analysis versus dual-energy X-ray absorptiometry for the assessment of total and appendicular body composition in healthy subjects aged 21–82 years. Ann. Hum. Biol. 2003, 30, 380–391. [Google Scholar] [CrossRef]
- Pardo-Moreno, T.; Mohamed-Mohamed, H.; Rivas-Dominguez, A.; Garcia-Morales, V.; Garcia-Lara, R.A.; Suleiman-Martos, S.; Bermudez-Pulgarin, B.; Ramos-Rodriguez, J.J. Poor Cognitive Agility Conservation in Obese Aging People. Biomedicines 2023, 11, 138. [Google Scholar] [CrossRef]
- Francis, S.; Chandran, S.P.; Nesheera, K.K.; Jacob, J. Fasting Insulin is Better Partitioned according to Family History of Type 2 Diabetes Mellitus than Post Glucose Load Insulin of Oral Glucose Tolerance Test in Young Adults. J. Clin. Diagn. Res. 2017, 11, BC13–BC16. [Google Scholar] [CrossRef] [PubMed]
- Solianik, R.; Zidoniene, K.; Eimantas, N.; Brazaitis, M. Prolonged fasting outperforms short-term fasting in terms of glucose tolerance and insulin release: A randomised controlled trial. Br. J. Nutr. 2023, 130, 1500–1509. [Google Scholar] [CrossRef] [PubMed]
- Spinelli, A.; Buoncristiano, M.; Kovacs, V.A.; Yngve, A.; Spiroski, I.; Obreja, G.; Starc, G.; Perez, N.; Rito, A.I.; Kunesova, M.; et al. Prevalence of Severe Obesity among Primary School Children in 21 European Countries. Obes. Facts 2019, 12, 244–258. [Google Scholar] [CrossRef] [PubMed]
- Stival, C.; Lugo, A.; Odone, A.; van den Brandt, P.A.; Fernandez, E.; Tigova, O.; Soriano, J.B.; Jose Lopez, M.; Scaglioni, S.; Gallus, S.; et al. Prevalence and Correlates of Overweight and Obesity in 12 European Countries in 2017–2018. Obes. Facts 2022, 15, 655–665. [Google Scholar] [CrossRef]
- Vargas, P.A. The Link Between Inadequate Sleep and Obesity in Young Adults. Curr. Obes. Rep. 2016, 5, 38–50. [Google Scholar] [CrossRef]
- Autret, K.; Bekelman, T.A. Socioeconomic Status and Obesity. J. Endocr. Soc. 2024, 8, bvae176. [Google Scholar] [CrossRef]
- García-Morales, V.; González-Acedo, A.; Melguizo-Rodríguez, L.; Pardo-Moreno, T.; Costela-Ruiz, V.J.; Montiel-Troya, M.; Ramos-Rodríguez, J.J. Current Understanding of the Physiopathology, Diagnosis and Therapeutic Approach to Alzheimer’s Disease. Biomedicines 2021, 9, 1910. [Google Scholar] [CrossRef]
- Tomas-Gallego, G.; Dalmau-Torres, J.M.; Jimenez-Boraita, R.; Ortuno-Sierra, J.; Gargallo-Ibort, E. Adherence to the Mediterranean Diet in Spanish University Students: Association with Lifestyle Habits, Mental and Emotional Well-Being. Nutrients 2025, 17, 698. [Google Scholar] [CrossRef]
- McCormick, D.P.; Niebuhr, B.; Reyna, L.; Reifsnider, E. Influences of Parenting Education on Development of Obesity Among Young Children. Acad. Pediatr. 2023, 23, 963–970. [Google Scholar] [CrossRef]
- Medeiros, G.; Azevedo, K.P.M.; Garcia, D.; Oliveira Segundo, V.H.; Mata, A.N.S.; Fernandes, A.K.P.; Santos, R.P.D.; Trindade, D.; Moreno, I.M.; Guillen Martinez, D.; et al. Effect of School-Based Food and Nutrition Education Interventions on the Food Consumption of Adolescents: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 10522. [Google Scholar] [CrossRef]
- Santana, C.C.A.; Hill, J.O.; Azevedo, L.B.; Gunnarsdottir, T.; Prado, W.L. The association between obesity and academic performance in youth: A systematic review. Obes. Rev. 2017, 18, 1191–1199. [Google Scholar] [CrossRef] [PubMed]
