Proton Density of the Dorsal Root Ganglia in Classical Fabry Disease: MRI Correlates of Small Fibre Neuropathy
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population
2.3. Clinical Assessment
2.4. MRI Acquisition and Image Post-Processing
2.5. Calculation of DRG-PD
2.6. Statistical Analysis
3. Results
3.1. Study Population Characteristics
3.2. DRG Imaging Parameters
3.3. Correlations Between DRG Imaging Parameters and Continuous Clinical Variables
3.4. DRG Imaging Parameter Associations
3.5. DRG-PD Is Increased in Classical FD with SFN
3.6. Logistic Regression Analysis for SFN Prediction
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AUC | area under the curve |
a.u. | arbitrary units |
α-Gal A | alpha-galactosidase A |
BMI | body mass index |
DRG | dorsal root ganglion |
DRG-PD | dorsal root ganglion proton density |
DRG-T2 | dorsal root ganglion T2 relaxation time |
DRG-Vol | dorsal root ganglion volume |
FD | Fabry disease |
f | female |
Gb3 | globotriaosylceramide |
GLA | galactosidase A gene |
IENFD | intraepidermal nerve fibre density |
IQR | interquartile range |
lysoGb3 | globotriaosylsphingosine |
m | male |
NRS PD | Numeric Rating Scale proton density |
PNS | peripheral nervous system |
ROC | receiver operating characteristic |
SFN | small fibre neuropathy |
VUS | variant of uncertain significance |
ρ | Spearman’s rank correlation coefficient |
Appendix A
DRG Parameter | Variable | Spearman’s ρ | p-Value |
---|---|---|---|
DRG-Vol | Age | −0.339 | 0.002 |
DRG-Vol | BMI | −0.211 | 0.061 |
DRG-Vol | lysoGb3 | 0.206 | 0.067 |
DRG-Vol | α-Gal A enzyme activity | −0.317 | 0.004 |
DRG-Vol | IENFD, lower leg | −0.050 | 0.704 |
DRG-Vol | IENFD, thigh | −0.015 | 0.911 |
DRG-Vol | Average pain intensity | −0.013 | 0.915 |
DRG-Vol | Maximum pain intensity | −0.023 | 0.844 |
DRG-T2 | age | −0.134 | 0.236 |
DRG-T2 | BMI | −0.318 | 0.004 |
DRG-T2 | lysoGb3 | 0.160 | 0.156 |
DRG-T2 | α-Gal A enzyme activity | −0.104 | 0.359 |
DRG-T2 | IENFD, lower leg | 0.028 | 0.830 |
DRG-T2 | IENFD, thigh | −0.023 | 0.860 |
DRG-T2 | Average pain intensity | 0.052 | 0.662 |
DRG-T2 | Maximum pain intensity | 0.163 | 0.165 |
DRG-PD | Age | 0.082 | 0.468 |
DRG-PD | BMI | −0.061 | 0.590 |
DRG-PD | lysoGb3 | 0.039 | 0.729 |
DRG-PD | α-Gal A enzyme activity | 0.109 | 0.335 |
DRG-PD | IENFD, lower leg | −0.076 | 0.563 |
DRG-PD | IENFD, thigh | −0.122 | 0.348 |
DRG-PD | Average pain intensity | −0.017 | 0.883 |
DRG-PD | Maximum pain intensity | 0.006 | 0.957 |
Variable | Estimate (DRG-Vol) | p-Value (DRG-Vol) | Estimate (DRG-T2) | p-Value (DRG-T2) | Estimate (DRG-PD) | p-Value (DRG-PD) |
---|---|---|---|---|---|---|
(Intercept) | 1188.455 | <0.001 | 104.793 | <0.001 | 0.676 | <0.001 |
Age | −4.33 | 0.217 | −0.112 | 0.345 | 0.0 | 0.914 |
Enzyme activity | −56.402 | 0.905 | −12.973 | 0.423 | 0.017 | 0.818 |
