Animal Models of Spinal Cord Injury
Abstract
1. Introduction
2. A Brief History of SCI Methods: Basic Approaches to Developing Animal Models
2.1. Spinal Cord Contusion
2.2. Spinal Cord Compression
2.3. Spinal Cord Transection
2.4. Spinal Cord Photochemical Damage
2.5. Spinal Cord Ischemic Injury
2.6. Spinal Cord Excitotoxic Injury
3. Mammalian and Non-Mammalian Animal Models of Spinal Cord Injury
3.1. Amphibia Models of Spinal Cord Injury
3.2. Fish Models of Spinal Cord Injury
3.3. Lamprey Models of Spinal Cord Injury
3.4. Rat Models of Spinal Cord Injury
3.4.1. Rat Spinal Cord Contusion Models
3.4.2. Rat Spinal Cord Compression Models
3.4.3. Rat Models of Spinal Cord Transection
3.5. Mice Models of Spinal Cord Injury
3.6. Rabbits Models of Spinal Cord Injury
3.7. Dog Models of Spinal Cord Injury
3.8. Cat Models of Spinal Cord Injury
3.9. Pig Models of Spinal Cord Injury
3.10. Sheep Models of Spinal Cord Injury
3.11. Primate Models of Spinal Cord Injury
4. Anatomical and Functional Features of the Spinal Cord of Different Animal Species
4.1. Rats and Mice
4.2. Mammalian Versus Humans
4.2.1. Time of Development of Pathological Changes in the Spinal Cord After Injury
4.2.2. Cellular Responses in the Damaged Spinal Cord Area
4.2.3. Anatomical Features of the Spinal Cord
4.3. Differences Between Animal and Human Locomotion
5. Methods for Assessing Functional Recovery After Spinal Cord Injury: Behavioural and Functional Tests, Kinematics, Neurophysiology
5.1. Rat Tests
5.2. Cat Tests
5.3. Rabbit Tests
5.4. Lamprey Tests
5.5. Danio Rerio Tests
6. Criteria for Selecting an Animal Model of Spinal Cord Injury to Assess Motion Recovery, Efficacy of Pharmacotherapy, and Regeneration
7. Conclusions and Perspectives
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BBB | Blood–brain barrier |
BBB | Basso, Beattie, and Bresnahan scale |
BMS | Basso Mouse Scale |
CNS | Central nervous system |
CPG | Central pattern generator |
CST | Corticospinal tract |
DCT | Dorsal corticospinal |
DFA | Detrended fluctuation analysis |
EEG | Electroencephalography |
EMG | Electromyography |
EP | Evoked potentials |
ES | Epidural stimulation |
LCT | Lateral corticospinal |
LVDT | Linear variable differential transformer |
MEPs | Motor evoked potentials |
MR | Magnetic resonance |
MRI | Magnetic resonance imaging |
NHPs | Non-human primates |
RbT | Rubrospinal |
RtT | Reticulospinal |
SC | Spinal cord |
SCI | Spinal cord injury |
SSEPs | Somatosensory evoked potentials |
References
- WHO Spinal Cord Injury. 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/spinal-cord-injury (accessed on 15 April 2025).
- National Spinal Cord Injury Statistical Center. Traumatic Spinal Cord Injury Facts and Figures at a Glance; University of Alabama at Birmingham: Birmingham, AL, USA, 2024; Available online: https://sci-bc.ca/wp-content/uploads/2024/05/us-sci-facts-and-stats-1.pdf (accessed on 15 May 2024).
