Dualistic Dynamics in Neuropsychiatry: From Monoaminergic Modulators to Multiscale Biomarker Maps
1. Introduction: The Dualistic Lens
2. Eight Windows on Equilibrium
3. Bridging the Gaps: How These Papers Move the Needle
3.1. Translational Momentum of Rodent Leads
3.2. From Receptor Islands to Circuit Continents—System-Level Integration
3.3. Toward Composite Precision Panels
4. Future Frontiers
4.1. Multi-Omics Coupling with In Vivo Imaging
4.2. Longitudinal, Sex-Balanced Cohorts
4.3. Digital Phenotyping and Artificial Intelligence (AI) Biomarker Fusion
4.4. Network-Level Interventions
4.5. Ethical and Regulatory Horizon-Scanning
5. Conclusions: Toward a Convergent Neuropsychiatry
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AD | Alzheimer’s disease |
ADHD | attention-deficit/hyperactivity disorder |
AI | artificial intelligence |
CB1 | cannabinoid receptor type 1 |
CSF | cerebrospinal fluid |
HPA | hypothalamic–pituitary–adrenal |
5-HT | 5-hydroxytryptamine |
5-HT1A | 5-hydroxytryptamine receptor type 1A |
5-HTP | 5-hydroxytryptophan |
IL | interleukin |
MAO-A | monoamine oxidase A |
miR-200b-3p | microRNA 200b family subtype the 3′ strand |
OCD | obsessive–compulsive disorder |
PET | positron emission tomography |
p-tau217/231 | phosphorylated tau protein at threonine 217 and threonine 231 |
TAARs | trace amine-associated receptors |
TNF | tumor necrosis factor |
References
- Rabl, M.; Clark, C.; Dayon, L.; Popp, J. Neuropsychiatric symptoms in cognitive decline and Alzheimer’s disease: Biomarker discovery using plasma proteomics. J. Neurol. Neurosurg. Psychiatry 2025, 96, 370–382. [Google Scholar] [CrossRef] [PubMed]
- Pontone, G.M.; Mills, K.A.; Smith, G.S. Molecular imaging in neuropsychiatry. Int. Rev. Psychiatry 2017, 29, 527–529. [Google Scholar] [CrossRef] [PubMed]
- Milham, M.P.; Craddock, R.C.; Klein, A. Clinically useful brain imaging for neuropsychiatry: How can we get there? Depress. Anxiety 2017, 34, 578–587. [Google Scholar] [CrossRef] [PubMed]
- Battaglia, S.; Servajean, P.; Friston, K.J. The paradox of the self-studying brain. Phys. Life Rev. 2025, 52, 197–204. [Google Scholar] [CrossRef]
- Dary, Z.; Lenggenhager, B.; Lagarde, S.; Medina Villalon, S.; Bartolomei, F.; Lopez, C. Neural bases of the bodily self as revealed by electrical brain stimulation: A systematic review. Hum. Brain Mapp. 2023, 44, 2936–2959. [Google Scholar] [CrossRef]
- Bradley, C.; Nydam, A.S.; Dux, P.E.; Mattingley, J.B. State-dependent effects of neural stimulation on brain function and cognition. Nat. Rev. Neurosci. 2022, 23, 459–475. [Google Scholar] [CrossRef]
- Zuurbier, K.R.; Fonseca, R.S.; Arneaud, S.L.; Wall, J.M.; Kim, J.; Tatge, L.; Otuzoglu, G.; Bali, S.; Metang, P.; Douglas, P.M. Yin Yang 1 and guanine quadruplexes protect dopaminergic neurons from cellular stress via transmissive dormancy. Nat. Commun. 2024, 15, 10592. [Google Scholar] [CrossRef]
- Gupta, R.; Advani, D.; Yadav, D.; Ambasta, R.K.; Kumar, P. Dissecting the Relationship Between Neuropsychiatric and Neurodegenerative Disorders. Mol. Neurobiol. 2023, 60, 6476–6529. [Google Scholar] [CrossRef]
- Novellino, F.; Saccà, V.; Donato, A.; Zaffino, P.; Spadea, M.F.; Vismara, M.; Arcidiacono, B.; Malara, N.; Presta, I.; Donato, G. Innate Immunity: A Common Denominator between Neurodegenerative and Neuropsychiatric Diseases. Int. J. Mol. Sci. 2020, 21, 1115. [Google Scholar] [CrossRef]