lysoGb3 | 0.005 | 0.997 | −0.037 | 0.390 | 0.0 | 0.686 |
Phenotype (classical) | −53.446 | 0.669 | 9.451 | 0.028 | 0.059 | 0.004 |
Sex (male) | 346.579 | 0.017 | 0.142 | 0.977 | −0.024 | 0.292 |
Previous FD-specific therapy (yes) | 12.806 | 0.905 | −3.569 | 0.328 | −0.007 | 0.698 |
References
- Poorthuis, B.J.; Wevers, R.A.; Kleijer, W.J.; Groener, J.E.; de Jong, J.G.; van Weely, S.; Niezen-Koning, K.E.; van Diggelen, O.P. The Frequency of Lysosomal Storage Diseases in The Netherlands. Hum. Genet. 1999, 105, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Meikle, P.; Hopwood, J.; Clague, A.; Carey, W. Prevalence of Lysosomal Storage Disorders. JAMA 1999, 281, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Biegstraaten, M.; Hollak, C.E.M.; Bakkers, M.; Faber, C.G.; Aerts, J.M.F.G.; van Schaik, I.N. Small Fiber Neuropathy in Fabry Disease. Mol. Genet. Metab. 2012, 106, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Üçeyler, N.; Ganendiran, S.; Kramer, D.; Sommer, C. Characterization of Pain in Fabry Disease. Clin. J. Pain 2014, 30, 915–920. [Google Scholar] [CrossRef]
- Ohnishi, A.; Dyck, P. Loss of Small Peripheral Sensory Neurons in Fabry Disease. Histologic and Morphometric Evaluation of Cutaneous Nerves, Spinal Ganglia, and Posterior Columns. Arch. Neurol. 1974, 31, 120–127. [Google Scholar] [CrossRef]
- Gemignani, F.; Marbini, A.; Bragaglia, M.M.; Govoni, E. Pathological Study of the Sural Nerve in Fabry’s Disease. Eur. Neurol. 1984, 23, 173–181. [Google Scholar] [CrossRef]
- Kaye, E.M.; Kolodny, E.H.; Logigian, E.L.; Ullman, M.D. Nervous System Involvement in Fabry’s Disease: Clinicopathological and Biochemical Correlation. Ann. Neurol. 1988, 23, 505–509. [Google Scholar] [CrossRef]
- Fukuhara, N.; Suzuki, M.; Fujita, N.; Tsubaki, T. Fabry’s Disease on the Mechanism of the Peripheral Nerve Involvement. Acta Neuropathol. 1975, 33, 9–21. [Google Scholar] [CrossRef]
- Choi, L.; Vernon, J.; Kopach, O. Fabry Disease-Associated Li- Pid Lyso-Gb3 Enhances Voltage-Gated Calcium Currents Sensory Neurons Causes Pain. Neurosci. Lett. 2015, 594, 163–168. [Google Scholar] [CrossRef]
- Møller, A.; Jensen, T. Neurological Manifestations in Fabry’s Disease. Nat. Clin. Pract. Neurol. 2007, 3, 95–106. [Google Scholar] [CrossRef]
- Hofmann, L.; Hose, D.; Grießhammer, A.; Blum, R.; Döring, F.; Dib-Hajj, S.; Waxman, S.; Sommer, C.; Wischmeyer, E.; Üçeyler, N. Characterization of Small Fiber Pathology in a Mouse Model of Fabry Disease. Elife 2018, 7, e39300. [Google Scholar] [CrossRef] [PubMed]
- Weissmann, C.; Albanese, A.A.; Contreras, N.E.; Gobetto, M.N.; Castellanos, L.C.S.; Uchitel, O.D. Ion Channels and Pain in Fabry Disease. Mol. Pain 2021, 17, 17448069211033172. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Hoeijmakers, J.G.J.; Liu, S.; Gerrits, M.M.; te Morsche, R.H.M.; Lauria, G.; Dib-Hajj, S.D.; Drenth, J.P.H.; Faber, C.G.; Merkies, I.S.J.; et al. Functional Profiles of SCN9A Variants in Dorsal Root Ganglion Neurons and Superior Cervical Ganglion Neurons Correlate with Autonomic Symptoms in Small Fibre Neuropathy. Brain 2012, 135, 2613–2628. [Google Scholar] [CrossRef]