- Estruch, R.; Ros, E. The role of the Mediterranean diet on weight loss and obesity-related diseases. Rev. Endocr. Metab. Disord. 2020, 21, 315–327. [Google Scholar] [CrossRef] [PubMed]
- Heymsfield, S.B.; Smith, B.; Chung, E.A.; Watts, K.L.; Gonzalez, M.C.; Yang, S.; Heo, M.; Thomas, D.M.; Turner, D.; Bosy-Westphal, A.; et al. Phenotypic differences between people varying in muscularity. J. Cachexia Sarcopenia Muscle 2022, 13, 1100–1112. [Google Scholar] [CrossRef]
- Rizvi, A.A.; Rizzo, M. Age-Related Changes in Insulin Resistance and Muscle Mass: Clinical Implications in Obese Older Adults. Medicina 2024, 60, 1648. [Google Scholar] [CrossRef]
- Maliszewska, K.; Adamska-Patruno, E.; Kretowski, A. The interplay between muscle mass decline, obesity, and type 2 diabetes. Pol. Arch. Intern. Med. 2019, 129, 809–816. [Google Scholar] [CrossRef]
- Schnyder, S.; Handschin, C. Skeletal muscle as an endocrine organ: PGC-1alpha, myokines and exercise. Bone 2015, 80, 115–125. [Google Scholar] [CrossRef]
- Feraco, A.; Gorini, S.; Armani, A.; Camajani, E.; Rizzo, M.; Caprio, M. Exploring the Role of Skeletal Muscle in Insulin Resistance: Lessons from Cultured Cells to Animal Models. Int. J. Mol. Sci. 2021, 22, 9327. [Google Scholar] [CrossRef]
- Eckel, J. Myokines in metabolic homeostasis and diabetes. Diabetologia 2019, 62, 1523–1528. [Google Scholar] [CrossRef]
- Buch, A.; Carmeli, E.; Boker, L.K.; Marcus, Y.; Shefer, G.; Kis, O.; Berner, Y.; Stern, N. Muscle function and fat content in relation to sarcopenia, obesity and frailty of old age—An overview. Exp. Gerontol. 2016, 76, 25–32. [Google Scholar] [CrossRef]
- Rivas-Dominguez, A.; Mohamed-Mohamed, H.; Jimenez-Palomares, M.; Garcia-Morales, V.; Martinez-Lopez, L.; Orta, M.L.; Ramos-Rodriguez, J.J.; Bermudez-Pulgarin, B. Metabolic Disturbance of High-Saturated Fatty Acid Diet in Cognitive Preservation. Int. J. Mol. Sci. 2023, 24, 8042. [Google Scholar] [CrossRef]
- Gitsi, E.; Kokkinos, A.; Konstantinidou, S.K.; Livadas, S.; Argyrakopoulou, G. The Relationship between Resting Metabolic Rate and Body Composition in People Living with Overweight and Obesity. J. Clin. Med. 2024, 13, 5862. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Qiu, T.; Li, L.; Yu, R.; Chen, X.; Li, C.; Proud, C.G.; Jiang, T. Pathophysiology of obesity and its associated diseases. Acta Pharm. Sin. B 2023, 13, 2403–2424. [Google Scholar] [CrossRef] [PubMed]
- Kawai, T.; Autieri, M.V.; Scalia, R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am. J. Physiol. Cell Physiol. 2021, 320, C375–C391. [Google Scholar] [CrossRef]
- Moon, H.U.; Ha, K.H.; Han, S.J.; Kim, H.J.; Kim, D.J. The Association of Adiponectin and Visceral Fat with Insulin Resistance and beta-Cell Dysfunction. J. Korean Med. Sci. 2019, 34, e7. [Google Scholar] [CrossRef]
- Verkouter, I.; Noordam, R.; le Cessie, S.; van Dam, R.M.; Lamb, H.J.; Rosendaal, F.R.; van Heemst, D.; de Mutsert, R. The Association between Adult Weight Gain and Insulin Resistance at Middle Age: Mediation by Visceral Fat and Liver Fat. J. Clin. Med. 2019, 8, 1559. [Google Scholar] [CrossRef]