- Priebe, M.M.; Chiodo, A.E.; Scelza, W.M.; Kirshblum, S.C.; Wuermser, L.A.; Ho, C.H. Spinal cord injury medicine. 6. Economic and societal issues in spinal cord injury. Arch. Phys. Med. Rehabil. 2007, 88, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, E.; Pallini, R.; Marchese, E.; Tulomonti, G. Experimental studies on spinal cord injuries in the last fifteen years. Neurol. Res. 1991, 13, 138–159. [Google Scholar] [CrossRef]
- Cheng, H.; Cao, Y.; Olson, L. Spinal cord repair in adult paraplegic rats: Partial restoration of hind limb function. Science 1996, 273, 510–513. [Google Scholar] [CrossRef] [PubMed]
- Ridlen, R.; McGrath, K.; Gorrie, C.A. Animal models of compression spinal cord injury. J. Neurosci. Res. 2022, 100, 2201–2212. [Google Scholar] [CrossRef]
- Musienko, P.; van den Brand, R.; Maerzendorfer, O.; Larmagnac, A.; Courtine, G. Combinatory electrical and pharmacological neuroprosthetic interfaces to regain motor function after spinal cord injury. IEEE Trans. Biomed. Eng. 2009, 56 Pt 2, 2707–2711. [Google Scholar] [CrossRef]
- Musienko, P.E.; Zelenin, P.V.; Orlovsky, G.N.; Deliagina, T.G. Facilitation of postural limb reflexes with epidural stimulation in spinal rabbits. J. Neurophysiol. 2010, 103, 1080–1092. [Google Scholar] [CrossRef] [PubMed]
- Musienko, P.E. Spinal-Stem Mechanisms of Integrative Control of Posture and Locomotion. Doctoral Dissertation, The Pavlov Institute of Physiology, Russian Academy of Sciences, Saint-Petersburg, Russia, 2014. Available online: https://elibrary.ru/item.asp?id=30400448 (accessed on 15 April 2025). (In Russian).
- Jakeman, L.B.; Guan, Z.; Wei, P.; Ponnappan, R.; Dzwonczyk, R.; Popovich, P.G.; Stokes, B.T. Traumatic spinal cord injury produced by controlled contusion in mouse. J. Neurotrauma 2000, 17, 299–319. [Google Scholar] [CrossRef]
- Kwon, B.K.; Oxland, T.R.; Tetzlaff, W. Animal Models Used in Spinal Cord Regeneration Research. Spine 2002, 27, 1504–1510. [Google Scholar] [CrossRef]
- Schlesinger, E.B. Alfred Reginald Allen: The mythic career of a gifted neuroscientist. Surg. Neurol. 1991, 36, 229–233. [Google Scholar] [CrossRef]
- Allen, A.R. Surgery of experimental lesion of spinal cord equivalent to crush injury of fracture dislocation of spinal column. JAMA 1911, 57, 878–880. [Google Scholar] [CrossRef]
- Allen, A.R. Remarks on histopathological changes in spinal cord due to impact an experimental study. J. Nerv. Ment. Dis. 1914, 41, 141–147. [Google Scholar] [CrossRef]
- Anderson, T.E. A controlled pneumatic technique for experimental spinal cord contusion. J. Neurosci. Methods 1982, 6, 327–333. [Google Scholar] [CrossRef]
- Vijayaprakash, K.; Sridharan, N. An experimental spinal cord injury rat model using customized impact device: A cost-effective approach. J. Pharmacol. Pharmacother. 2013, 4, 211–213. [Google Scholar] [CrossRef]
- Sharif-Alhoseini, M.; Rahimi-Movaghar, V. Animal Models in Traumatic Spinal Cord Injury. In Topics in Paraplegia; IntechOpen: London, UK, 2014. [Google Scholar] [CrossRef]
- Sharif-Alhoseini, M.; Khormali, M.; Rezaei, M.; Safdarian, M.; Hajighadery, A.; Khalatbari, M.M.; Safdarian, M.; Meknatkhah, S.; Rezvan, M.; Chalangari, M.; et al. Animal models of spinal cord injury: A systematic review. Spinal Cord 2017, 55, 714–721. [Google Scholar] [CrossRef]
- Ducker, T.B.; Klndt, G.W.; Kempe, L. Pathological findings in acute experimental spinal cord trauma. J. Neurosurg. 1971, 35, 700–708. [Google Scholar] [CrossRef] [PubMed]