- Huang, J.; Yang, Y.; Zhao, P.; Gerrits, M.M.; Hoeijmakers, J.G.J.; Bekelaar, K.; Merkies, I.S.J.; Faber, C.G.; Dib-Hajj, S.D.; Waxman, S.G. Small-Fiber Neuropathy Nav1.8 Mutation Shifts Activation to Hyperpolarized Potentials and Increases Excitability of Dorsal Root Ganglion Neurons. J. Neurosci. 2013, 33, 14087–14097. [Google Scholar] [CrossRef]
- Kaneski, C.R.; Hanover, J.A.; Schueler Hoffman, U.H. Generation of an in Vitro Model for Peripheral Neuropathy in Fabry Disease Using CRISPR-Cas9 in the Nociceptive Dorsal Root Ganglion Cell Line 50B11. Mol. Genet. Metab. Rep. 2022, 31, 100871. [Google Scholar] [CrossRef]
- Sollmann, N.; Weidlich, D.; Cervantes, B.; Klupp, E.; Ganter, C.; Kooijman, H.; Rummeny, E.J.; Zimmer, C.; Kirschke, J.S.; Karampinos, D.C. High Isotropic Resolution T2 Mapping of the Lumbosacral Plexus with T2-Prepared 3D Turbo Spin Echo. Clin. Neuroradiol. 2019, 29, 223–230. [Google Scholar] [CrossRef]
- Preisner, F.; Behnisch, R.; Schwehr, V.; Godel, T.; Schwarz, D.; Foesleitner, O.; Bäumer, P.; Heiland, S.; Bendszus, M.; Kronlage, M. Quantitative MR-Neurography at 3.0T: Inter-Scanner Reproducibility. Front. Neurosci. 2022, 16, 817316. [Google Scholar] [CrossRef]
- Kronlage, M.; Fischer, T.D.; Behnisch, R.; Schwarz, D.; Bäumer, P.; Schwehr, V.; Heiland, S.; Bendszus, M.; Godel, T. Dorsal Root Ganglia Volume-Normative Values, Correlation with Demographic Determinants and Reliability of Three Different Methods of Volumetry. Diagnostics 2022, 12, 1570. [Google Scholar] [CrossRef]
- Schindehütte, M.; Weiner, S.; Klug, K.; Hölzli, L.; Nauroth-Kreß, C.; Hessenauer, F.; Kampf, T.; Homola, G.A.; Nordbeck, P.; Wanner, C.; et al. Dorsal Root Ganglion Magnetic Resonance Imaging Biomarker Correlations with Pain in Fabry Disease. Brain Commun. 2024, 6, fcae155. [Google Scholar] [CrossRef]
- Godel, T.; Köhn, A.; Muschol, N.; Kronlage, M.; Schwarz, D.; Kollmer, J.; Heiland, S.; Bendszus, M.; Mautner, V.-F.; Bäumer, P. Dorsal Root Ganglia in Vivo Morphometry and Perfusion in Female Patients with Fabry Disease. J. Neurol. 2018, 265, 2723–2729. [Google Scholar] [CrossRef]
- Apostolidis, L.; Kowalscheck, L.; Weber, T.F.; Godel, T.; Bendszus, M.; Kauczor, H.-U.; Jäger, D.; Schlemmer, H.-P.; Bäumer, P. Dorsal Root Ganglion Morphometric Changes Under Oxaliplatin Treatment: Longitudinal Assessment by Computed Tomography. Clin. Neuroradiol. 2022, 32, 547–556. [Google Scholar] [CrossRef]