- Luppi, A.I.; Vohryzek, J.; Kringelbach, M.L.; Mediano, P.A.; Craig, M.M.; Adapa, R.; Carhart-Harris, R.L.; Roseman, L.; Pappas, I.; Peattie, A.R. Distributed harmonic patterns of structure-function dependence orchestrate human consciousness. Commun. Biol. 2023, 6, 117. [Google Scholar] [CrossRef]
- Wamsley, B.; Geschwind, D.H. Functional genomics links genetic origins to pathophysiology in neurodegenerative and neuropsychiatric disease. Curr. Opin. Genet. Dev. 2020, 65, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J. The Role of Neuropsychiatric Symptoms in Research Diagnostic Criteria for Neurodegenerative Diseases. Am. J. Geriatr. Psychiatry 2021, 29, 375–383. [Google Scholar] [CrossRef]
- Finlay, S.; Rudd, D.; McDermott, B.; Sarnyai, Z. Allostatic load and systemic comorbidities in psychiatric disorders. Psychoneuroendocrinology 2022, 140, 105726. [Google Scholar] [CrossRef]
- Du, X.; Pang, T.Y. Is Dysregulation of the HPA-Axis a Core Pathophysiology Mediating Co-Morbid Depression in Neurodegenerative Diseases? Front. Psychiatry 2015, 6, 32. [Google Scholar] [CrossRef]
- Michopoulos, V.; Vester, A.; Neigh, G. Posttraumatic stress disorder: A metabolic disorder in disguise? Exp. Neurol. 2016, 284, 220–229. [Google Scholar] [CrossRef]
- Battaglia, S.; Di Fazio, C.; Borgomaneri, S.; Avenanti, A. Cortisol imbalance and fear learning in PTSD: Therapeutic approaches to control abnormal fear responses. Curr. Neuropharmacol. 2025, 23, 835–846. [Google Scholar] [CrossRef]
- Battaglia, S.; Nazzi, C.; Thayer, J.F. Genetic differences associated with dopamine and serotonin release mediate fear-induced bradycardia in the human brain. Transl. Psychiatry 2024, 14, 24. [Google Scholar] [CrossRef]
- Algamal, M.; Pearson, A.J.; Hahn-Townsend, C.; Burca, I.; Mullan, M.; Crawford, F.; Ojo, J.O. Repeated unpredictable stress and social isolation induce chronic HPA axis dysfunction and persistent abnormal fear memory. Prog. Neuropsychopharmacol. Biol. Psychiatry 2021, 104, 110035. [Google Scholar] [CrossRef]
- Battaglia, S.; Nazzi, C.; Di Fazio, C.; Borgomaneri, S. The role of pre-supplementary motor cortex in action control with emotional stimuli: A repetitive transcranial magnetic stimulation study. Ann. N. Y. Acad. Sci. 2024, 1536, 151–166. [Google Scholar] [CrossRef]
- Veurink, G.; Perry, G.; Singh, S.K. Role of antioxidants and a nutrient rich diet in Alzheimer’s disease. Open Biol. 2020, 10, 200084. [Google Scholar] [CrossRef]
- de Lima, E.P.; Laurindo, L.F.; Catharin, V.C.S.; Direito, R.; Tanaka, M.; Jasmin Santos German, I.; Lamas, C.B.; Guiguer, E.L.; Araújo, A.C.; Fiorini, A.M.R. Polyphenols, Alkaloids, and Terpenoids Against Neurodegeneration: Evaluating the Neuroprotective Effects of Phytocompounds Through a Comprehensive Review of the Current Evidence. Metabolites 2025, 15, 124. [Google Scholar] [CrossRef] [PubMed]
- Can, B.; Sanlier, N. Alzheimer, Parkinson, dementia, and phytochemicals: Insight review. Crit. Rev. Food Sci. Nutr. 2025, 65, 1706–1728. [Google Scholar] [CrossRef] [PubMed]
- Solfrizzi, V.; Agosti, P.; Lozupone, M.; Custodero, C.; Schilardi, A.; Valiani, V.; Santamato, A.; Sardone, R.; Dibello, V.; Di Lena, L.; et al. Nutritional interventions and cognitive-related outcomes in patients with late-life cognitive disorders: A systematic review. Neurosci. Biobehav. Rev. 2018, 95, 480–498. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Battaglia, S.; Liloia, D. Navigating Neurodegeneration: Integrating Biomarkers, Neuroinflammation, and Imaging in Parkinson’s, Alzheimer’s, and Motor Neuron Disorders. Biomedicines 2025, 13, 1045. [Google Scholar] [CrossRef]