- Dohrmann, G.J.; Panjabi, M.M. ‘Standardized’ spinal cord trauma biomechanical parameters and lesion volume. Surg. Neurol. 1976, 6, 263–267. [Google Scholar]
- Amako, T. Surgery of spinal injuries due to impact: II experimental study. J. Jpn. Surg. Soc. 1936, 37, 1843–1874. [Google Scholar]
- Bresnahan, J.C.; Beattie, M.S.; Todd, F.D., III; Noyes, D.H. A behavioral and anatomical analysis of spinal cord injury produced by a feedback-controlled impaction device. Exp. Neurol. 1987, 95, 570. [Google Scholar] [CrossRef]
- Gruner, J.A. A Monitored Contusion Model of Spinal Cord Injury in the Rat. J. Neurotrauma 1992, 9, 123–128. [Google Scholar] [CrossRef]
- Agrawal, G.; Kerr, C.; Thakor, N.V.; All, A.H. Characterization of graded MASCIS contusion spinal cord injury using somatosensory evoked potentials. Spine 2010, 35, 1122. [Google Scholar] [CrossRef]
- Scheff, S.W.; Rabchevsky, A.G.; Fugaccia, I.; Main, J.A.; Lumpp, J.E., Jr. Experimental modeling of spinal cord injury: Characterization of a force-defined injury device. J. Neurotrauma 2003, 20, 179–193. [Google Scholar] [CrossRef] [PubMed]
- Scheff, S.; Roberts, K.N. Infinite Horizon Spinal Cord Contusion Model. In Animal Models of Acute Neurological Injuries; Humana Press: Totowa, NJ, USA, 2009; pp. 423–432. [Google Scholar] [CrossRef]
- You, J.W.; Sohn, H.M.; Park, S.H. Diminution of secondary injury after administration of pharmacologic agents in acute spinal cord injury rat model-comparison of statins, erythropoietin and polyethylene glycol. J. Korean Soc. Spine Surg. 2012, 19, 77–84. [Google Scholar] [CrossRef]
- Walker, M.J.; Walker, C.L.; Zhang, Y.P.; Shields, L.B.; Shields, C.B.; Xu, X.M. A Novel Vertebral Stabilization Method for Producing Contusive Spinal Cord Injury. J. Vis. Exp. JoVE 2015, 95, 50149. [Google Scholar] [CrossRef]
- Tarlov, I.M.; Klinger, H.; Vitale, S. Spinal cord compression studies: I. experimental techniques to produce acute and gradual compression. AMA Arch. Neurol. Psychiatry 1953, 70, 813–819. [Google Scholar] [CrossRef] [PubMed]
- Tarlov, I.M. Spinal Cord Compression: Mechanism of Paralysis and Treatment; Charles C Thomas: Springfield, IL, USA, 1957; p. 147. [Google Scholar]
- Martin, S.H.; Bloedel, J.R. Evaluation of experimental spinal cord injury using cortical evoked potentials. J. Neurosurg. 1973, 39, 75–81. [Google Scholar] [CrossRef]
- Hansebout, R.R.; Kuchner, E.F.; Romero-Sierra, C. Effects of local hypothermia and of steroids upon recovery from experimental spinal cord compression injury. Surg. Neurol. 1975, 4, 531–536. [Google Scholar] [PubMed]
- Eidelberg, E.; Staten, E.; Watkins, J.; McGraw, D.; McFadden, C. A model of spinal cord injury. Surg. Neurol. 1976, 6, 35. [Google Scholar]
- Rivlin, A.S.; Tator, C.H. Effect of duration of acute spinal cord compression in a new acute cord injury model in the rat. Surg. Neurol. 1978, 10, 38–43. [Google Scholar]
- Lanza, M.; Campolo, M.; Casili, G.; Filippone, A.; Paterniti, I.; Cuzzocrea, S.; Esposito, E. Sodium butyrate exerts neuroprotective effects in spinal cord injury. Mol. Neurobiol. 2018, 56, 3937–3947. [Google Scholar] [CrossRef]
- Sajad, F.; Amir, K.; Cyrus, J.; Fatemeh, A.; Sana, P.; Mohammad, H.F.; Mohsen, R.-P.; Ehsan, M.-N.; Haroon, K. Intrathecal administration of melatonin ameliorates the neuroinflammation-mediated sensory and motor dysfunction in a rat model of compression spinal cord injury. Curr. Mol. Pharmacol. 2021, 14, 646–657. [Google Scholar] [CrossRef]