- Jende, J.M.E.; Kender, Z.; Rother, C.; Alvarez-Ramos, L.; Groener, J.B.; Pham, M.; Morgenstern, J.; Oikonomou, D.; Hahn, A.; Juerchott, A.; et al. Diabetic Polyneuropathy Is Associated With Pathomorphological Changes in Human Dorsal Root Ganglia: A Study Using 3T MR Neurography. Front. Neurosci. 2020, 14, 570744. [Google Scholar] [CrossRef] [PubMed]
- Rozenfeld, P.; Feriozzi, S. Contribution of Inflammatory Pathways to Fabry Disease Pathogenesis. Mol. Genet. Metab. 2017, 122, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Weiner, S.; Perleth, S.; Kampf, T.; Lau, K.; Hessenauer, F.; Homola, G.; Nordbeck, P.; Üçeyler, N.; Sommer, C.; Pham, M.; et al. MRI T2 Mapping of Dorsal Root Ganglia Reveals Increased T2 Relaxation Time in Classical Fabry Disease. Biomedicines 2025, 13, 592. [Google Scholar] [CrossRef]
- Arends, M.; Wanner, C.; Hughes, D.; Mehta, A.; Oder, D.; Watkinson, O.T.; Elliott, P.M.; Linthorst, G.E.; Wijburg, F.A.; Biegstraaten, M.; et al. Characterization of Classical and Nonclassical Fabry Disease: A Multicenter Study. J. Am. Soc. Nephrol. 2017, 28, 1631–1641. [Google Scholar] [CrossRef]
- Saito, S.; Ohno, K.; Sakuraba, H. Fabry-database.org: Database of the Clinical Phenotypes, Genotypes and Mutant α-Galactosidase A Structures in Fabry Disease. J. Hum. Genet. 2011, 56, 467–468. [Google Scholar] [CrossRef]
- Schiffmann, R.; Fuller, M.; Clarke, L.A.; Aerts, J.M.F.G. Is It Fabry Disease? Genet. Med. 2016, 18, 1181–1185. [Google Scholar] [CrossRef]
- Lauria, G.; Bakkers, M.; Schmitz, C.; Lombardi, R.; Penza, P.; Devigili, G.; Smith, A.G.; Hsieh, S.-T.; Mellgren, S.I.; Umapathi, T.; et al. Intraepidermal Nerve Fiber Density at the Distal Leg: A Worldwide Normative Reference Study. J. Peripher. Nerv. Syst. 2010, 15, 202–207. [Google Scholar] [CrossRef]
- Egenolf, N.; Zu Altenschildesche, C.M.; Kreß, L.; Eggermann, K.; Namer, B.; Gross, F.; Klitsch, A.; Malzacher, T.; Kampik, D.; Malik, R.A.; et al. Diagnosing Small Fiber Neuropathy in Clinical Practice: A Deep Phenotyping Study. Ther. Adv. Neurol. Disord. 2021, 14, 17562864211004318. [Google Scholar] [CrossRef]
- Devigili, G.; Tugnoli, V.; Penza, P.; Camozzi, F.; Lombardi, R.; Melli, G.; Broglio, L.; Granieri, E.; Lauria, G. The Diagnostic Criteria for Small Fibre Neuropathy: From Symptoms to Neuropathology. Brain 2008, 131, 1912–1925. [Google Scholar] [CrossRef]
- Neumann, D.; Blaimer, M.; Jakob, P.M.; Breuer, F.A. Simple Recipe for Accurate T2 Quantification with Multi Spin-Echo Acquisitions. Magn. Reson. Mater. Phys. 2014, 27, 567–577. [Google Scholar] [CrossRef] [PubMed]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Romano, J.; Kromrey, J.D.; Coraggio, J.; Skowronek, J.; Devine, L. Exploring Methods for Evaluating Group Differences on the NSSE and Other Surveys: Are the t-Test and Cohen’sd Indices the Most Appropriate Choices. In Proceedings of the Annual Meeting of the Southern Association for Institutional Research; Citeseer: Forest Grove, OR, USA, 2006; Volume 14. [Google Scholar]