- Barbalho, S.M.; Leme Boaro, B.; da Silva Camarinha Oliveira, J.; Patočka, J.; Barbalho Lamas, C.; Tanaka, M.; Laurindo, L.F. Molecular Mechanisms Underlying Neuroinflammation Intervention with Medicinal Plants: A Critical and Narrative Review of the Current Literature. Pharmaceuticals 2025, 18, 133. [Google Scholar] [CrossRef]
- Lv, H.; Ren, W.; Zheng, Y.; Wang, L.; Lu, G.; Yi, P.; Ci, X. Tenuigenin exhibits anti-inflammatory activity via inhibiting MAPK and NF-κB and inducing Nrf2/HO-1 signaling in macrophages. Food Funct. 2016, 7, 355–363. [Google Scholar] [CrossRef]
- Puppala, E.R.; Prasad, N.; Prakash, A.N.; Abubakar, M.; Syamprasad, N.P.; Gangasani, J.K.; Naidu, V.G.M. Mesua assamica (King & Prain) kosterm. bark ethanolic extract attenuates rheumatoid arthritis via down-regulating TLR4/NF-κB/COX-2/iNOS and activation of Nrf2/HO-1 pathways: A comprehensive study on in-vitro and in-vivo models. J. Ethnopharmacol. 2024, 335, 118671. [Google Scholar] [CrossRef]
- Hanlon, P.; Butterly, E.W.; Shah, A.S.; Hannigan, L.J.; Lewsey, J.; Mair, F.S.; Kent, D.M.; Guthrie, B.; Wild, S.H.; Welton, N.J. Treatment effect modification due to comorbidity: Individual participant data meta-analyses of 120 randomised controlled trials. PLoS Med. 2023, 20, e1004176. [Google Scholar] [CrossRef]
- Simu, S.Y.; Alam, M.B.; Kim, S.Y. The Activation of Nrf2/HO-1 by 8-Epi-7-deoxyloganic Acid Attenuates Inflammatory Symptoms through the Suppression of the MAPK/NF-κB Signaling Cascade in In Vitro and In Vivo Models. Antioxidants 2022, 11, 1765. [Google Scholar] [CrossRef]
- Walker, F.R.; Pfingst, K.; Carnevali, L.; Sgoifo, A.; Nalivaiko, E. In the search for integrative biomarker of resilience to psychological stress. Neurosci. Biobehav. Rev. 2017, 74, 310–320. [Google Scholar] [CrossRef]
- de Kloet, E.R.; Joëls, M. The cortisol switch between vulnerability and resilience. Mol. Psychiatry 2024, 29, 20–34. [Google Scholar] [CrossRef] [PubMed]
- Boahen, A.; Hu, D.; Adams, M.J.; Nicholls, P.K.; Greene, W.K.; Ma, B. Bidirectional crosstalk between the peripheral nervous system and lymphoid tissues/organs. Front. Immunol. 2023, 14, 1254054. [Google Scholar] [CrossRef] [PubMed]
- Sethi, S.; Brietzke, E. Omics-based biomarkers: Application of metabolomics in neuropsychiatric disorders. Int. J. Neuropsychopharmacol. 2016, 19, pyv096. [Google Scholar] [CrossRef]
- Wesseling, H.; Mair, W.; Kumar, M.; Schlaffner, C.N.; Tang, S.; Beerepoot, P.; Fatou, B.; Guise, A.J.; Cheng, L.; Takeda, S.; et al. Tau PTM Profiles Identify Patient Heterogeneity and Stages of Alzheimer’s Disease. Cell 2020, 183, 1699–1713.e1613. [Google Scholar] [CrossRef]
- van den Berg, M.M.J.; Krauskopf, J.; Ramaekers, J.G.; Kleinjans, J.C.S.; Prickaerts, J.; Briedé, J.J. Circulating microRNAs as potential biomarkers for psychiatric and neurodegenerative disorders. Prog. Neurobiol. 2020, 185, 101732. [Google Scholar] [CrossRef]
- Ryan, R.; Booth, S.; Spathis, A.; Mollart, S.; Clow, A. Use of Salivary Diurnal Cortisol as an Outcome Measure in Randomised Controlled Trials: A Systematic Review. Ann. Behav. Med. 2016, 50, 210–236. [Google Scholar] [CrossRef]
- Fu, H.; Rong, J.; Chen, Z.; Zhou, J.; Collier, T.; Liang, S.H. Positron Emission Tomography (PET) Imaging Tracers for Serotonin Receptors. J. Med. Chem. 2022, 65, 10755–10808. [Google Scholar] [CrossRef]