- Khan, M.; Griebel, R. Acute spinal cord injury in the rat: Comparison of three experimental techniques. Can. J. Neurol. Sci. 1983, 1, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Blight, A.R. Morphometric analysis of a model of spinal cord injury in guinea pigs, with behavioral evidence of delayed secondary pathology. J. Neurol. Sci. 1991, 103, 156–171. [Google Scholar] [CrossRef]
- Dimar, J.R.I.; Glassman, S.D.; Raque, G.H.; Zhang, Y.P.; Shields, C.B. The Influence of Spinal Canal Narrowing and Timing of Decompression on Neurologic Recovery After Spinal Cord Contusion in a Rat Model. Spine 1999, 24, 1623. [Google Scholar] [CrossRef]
- Plemel, J.R.; Duncan, G.; Chen, K.W.K.; Shannon, C.; Park, S.; Sparling, J.S.; Tetzlaff, W. A graded forceps crush spinal cord injury model in mice. J. Neurotrauma 2008, 25, 350–370. [Google Scholar] [CrossRef]
- Batchelor, P.E.; Kerr, N.F.; Gatt, A.M.; Aleksoska, E.; Cox, S.F.; Ghasem-Zadeh, A.; Wills, T.E.; Howells, D.W. Hypothermia prior to decompression: Buying time for treatment of acute spinal cord injury. J. Neurotrauma 2010, 27, 1357–1368. [Google Scholar] [CrossRef] [PubMed]
- Schiaveto-de-Souza, A.; Da-Silva, C.A.; Defino, H.L.A.; Bel, E.A.D. Effect of melatonin on the functional recovery from experimental traumatic compression of the spinal cord. Braz. J. Med. Biol. Res. 2013, 46, 348–358. [Google Scholar] [CrossRef] [PubMed]
- Kubota, K.; Saiwai, H.; Kumamaru, H.; Kobayakawa, K.; Maeda, T.; Matsumoto, Y.; Harimaya, K.; Iwamoto, Y.; Okada, S. Neurological recovery is impaired by concurrent but not by asymptomatic pre-existing spinal cord compression after traumatic spinal cord injury. Spine 2012, 37, 1448–1455. [Google Scholar] [CrossRef]
- Xu, P.; Gong, W.M.; Li, Y.; Zhang, T.; Zhang, K.; Yin, D.Z.; Jia, T.H. Destructive pathological changes in the rat spinal corddue to chronic mechanical compression. Laboratory investigation. J. Neurosurg. Spine 2008, 8, 279–285. [Google Scholar] [CrossRef]
- Lee, J.; Satkunendrarajah, K.; Fehlings, M.G. Development and characterization of a novel rat model of cervical spondylotic myelopathy: The impact of chronic cord compression on clinical, neuroanatomical, and neurophysiological outcomes. J. Neurotrauma 2012, 29, 112–127. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, J.; Xu, B.; Yang, H.; Zhu, Q. A model of acute central cervical spinal cord injury syndrome combined with chronic injury in goats. Eur. Spine J. 2016, 26, 56–63. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, L.-H.; Fu, Y.-M.; Li, Z.-R.; Liu, J.-H.; Peng, J.; Liu, B.; Tan, P.-F. Establishment of a rat model of chronic thoracolumbar cord compression with a flat plastic screw. Neural Regen. Res. 2016, 11, 963–970. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.D.; Chen, Y.; Zhou, Z.G.; Yang, S.X.; Zhong, C.; Li, Z.Z. A progressive compression model of thoracic spinal cord injury in mice: Function assessment and pathological changes in spinal cord. Neural Regen. Res. 2017, 12, 1365–1374. [Google Scholar] [CrossRef] [PubMed]
- Xin, S.; Xing-Zhen, L.; Jia, W.; Hai-Rong, T.; Tong, Z.; Wen-Jie, J.; Kang-Ping, S. Changes in neurological and pathological outcomes in a modified rat spinal cord injury model with closed canal. Neural Regen. Res. 2020, 15, 697–704. [Google Scholar] [CrossRef]