- Tofts, P.S.; du Boulay, E.P. Towards Quantitative Measurements of Relaxation Times and Other Parameters in the Brain. Neuroradiology 1990, 32, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Tofts, P. Quantitative MRI of the Brain: Measuring Changes Caused by Disease; John Wiley & Sons: Hoboken, NJ, USA, 2005; ISBN 9780470869499. [Google Scholar]
- Kummer, K.K.; Kalpachidou, T.; Kress, M.; Langeslag, M. Signatures of Altered Gene Expression in Dorsal Root Ganglia of a Fabry Disease Mouse Model. Front. Mol. Neurosci. 2017, 10, 449. [Google Scholar] [CrossRef]
- Godel, T.; Bäumer, P.; Pham, M.; Köhn, A.; Muschol, N.; Kronlage, M.; Kollmer, J.; Heiland, S.; Bendszus, M.; Mautner, V.-F. Human Dorsal Root Ganglion in Vivo Morphometry and Perfusion in Fabry Painful Neuropathy. Neurology 2017, 89, 1274–1282. [Google Scholar] [CrossRef]
- Zhou, X.; Schindehuette, M.; Cebulla, N.; Öztürk, B.; Weiner, S.; Mersi, J.; Rasche, L.; Waldschmidt, J.; Einsele, H.; Blum, R.; et al. Visualization of Bortezomib Induced Peripheral Neuropathy by Dorsal Root Ganglion MRI in Patients with Multiple Myeloma. Blood 2024, 144, 7580. [Google Scholar] [CrossRef]
- Gorson, K.C.; Herrmann, D.N.; Thiagarajan, R.; Brannagan, T.H.; Chin, R.L.; Kinsella, L.J.; Ropper, A.H. Non-Length Dependent Small Fibre Neuropathy/Ganglionopathy. J. Neurol. Neurosurg. Psychiatry 2008, 79, 163–169. [Google Scholar] [CrossRef]
- Maino, P.; Koetsier, E.; Kaelin-Lang, A.; Gobbi, C.; Perez, R. Efficacious Dorsal Root Ganglion Stimulation for Painful Small Fiber Neuropathy: A Case Report. Pain Physician 2017, 20, E459–E463. [Google Scholar]
- Birnbaum, J.; Duncan, T.; Owoyemi, K.; Wang, K.C.; Carrino, J.; Chhabra, A. Use of a Novel High-Resolution Magnetic Resonance Neurography Protocol to Detect Abnormal Dorsal Root Ganglia in Sjögren Patients with Neuropathic Pain: Case Series of 10 Patients and Review of the Literature. Medicine 2014, 93, 121–134. [Google Scholar] [CrossRef]
- Liao, M.-F.; Hsu, J.-L.; Fung, H.-C.; Kuo, H.-C.; Chu, C.-C.; Chang, H.-S.; Lyu, R.-K.; Ro, L.-S. The Correlation of Small Fiber Neuropathy with Pain Intensity and Age in Patients with Fabry’s Disease: A Cross Sectional Study within a Large Taiwanese Family. Biomed. J. 2022, 45, 406–413. [Google Scholar] [CrossRef]
Parameter | All (n = 80) [Median (IQR) or Count (Percentage)] | Men (n = 38) [Median (IQR) or Count (Percentage)] | Women (n = 42) [Median (IQR) or Count (Percentage)] |
---|---|---|---|
Age [years] | 42.0 (33.0–57.0) | 36.0 (29.2–44.0) | 52.0 (35.2–62.8) |
Height [cm] | 168.0 (165.0–178.0) | 178.0 (173.5–183.8) | 165.0 (163.0–167.8) |
Weight [kg] | 71.5 (62.5–85.2) | 80.0 (70.2–89.0) | 67.0 (58.0–78.8) |
BMI [kg/m2] | 24.5 (21.9–27.8) | 24.7 (23.0–26.4) | 24.0 (21.6–28.9) |