- Novak, J.; Tseilikman, O.B.; Shatilov, V.A.; Zhukov, M.S.; Shevyrin, V.A.; Khismatullina, Z.R.; Fedorova, A.M.; Patrikyan, G.N.; Khaibullin, T.L.; Tseilikman, V.E. Resveratrol and Its Metabolite as Potential Allosteric Regulators of Monoamine Oxidase A Activity in the Brain and Liver Under Chronic Predator Stress. Biomedicines 2025, 13, 1196. [Google Scholar] [CrossRef]
- Shemiakova, T.S.; Efimova, E.V.; Gainetdinov, R.R. TAARs as Novel Therapeutic Targets for the Treatment of Depression: A Narrative Review of the Interconnection with Monoamines and Adult Neurogenesis. Biomedicines 2024, 12, 1263. [Google Scholar] [CrossRef]
- Gračan, R.; Blažević, S.A.; Brižić, M.; Hranilovic, D. Beyond the Brain: Perinatal Exposure of Rats to Serotonin Enhancers Induces Long-Term Changes in the Jejunum and Liver. Biomedicines 2024, 12, 357. [Google Scholar] [CrossRef]
- Nocheva, H.; Stoynev, N.; Vodenicharov, V.; Krastev, D.; Krastev, N.; Mileva, M. Cannabinoid and Serotonergic Systems: Unraveling the Pathogenetic Mechanisms of Stress-Induced Analgesia. Biomedicines 2024, 12, 235. [Google Scholar] [CrossRef] [PubMed]
- Jászberényi, M.; Thurzó, B.; Bagosi, Z.; Vécsei, L.; Tanaka, M. The Orexin/Hypocretin System, the Peptidergic Regulator of Vigilance, Orchestrates Adaptation to Stress. Biomedicines 2024, 12, 448. [Google Scholar] [CrossRef]
- Panov, G.; Dyulgerova, S.; Panova, P.; Stefanova, S. Untangling depression in schizophrenia: The role of disorganized and obsessive-compulsive symptoms and the duration of untreated psychosis. Biomedicines 2024, 12, 2646. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.-M.; Lin, H.-L.; Tzang, C.-C.; Liang, J.-A.; Hsu, T.-C.; Tzang, B.-S. Unraveling the Role of miR-200b-3p in Attention-Deficit/Hyperactivity Disorder (ADHD) and Its Therapeutic Potential in Spontaneously Hypertensive Rats (SHR). Biomedicines 2024, 12, 144. [Google Scholar] [CrossRef]
- Jarek, D.J.; Mizerka, H.; Nuszkiewicz, J.; Szewczyk-Golec, K. Evaluating p-tau217 and p-tau231 as biomarkers for early diagnosis and differentiation of Alzheimer’s Disease: A narrative review. Biomedicines 2024, 12, 786. [Google Scholar] [CrossRef]
- Figueiredo Godoy, A.C.; Frota, F.F.; Araújo, L.P.; Valenti, V.E.; Pereira, E.d.S.B.M.; Detregiachi, C.R.P.; Galhardo, C.M.; Caracio, F.C.; Haber, R.S.; Fornari Laurindo, L. Neuroinflammation and Natural Antidepressants: Balancing Fire with Flora. Biomedicines 2025, 13, 1129. [Google Scholar] [CrossRef]
- Juhász, L.; Spisák, K.; Szolnoki, B.Z.; Nászai, A.; Szabó, Á.; Rutai, A.; Tallósy, S.P.; Szabó, A.; Toldi, J.; Tanaka, M. The Power Struggle: Kynurenine Pathway Enzyme Knockouts and Brain Mitochondrial Respiration. J. Neurochem. 2025, 169, e70075. [Google Scholar] [CrossRef]
- Tanaka, M.; Szabó, Á.; Vécsei, L. Redefining roles: A paradigm shift in tryptophan–kynurenine metabolism for innovative clinical applications. Int. J. Mol. Sci. 2024, 25, 12767. [Google Scholar] [CrossRef]
- Tanaka, M.; Szatmári, I.; Vécsei, L. Quinoline Quest: Kynurenic Acid Strategies for Next-Generation Therapeutics via Rational Drug Design. Pharmaceuticals 2025, 18, 607. [Google Scholar] [CrossRef]
- de Lima, E.P.; Tanaka, M.; Lamas, C.B.; Quesada, K.; Detregiachi, C.R.P.; Araújo, A.C.; Guiguer, E.L.; Catharin, V.M.C.S.; de Castro, M.V.M.; Junior, E.B. Vascular impairment, muscle atrophy, and cognitive decline: Critical age-related conditions. Biomedicines 2024, 12, 2096. [Google Scholar] [CrossRef]