- da Costa, E.S.A.; Carvalho, A.L.; Martinez, A.M.B.; De-Ary-Pires, B.; Pires-Neto, M.A.; de Ary-Pires, R. Strapping the spinal cord: An innovative experimental model of CNS injury in rats. J. Neurosci. Methods 2008, 170, 130–139. [Google Scholar] [CrossRef]
- Cheriyan, T.; Ryan, D.J.; Weinreb, J.H.; Cheriyan, J.; Paul, J.C.; Lafage, V.; Kirsch, T.; Errico, T.J. Spinal cord injury models: A review. Spinal Cord 2014, 52, 588–595. [Google Scholar] [CrossRef]
- Freitas, P.D.; Yandulskaya, A.S.; Monaghan, J.R. Spinal cord regeneration in amphibians: A historical perspective. Dev. Neurobiol. 2019, 79, 437–452. [Google Scholar] [CrossRef]
- Masius, M.; Vanlair, M. Recherches expérimentales sur la régénération anatomique et fonctionnelle de la moelle épinière. Mémoires Couronnés Et Autres Mémoires 1870, 21, 1–60. [Google Scholar] [CrossRef]
- Piatt, J. Regeneration of the spinal cord in the salamander. J. Exp. Zool. 1955, 129, 177–207. [Google Scholar] [CrossRef]
- Kirsche, W. Experimentelle Untersuchungen über die Regeneration des durchtrennten Rückenmarkes von Amblystoma mexicanum. Z. Mikrosk-Anat. Forsch. 1956, 62, 521–586. [Google Scholar]
- Koppányi, T.; Weiss, P. Functionelle Regeneration des Rückenmarks bei Anamniern. Anz. Akad. Wiss. Wien Math.-Naturw. Kl. 1922, 59, 206. [Google Scholar]
- Pearcy, J.F.; Koppányi, T. A further note on regeneration of the cut spinal cord in fish. Proc. Soc. Exp. Biol. Med. 1924, 22, 17–19. [Google Scholar] [CrossRef]
- Sirbulescu, R.F.; Zupanc, G.K.H. Spinal cord repair in regeneration-competent vertebrates: Adult teleost fish as a model system. Brain Res. Rev. 2011, 67, 73–93. [Google Scholar] [CrossRef] [PubMed]
- Hooker, D. Physiological reactions of goldfish with severed spinal cord. Proc. Soc. Exp. Biol. Med. 1930, 28, 89–90. [Google Scholar] [CrossRef]
- Keil, J.H. Functional spinal cord regeneration in adult rainbow-fish. Proc. Soc. Exp. Biol. Med. 1940, 43, 175–177. [Google Scholar] [CrossRef]
- Kirsche, W. Die regenerativen Vorgänge am Rückenmark erwachsener Teleostier nach operativer Kontinuitätstrennung. Z. Mikrosk-Anat. Forsch. 1950, 56, 190–195. [Google Scholar]
- Tuge, H.; Hanzawa, S. Physiological and morphological regeneration of the sectioned spinal cord in adult teleosts. J. Comp. Neurol. 1937, 67, 343–365. [Google Scholar] [CrossRef]
- Clemente, C.D. Regeneration in the vertebrate central nervous system. Int. Rev. Neurobiol. 1964, 6, 257–301. [Google Scholar]
- Becker, T.; Bernhardt, R.R.; Reinhard, E.; Wullimann, M.F.; Tongiorgi, E.; Schachner, M. Readiness of zebrafish brain neurons to regenerate a spinal axon correlates with differential expression of specific cell recognition molecules. J. Neurosci. 1998, 18, 5789–5803. [Google Scholar] [CrossRef]
- Becker, T.; Becker, C.G. Regenerating descending axons preferentially reroute to the gray matter in the presence of a general macrophage/microglial reaction caudal to a spinal transection in adult zebrafish. J. Comp. Neurol. 2001, 433, 131–147. [Google Scholar] [CrossRef]
- van Raamsdonk, W.; Maslam, S.; de Jong, D.H.; Smit-Onel, M.J.; Velzing, E. Long term effects of spinal cord transection in zebrafish: Swimming performances, and metabolic properties of the neuromuscular system. Acta Histochem. 1998, 100, 117–131. [Google Scholar] [CrossRef]