α-Gal A [nmol/min/mg protein] | 0.17 (0.04–0.29) | 0.04 (0.04–0.06) | 0.28 (0.23–0.39) |
lyso-Gb3 [ng/mL] | 11.1 (2.0–22.6) | 20.1 (6.9–60.8) | 4.2 (1.1–13.8) |
IENFD, lower leg [mm⁻¹] | 4.2 (2.4–7.0) | 2.8 (0.8–5.1) | 5.2 (3.5–8.5) |
IENFD, thigh [mm⁻¹] | 18.3 (13.5–26.2) | 16.2 (12.7–20.4) | 21.4 (16.7–32.6) |
Previous FD-specific treatment | 47 (58.8%) | 28 (73.7%) | 19 (45.2%) |
Previous cerebrovascular event | 13 (16.2%) | 7 (18.4%) | 6 (14.3%) |
History of FD pain | 48 (60%) | 25 (65.8%) | 23 (54.8%) |
Average pain intensity (NRS) | 2 (0–5) | 3 (0–4) | 2 (0–5) |
Maximum pain intensity (NRS) | 3 (0–6) | 3 (0–6) | 3 (0–6) |
SFN | 25 (31.2%) | 15 (39.5%) | 10 (23.8%) |
Previous antineuropathic treatment | 18 (22.5%) | 10 (26.3%) | 8 (19%) |
Classical phenotype | 18 (22.5%) | 10 (26.3%) | 8 (19%) |
Late-onset or benign phenotype | 54 (67.5%) | 24 (63.2%) | 30 (71.4%) |
VUS | 8 (10%) | 4 (10.5%) | 4 (9.5%) |
Subcohort | DRG-Parameter | [n] | SFN-Positive [Median (IQR)] | [n] | SFN-Negative [Median (IQR)] | p-Value | Cliff’s δ |
---|---|---|---|---|---|---|---|
All | DRG-Vol [mm3] | 25 | 1105.2 (784.4–1390.9) | 55 | 1089.1 (884.3–1377.1) | 0.934 | 0.01 |
All | DRG-T2 [ms] | 25 | 96.4 (89.9–107.1) | 55 | 94.9 (85.1–102.3) | 0.461 | 0.10 |
All | DRG-PD [a.u.] | 25 | 0.710 (0.655–0.765) | 55 | 0.667 (0.636–0.725) | 0.063 | 0.26 |
m | DRG-Vol [mm3] | 15 | 1302.0 (914.2–1646.1) | 23 | 1354.5 (1080.4–1561.5) | 0.595 | 0.11 |
m | DRG-T2 [ms] | 15 | 99.3 (90.0–107.9) | 23 | 92.5 (82.8–105.6) | 0.378 | 0.17 |
m | DRG-PD [a.u.] | 15 | 0.681 (0.637–0.766) | 23 | 0.656 (0.605–0.700) | 0.114 | 0.31 |
f | DRG-Vol [mm3] | 10 | 921.5 (606.5–1117.2) | 32 | 992.2 (794.2–1208.0) | 0.631 | 0.11 |
f | DRG-T2 [ms] | 10 | 94.3 (87.3–102.6) | 32 | 95.6 (86.0–101.8) | 0.965 | 0.01 |
f | DRG-PD [a.u.] | 10 | 0.722 (0.668–0.764) | 32 | 0.672 (0.649–0.732) | 0.202 | 0.28 |
Classical | DRG-Vol [mm3] | 7 | 1003.1 (809.9–1113.2) | 11 | 1181.0 (896.7–1563.0) | 0.319 | 0.30 |
Classical | DRG-T2 [ms] | 7 | 104.4 (93.5–113.9) | 11 | 102.1 (92.0–117.9) | 1.0 | 0.01 |
Classical | DRG-PD [a.u.] | 7 | 0.765 (0.761–0.784) | 11 | 0.701 (0.687–0.720) | 0.0004 | 0.92 |
Classical; m | DRG-Vol [mm3] | 4 | 809.9 (760.7–1043.6) | 6 | 1314.4 (944.8–1639.2) | 0.352 | 0.42 |
Classical; m | DRG-T2 [ms] | 4 | 98.8 (89.8–110.8) | 6 | 102.3 (91.8–120.9) | 0.610 | 0.25 |
Classical; m | DRG-PD [a.u.] | 4 | 0.772 (0.750–0.803) | 6 | 0.698 (0.635–0.701) | 0.019 | 0.92 |
Classical; f | DRG-Vol [mm3] | 3 | 1105.2 (1054.1–1113.2) | 5 | 1181.0 (896.7–1262.6) | 0.786 | 0.20 |
Classical; f | DRG-T2 [ms] | 3 | 104.4 (100.4–112.6) | 5 | 102.1 (96.3–102.7) | 0.571 | 0.33 |
Classical; f | DRG-PD [a.u.] | 3 | 0.765 (0.763–0.774) | 5 | 0.713 (0.702–0.726) | 0.036 | 1.00 |
Benign/late-onset | DRG-Vol [mm3] | 16 | 1156.2 (750.1–1449.3) | 38 | 1037.4 (852.2–1348.3) | 0.673 | 0.08 |