- Wang, R.; Li, B.; Lam, S.M.; Shui, G. Integration of lipidomics and metabolomics for in-depth understanding of cellular mechanism and disease progression. J. Genet. Genomics 2020, 47, 69–83. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Villanueva, N.; Bittar, T.; Arsenault, E.; Labonté, B.; Huan, T. Parallel metabolomics and lipidomics enables the comprehensive study of mouse brain regional metabolite and lipid patterns. Anal. Chim. Acta 2020, 1136, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zeng, Y.; Song, J.; Zhu, M.; Zhu, G.; Cai, H.; Chen, C.; Jin, M.; Song, Y. Perturbation of arachidonic acid and glycerolipid metabolism promoted particulate matter-induced inflammatory responses in human bronchial epithelial cells. Ecotoxicol. Environ. Saf. 2023, 256, 114839. [Google Scholar] [CrossRef]
- Giovacchini, G.; Chang, M.C.; Channing, M.A.; Toczek, M.; Mason, A.; Bokde, A.L.; Connolly, C.; Vuong, B.-K.; Ma, Y.; Der, M.G. Brain incorporation of [11C] arachidonic acid in young healthy humans measured with positron emission tomography. J. Cereb. Blood Flow. Metab. 2002, 22, 1453–1462. [Google Scholar] [CrossRef]
- Zhuo, C.; Hou, W.; Tian, H.; Wang, L.; Li, R. Lipidomics of the brain, retina, and biofluids: From the biological landscape to potential clinical application in schizophrenia. Transl. Psychiatry 2020, 10, 391. [Google Scholar] [CrossRef]
- Arici, M.K.; Tuncbag, N. Unveiling hidden connections in omics data via pyPARAGON: An integrative hybrid approach for disease network construction. Brief. Bioinform. 2024, 25, bbae399. [Google Scholar] [CrossRef]
- Wozniak, J.M.; Li, W.; Governa, P.; Chen, L.Y.; Jadhav, A.; Dongre, A.; Forli, S.; Parker, C.G. Enhanced mapping of small-molecule binding sites in cells. Nat. Chem. Biol. 2024, 20, 823–834. [Google Scholar] [CrossRef]
- Evangelista, L.; Zattoni, F.; Cassarino, G.; Artioli, P.; Cecchin, D.; Dal Moro, F.; Zucchetta, P. PET/MRI in prostate cancer: A systematic review and meta-analysis. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 859–873. [Google Scholar] [CrossRef]
- Gaca-Tabaszewska, M.; Bogusiewicz, J.; Bojko, B. Metabolomic and lipidomic profiling of gliomas—A new direction in personalized therapies. Cancers 2022, 14, 5041. [Google Scholar] [CrossRef]
- Piazza, I.; Beaton, N.; Bruderer, R.; Knobloch, T.; Barbisan, C.; Chandat, L.; Sudau, A.; Siepe, I.; Rinner, O.; de Souza, N.; et al. A machine learning-based chemoproteomic approach to identify drug targets and binding sites in complex proteomes. Nat. Commun. 2020, 11, 4200. [Google Scholar] [CrossRef]
- Karshikoff, B. Why PNI scientists need to engage in exploratory hypothesis-generating biomarker studies. Brain Behav. Immun. Health 2024, 42, 100904. [Google Scholar] [CrossRef] [PubMed]
- Young, A.L.; Oxtoby, N.P.; Ourselin, S.; Schott, J.M.; Alexander, D.C. A simulation system for biomarker evolution in neurodegenerative disease. Med. Image Anal. 2015, 26, 47–56. [Google Scholar] [CrossRef] [PubMed]
- van der Veen, R.; Bonapersona, V.; Joëls, M. The relevance of a rodent cohort in the Consortium on Individual Development. Dev. Cogn. Neurosci. 2020, 45, 100846. [Google Scholar] [CrossRef]
- Fahlström, A.; Yu, Q.; Ulfhake, B. Behavioral changes in aging female C57BL/6 mice. Neurobiol. Aging 2011, 32, 1868–1880. [Google Scholar] [CrossRef]
- Xie, L.; Das, S.R.; Li, Y.; Wisse, L.E.M.; McGrew, E.; Lyu, X.; DiCalogero, M.; Shah, U.; Ilesanmi, A.; Denning, A.E.; et al. A multi-cohort study of longitudinal and cross-sectional Alzheimer’s disease biomarkers in cognitively unimpaired older adults. Alzheimers Dement. 2025, 21, e14492. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, S.; Zhou, Z.; Qin, H.; Zhang, Y.; Zhang, G.; Ma, H.; Han, X.; Liu, H.; Liu, Z. Integrated multi-omics analysis revealed the molecular networks and potential targets of cellular senescence in Alzheimer’s disease. Hum. Mol. Genet. 2025, 34, 381–391. [Google Scholar] [CrossRef]