- Wu, H.; Ballantyne, C.M. Metabolic Inflammation and Insulin Resistance in Obesity. Circ. Res. 2020, 126, 1549–1564. [Google Scholar] [CrossRef]
- Chung, S.T.; Katz, L.E.L.; Stettler-Davis, N.; Shults, J.; Sherman, A.; Ha, J.; Stefanovski, D.; Boston, R.C.; Rader, D.J.; Magge, S.N. The Relationship Between Lipoproteins and Insulin Sensitivity in Youth With Obesity and Abnormal Glucose Tolerance. J. Clin. Endocrinol. Metab. 2022, 107, 1541–1551. [Google Scholar] [CrossRef]
- Reinehr, T. Lifestyle intervention in childhood obesity: Changes and challenges. Nat. Rev. Endocrinol. 2013, 9, 607–614. [Google Scholar] [CrossRef]
- Weiss, R.; Dziura, J.; Burgert, T.S.; Tamborlane, W.V.; Taksali, S.E.; Yeckel, C.W.; Allen, K.; Lopes, M.; Savoye, M.; Morrison, J.; et al. Obesity and the metabolic syndrome in children and adolescents. N. Engl. J. Med. 2004, 350, 2362–2374. [Google Scholar] [CrossRef]
- Wu, H.; Ballantyne, C.M. Skeletal muscle inflammation and insulin resistance in obesity. J. Clin. Investig. 2017, 127, 43–54. [Google Scholar] [CrossRef]
- Smith, E.; Hay, P.; Campbell, L.; Trollor, J.N. A review of the association between obesity and cognitive function across the lifespan: Implications for novel approaches to prevention and treatment. Obes. Rev. 2011, 12, 740–755. [Google Scholar] [CrossRef] [PubMed]
Cohort (%) | Height (m) | Weight (kg) | BMI | |
---|---|---|---|---|
Normal weight | 66.67 (n = 64) | 1.67 ± 0.01 | 60.92 ± 1.04 | 21.76 ± 0.21 |
Overweight | 26.04 (n = 25) | 1.65 ± 0.01 | 71.56 ± 1.59 ** | 26.09 ± 0.2 ** |
Obesity | 7.29 (n = 7) | 1.63 ± 0.02 | 86.57 ± 4.56 ** | 32.59 ± 1.35 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed-Mohamed, H.; Pardo-Moreno, T.; Jimenez-Palomares, M.; Perez-Ardanaz, B.; Sánchez-Lara, E.M.; Vazquez-Lara, M.D.; de La Mata-Fernandez, M.; García-Morales, V.; Ramos-Rodríguez, J.J. Impaired Glucose Tolerance and Altered Body Composition in Obese Young Adults: A Case–Control Study. Biomedicines 2025, 13, 1569. https://doi.org/10.3390/biomedicines13071569
Mohamed-Mohamed H, Pardo-Moreno T, Jimenez-Palomares M, Perez-Ardanaz B, Sánchez-Lara EM, Vazquez-Lara MD, de La Mata-Fernandez M, García-Morales V, Ramos-Rodríguez JJ. Impaired Glucose Tolerance and Altered Body Composition in Obese Young Adults: A Case–Control Study. Biomedicines. 2025; 13(7):1569. https://doi.org/10.3390/biomedicines13071569
Chicago/Turabian StyleMohamed-Mohamed, Himan, Teresa Pardo-Moreno, Margarita Jimenez-Palomares, Bibiana Perez-Ardanaz, Encarnación M. Sánchez-Lara, Maria D. Vazquez-Lara, Mario de La Mata-Fernandez, Victoria García-Morales, and Juan José Ramos-Rodríguez. 2025. "Impaired Glucose Tolerance and Altered Body Composition in Obese Young Adults: A Case–Control Study" Biomedicines 13, no. 7: 1569. https://doi.org/10.3390/biomedicines13071569
APA StyleMohamed-Mohamed, H., Pardo-Moreno, T., Jimenez-Palomares, M., Perez-Ardanaz, B., Sánchez-Lara, E. M., Vazquez-Lara, M. D., de La Mata-Fernandez, M., García-Morales, V., & Ramos-Rodríguez, J. J. (2025). Impaired Glucose Tolerance and Altered Body Composition in Obese Young Adults: A Case–Control Study. Biomedicines, 13(7), 1569. https://doi.org/10.3390/biomedicines13071569