Benign/late-onset | DRG-T2 [ms] | 16 | 92.3 (89.7–99.8) | 38 | 94.1 (83.8–101.4) | 0.842 | 0.04 |
Benign/late-onset | DRG-PD [a.u.] | 16 | 0.674 (0.641–0.736) | 38 | 0.664 (0.619–0.719) | 0.414 | 0.15 |
Benign/late-onset; m | DRG-Vol [mm3] | 9 | 1390.9 (1074.5–1697.1) | 15 | 1329.7 (1122.7–1525.1) | 0.861 | 0.05 |
Benign/late-onset; m | DRG-T2 [ms] | 9 | 99.3 (90.1–100.4) | 15 | 91.8 (79.5–100.8) | 0.245 | 0.30 |
Benign/late-onset; m | DRG-PD [a.u.] | 9 | 0.668 (0.632–0.744) | 15 | 0.656 (0.594–0.689) | 0.446 | 0.20 |
Benign/late-onset; f | DRG-Vol [mm3] | 7 | 768.4 (551.9–1038.8) | 23 | 962.3 (580.3–1044.7) | 0.737 | 0.09 |
Benign/late-onset; f | DRG-T2 [ms] | 7 | 89.9 (81.6–94.7) | 23 | 94.4 (88.7–101.3) | 0.327 | 0.26 |
Benign/late-onset; f | DRG-PD [a.u.] | 7 | 0.694 (0.657–0.722) | 23 | 0.664 (0.644–0.725) | 0.598 | 0.14 |
Variable | Estimate | Std. Error | z-Value | p-Value |
---|---|---|---|---|
(Intercept) | −10.640 | 3.986 | −2.669 | 0.008 |
Age | −0.004 | 0.022 | −0.182 | 0.855 |
Sex (male) | 1.108 | 0.913 | 1.214 | 0.225 |
lysoGb3 | 0.009 | 0.007 | 1.195 | 0.232 |
α-Gal A enzyme activity | 1.907 | 2.898 | 0.658 | 0.511 |
DRG-PD | 11.510 | 4.914 | 2.343 | 0.019 |
DRG-T2 | 0.012 | 0.020 | 0.631 | 0.528 |
DRG-Vol | −0.0012 | 0.0007 | −1.646 | 0.100 |
Phenotype (classical) | −0.902 | 0.791 | −1.141 | 0.254 |
Previous FD-specific treatment (yes) | 2.008 | 0.762 | 2.635 | 0.008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weiner, S.; Perleth, S.; Schäfer Gómez, C.; Kampf, T.; Lau, K.; Hessenauer, F.; Homola, G.; Nordbeck, P.; Üçeyler, N.; Sommer, C.; et al. Proton Density of the Dorsal Root Ganglia in Classical Fabry Disease: MRI Correlates of Small Fibre Neuropathy. Biomedicines 2025, 13, 1468. https://doi.org/10.3390/biomedicines13061468
Weiner S, Perleth S, Schäfer Gómez C, Kampf T, Lau K, Hessenauer F, Homola G, Nordbeck P, Üçeyler N, Sommer C, et al. Proton Density of the Dorsal Root Ganglia in Classical Fabry Disease: MRI Correlates of Small Fibre Neuropathy. Biomedicines. 2025; 13(6):1468. https://doi.org/10.3390/biomedicines13061468
Chicago/Turabian StyleWeiner, Simon, Sarah Perleth, Charlotte Schäfer Gómez, Thomas Kampf, Kolja Lau, Florian Hessenauer, György Homola, Peter Nordbeck, Nurcan Üçeyler, Claudia Sommer, and et al. 2025. "Proton Density of the Dorsal Root Ganglia in Classical Fabry Disease: MRI Correlates of Small Fibre Neuropathy" Biomedicines 13, no. 6: 1468. https://doi.org/10.3390/biomedicines13061468
APA StyleWeiner, S., Perleth, S., Schäfer Gómez, C., Kampf, T., Lau, K., Hessenauer, F., Homola, G., Nordbeck, P., Üçeyler, N., Sommer, C., Pham, M., & Schindehütte, M. (2025). Proton Density of the Dorsal Root Ganglia in Classical Fabry Disease: MRI Correlates of Small Fibre Neuropathy. Biomedicines, 13(6), 1468. https://doi.org/10.3390/biomedicines13061468