- Gupta, H.; Suk, K.T.; Kim, D.J. Gut Microbiota at the Intersection of Alcohol, Brain, and the Liver. J. Clin. Med. 2021, 10, 541. [Google Scholar] [CrossRef]
- Yan, M.; Man, S.; Sun, B.; Ma, L.; Guo, L.; Huang, L.; Gao, W. Gut liver brain axis in diseases: The implications for therapeutic interventions. Signal Transduct. Target. Ther. 2023, 8, 443. [Google Scholar] [CrossRef]
- He, X.; Hu, M.; Xu, Y.; Xia, F.; Tan, Y.; Wang, Y.; Xiang, H.; Wu, H.; Ji, T.; Xu, Q.; et al. The gut-brain axis underlying hepatic encephalopathy in liver cirrhosis. Nat. Med. 2025, 31, 627–638. [Google Scholar] [CrossRef]
- Bauer, E.E.; Shoeman, A.; Buhr, T.J.; Daniels, K.M.; Lyte, M.; Clark, P.J. Voluntary binge-patterned alcohol drinking and sex-specific influences on monoamine-related neurochemical signatures in the mouse gut and brain. Alcohol. Clin. Exp. Res. 2021, 45, 996–1012. [Google Scholar] [CrossRef]
- Mohajeri, M.H.; La Fata, G.; Steinert, R.E.; Weber, P. Relationship between the gut microbiome and brain function. Nutr. Rev. 2018, 76, 481–496. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M. From Serendipity to Precision: Integrating AI, Multi-Omics, and Human-Specific Models for Personalized Neuropsychiatric Care. Biomedicines 2025, 13, 167. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, M.; Qassem, M.; Kyriacou, P.A. Wearable, Environmental, and Smartphone-Based Passive Sensing for Mental Health Monitoring. Front. Digit. Health 2021, 3, 662811. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.G. Digital phenotyping approaches and mobile devices enhance CNS biopharmaceutical research and development. Neuropsychopharmacology 2018, 43, 2504–2505. [Google Scholar] [CrossRef]
- Psaltos, D.; Chappie, K.; Karahanoglu, F.I.; Chasse, R.; Demanuele, C.; Kelekar, A.; Zhang, H.; Marquez, V.; Kangarloo, T.; Patel, S.; et al. Multimodal Wearable Sensors to Measure Gait and Voice. Digit. Biomark. 2019, 3, 133–144. [Google Scholar] [CrossRef]
- Chen, S.; Lach, J.; Lo, B.; Yang, G.Z. Toward Pervasive Gait Analysis With Wearable Sensors: A Systematic Review. IEEE J. Biomed. Health Inf. 2016, 20, 1521–1537. [Google Scholar] [CrossRef]
- Tanaka, M. Beyond the boundaries: Transitioning from categorical to dimensional paradigms in mental health diagnostics. Adv. Clin. Exp. Med. 2024, 33, 1295–1301. [Google Scholar] [CrossRef]
- Kotov, R.; Krueger, R.F.; Watson, D. A paradigm shift in psychiatric classification: The Hierarchical Taxonomy Of Psychopathology (HiTOP). World Psychiatry 2018, 17, 24–25. [Google Scholar] [CrossRef]
- Cuthbert, B.N. The RDoC framework: Facilitating transition from ICD/DSM to dimensional approaches that integrate neuroscience and psychopathology. World Psychiatry 2014, 13, 28–35. [Google Scholar] [CrossRef]
- Lilienfeld, S.O.; Treadway, M.T. Clashing Diagnostic Approaches: DSM-ICD Versus RDoC. Annu. Rev. Clin. Psychol. 2016, 12, 435–463. [Google Scholar] [CrossRef]
- McGorry, P.D.; Hickie, I.B.; Kotov, R.; Schmaal, L.; Wood, S.J.; Allan, S.M.; Altınbaş, K.; Boyce, N.; Bringmann, L.F.; Caspi, A.; et al. New diagnosis in psychiatry: Beyond heuristics. Psychol. Med. 2025, 55, e26. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Zhao, X.; Alim, M.; Brudno, M.; Bhat, M. Artificial intelligence applied to ‘omics data in liver disease: Towards a personalised approach for diagnosis, prognosis and treatment. Gut 2025, 74, 295–311. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Xu, C.; Bai, Y.; Liu, A.; Gong, Y.; Wang, Y.P.; Deng, H.W. Autosurv: Interpretable deep learning framework for cancer survival analysis incorporating clinical and multi-omics data. NPJ Precis. Oncol. 2024, 8, 4. [Google Scholar] [CrossRef]
- Paolini, A.; Baldassarre, A.; Bruno, S.P.; Felli, C.; Muzi, C.; Ahmadi Badi, S.; Siadat, S.D.; Sarshar, M.; Masotti, A. Improving the Diagnostic Potential of Extracellular miRNAs Coupled to Multiomics Data by Exploiting the Power of Artificial Intelligence. Front. Microbiol. 2022, 13, 888414. [Google Scholar] [CrossRef]
- Danek, B.P.; Makarious, M.B.; Dadu, A.; Vitale, D.; Lee, P.S.; Singleton, A.B.; Nalls, M.A.; Sun, J.; Faghri, F. Federated learning for multi-omics: A performance evaluation in Parkinson’s disease. Patterns 2024, 5, 100945. [Google Scholar] [CrossRef]
- Westerlund, A.M.; Hawe, J.S.; Heinig, M.; Schunkert, H. Risk Prediction of Cardiovascular Events by Exploration of Molecular Data with Explainable Artificial Intelligence. Int. J. Mol. Sci. 2021, 22, 10291. [Google Scholar] [CrossRef]
- Gheisari, M.; Najafabadi, H.E.; Alzubi, J.A.; Gao, J.; Wang, G.; Abbasi, A.A.; Castiglione, A. OBPP: An ontology-based framework for privacy-preserving in IoT-based smart city. Future Gener. Comput. Syst. 2021, 123, 1–13. [Google Scholar] [CrossRef]
- Yan, C.; Yan, H.; Liang, W.; Yin, M.; Luo, H.; Luo, J. DP-SSLoRA: A privacy-preserving medical classification model combining differential privacy with self-supervised low-rank adaptation. Comput. Biol. Med. 2024, 179, 108792. [Google Scholar] [CrossRef]
- Sarmadi, A.; Fu, H.; Krishnamurthy, P.; Garg, S.; Khorrami, F. Privacy-Preserving Collaborative Learning Through Feature Extraction. IEEE Trans. Dependable Secur. Comput. 2022, 21, 486–498. [Google Scholar] [CrossRef]
- Chen, M.; Guo, K.; Ding, Y.; Liu, W.; Yu, R.; Zhang, L.; Hu, Y.; Wu, Y.; Zhang, R. Vagus nerve stimulation modulating the directed brain network of patients with drug-resistant epilepsy. Biomed. Signal Process. Control 2024, 95, 106361. [Google Scholar] [CrossRef]
- Ryvlin, P.; Rheims, S.; Hirsch, L.J.; Sokolov, A.; Jehi, L. Neuromodulation in epilepsy: State-of-the-art approved therapies. Lancet Neurol. 2021, 20, 1038–1047. [Google Scholar] [CrossRef] [PubMed]
- Gouveia, F.V.; Warsi, N.M.; Suresh, H.; Matin, R.; Ibrahim, G.M. Neurostimulation treatments for epilepsy: Deep brain stimulation, responsive neurostimulation and vagus nerve stimulation. Neurotherapeutics 2024, 21, e00308. [Google Scholar] [CrossRef] [PubMed]
- McVey Neufeld, K.A.; Bienenstock, J.; Bharwani, A.; Champagne-Jorgensen, K.; Mao, Y.; West, C.; Liu, Y.; Surette, M.G.; Kunze, W.; Forsythe, P. Oral selective serotonin reuptake inhibitors activate vagus nerve dependent gut-brain signalling. Sci. Rep. 2019, 9, 14290. [Google Scholar] [CrossRef]
- Hwang, Y.K.; Oh, J.S. Interaction of the Vagus Nerve and Serotonin in the Gut-Brain Axis. Int. J. Mol. Sci. 2025, 26, 1160. [Google Scholar] [CrossRef]
- Kaizer, A.M.; Hobbs, B.P.; Koopmeiners, J.S. A multi-source adaptive platform design for testing sequential combinatorial therapeutic strategies. Biometrics 2018, 74, 1082–1094. [Google Scholar] [CrossRef]
- Coalition, A.P.T. Adaptive platform trials: Definition, design, conduct and reporting considerations. Nat. Rev. Drug Discov. 2019, 18, 797–807. [Google Scholar] [CrossRef]
- Li, J.; Chen, L.; Sun, H.; Zhan, M.; Laurent, R.; Mignani, S.; Majoral, J.P.; Shen, M.; Shi, X. Cationic phosphorus dendron nanomicelles deliver microRNA mimics and microRNA inhibitors for enhanced anti-inflammatory therapy of acute lung injury. Biomater. Sci. 2023, 11, 1530–1539. [Google Scholar] [CrossRef]
- Clarke, N.W.; James, N.D. How to Compose Platform Trials. Eur. Urol. Focus. 2023, 9, 715–718. [Google Scholar] [CrossRef]
- Misra, B.B.; Langefeld, C.D.; Olivier, M.; Cox, L.A. Integrated Omics: Tools, Advances, and Future Approaches. J. Mol. Endocrinol. 2018, 62, R21–R45. [Google Scholar] [CrossRef]
- Chen, T.; Abadi, A.; Cao, K.; Tyagi, S. multiomics: A user-friendly multi-omics data harmonisation R pipeline. F1000Research 2021, 10, 538. [Google Scholar] [CrossRef]
- Santra, S.; Kukreja, P.; Saxena, K.; Gandhi, S.; Singh, O.V. Navigating regulatory and policy challenges for AI enabled combination devices. Front. Med. Technol. 2024, 6, 1473350. [Google Scholar] [CrossRef] [PubMed]
- Exley, A.R.; Rantell, K.; McBlane, J. Clinical development of cell therapies for cancer: The regulators’ perspective. Eur. J. Cancer 2020, 138, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Cruz Rivera, S.; Moher, D.; Calvert, M.J.; Denniston, A.K. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: The CONSORT-AI extension. Lancet Digit. Health 2020, 2, e537–e548. [Google Scholar] [CrossRef] [PubMed]
- Ehidiamen, A.; Oladapo, O. Enhancing ethical standards in clinical trials: A deep dive into regulatory compliance, informed consent, and participant rights protection frameworks. World J. Biol. Pharm. Health Sci. 2024, 20, 309–320. [Google Scholar] [CrossRef]
Group/Topic | Shared Idea | Paper | Ref. |
---|---|---|---|
Monoaminergic Targets for Mood Regulation | MAO-A or TAARs rebalance monoamines | Resveratrol as MAO-A allosteric modulator | [38] |
TAARs as novel antidepressant targets | [39] | ||
Serotonergic and Peripheral Stress Systems | 5-HT, CB1, orexin in stress and organs | Perinatal 5-HT enhancers alter gut–liver axis | [40] |
CB1–5-HT1A in stress-induced analgesia | [41] | ||
Orexin system in stress vigilance | [42] | ||
Symptom Dynamics in Brain Disorders | Clinical/microRNA modulators of symptoms | OCD symptoms worsen depression in schizophrenia | [43] |
miR-200b-3p antagonism reduces ADHD traits | [44] | ||
Molecular Biomarkers for Neurodegeneration | Next-gen fluid markers for early AD diagnosis | Plasma p-tau217/231 differentiation of AD | [45] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanaka, M.; Battaglia, S. Dualistic Dynamics in Neuropsychiatry: From Monoaminergic Modulators to Multiscale Biomarker Maps. Biomedicines 2025, 13, 1456. https://doi.org/10.3390/biomedicines13061456
Tanaka M, Battaglia S. Dualistic Dynamics in Neuropsychiatry: From Monoaminergic Modulators to Multiscale Biomarker Maps. Biomedicines. 2025; 13(6):1456. https://doi.org/10.3390/biomedicines13061456
Chicago/Turabian StyleTanaka, Masaru, and Simone Battaglia. 2025. "Dualistic Dynamics in Neuropsychiatry: From Monoaminergic Modulators to Multiscale Biomarker Maps" Biomedicines 13, no. 6: 1456. https://doi.org/10.3390/biomedicines13061456
APA StyleTanaka, M., & Battaglia, S. (2025). Dualistic Dynamics in Neuropsychiatry: From Monoaminergic Modulators to Multiscale Biomarker Maps. Biomedicines, 13(6), 1456. https://doi.org/10.3390/biomedicines13061456