- Fang, P.; Lin, J.F.; Pan, H.C.; Shen, Y.Q.; Schachner, M. A surgery protocol for adult zebrafish spinal cord injury. J. Genet. Genom. 2012, 39, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Brown, T.G. The intrinsic factors in the act of progression in the mammal. Proc. R. Soc. Lond. B Biol. Sci. 1911, 84, 308–319. [Google Scholar]
- Brown, T.G. The factors in rhythmic activity of the nervous system. Proc. R. Soc. Lond. B Biol. Sci. 1912, 85, 278–289. [Google Scholar]
- Sledge, J.; Graham, W.A.; Westmoreland, S.; Sejdic, E.; Miller, A.; Hoggatt, A.; Nesathurai, S. Spinal cord injury models in non-human primates: Do sharp instruments relevant to human injuries create lesions? Med. Hypotheses 2013, 81, 747–748. [Google Scholar] [CrossRef]
- Brosamle, C.; Huber, A.B. Cracking the black box-and putting it back together again: Animal models of spinal cord injury. Drug Discov. Today Dis. Models 2006, 3, 341–347. [Google Scholar] [CrossRef]
- Kundi, S.; Bicknell, R.; Ahmed, Z. Spinal cord injury: Current mammalian models. Am. J. Neurosci. 2013, 4, 1–12. [Google Scholar] [CrossRef]
- Lukovic, D.; Moreno-Manzano, V.; Lopez-Mocholi, E.; Rodriguez-Jimenez, F.J.; Jendelova, P.; Sykova, E.; Erceg, S. Complete rat spinal cord transection as a faithful model of spinal cord injury for translational cell transplantation. Sci. Rep. 2015, 5, 1. [Google Scholar] [CrossRef]
- Capogrosso, M.; Wagner, F.B.; Gandar, J.; Moraud, E.M.; Wenger, N.; Milekovic, T.; Shkorbatova, P.; Pavlova, N.; Musienko, P.; Bezard, E.; et al. Configuration of electrical spinal cord stimulation through real-time processing of gait kinematics. Nat. Prot. 2018, 13, 2031–2061. [Google Scholar] [CrossRef] [PubMed]
- van den Brand, R.; Heutschi, J.; Barraud, Q.; DiGiovanna, J.; Bartholdi, K.; Huerlimann, M.; Friedli, L.; Vollenweider, I.; Moraud, E.M.; Duis, S.; et al. Restoring voluntary control of locomotion after paralyzing spinal cord injury. Science 2012, 336, 1182–1185. [Google Scholar] [CrossRef]
- Musienko, P.E.; Pavlova, N.V.; Selionov, V.A.; Gerasimenko, Y.P. Locomotion induced by epidural stimulation in a decerebrated cat after spinal cord injury. Biophysics 2009, 54, 208–213. [Google Scholar] [CrossRef]
- Nieuwenhuys, R.; ten Donkelaar, H.J.; Nicholson, C. The Central Nervous System of Vertebrates; Springer: Berlin, Germany, 1998; Volume 3. [Google Scholar]
- Fagoe, N.D.; Attwell, C.L.; Eggers, R.; Tuinenbreijer, L.; Kouwenhoven, D.; Verhaagen, J.; Mason, M.R. Evaluation of Five Tests for Sensitivity to Functional Deficits following Cervical or Thoracic Dorsal Column Transection in the Rat. PLoS ONE 2016, 11, e0150141. [Google Scholar] [CrossRef] [PubMed]
- Brustein, E.; Rossignol, S. Recovery of locomotion after ventral and ventrolateral spinal lesions in the cat. I. Deficits and adaptive mechanisms. J. Neurophysiol. 1998, 80, 1245–1267. [Google Scholar] [CrossRef] [PubMed]
- Watson, B.D.; Prado, R.; Dietrich, W.D.; Ginsberg, M.D.; Green, B.A. Photochemically induced spinal cord injury in the rat. Brain Res. 1986, 367, 296–300. [Google Scholar] [CrossRef]
- Piao, M.S.; Lee, J.K.; Jang, J.W.; Kim, S.H.; Kim, H.S. A mouse model of photochemically induced spinal cord injury. J. Korean Neurosurg. Soc. 2009, 46, 479–483. [Google Scholar] [CrossRef]
- García-Alías, G.; Verd, E.; Forés, J.; López-Vales, R.; Navarro, X. Functional and Electrophysiological Characterization of Photochemical Graded Spinal Cord Injury in the Rat. J. Neurotrauma 2003, 20, 501–510. [Google Scholar] [CrossRef]
- Nakae, A.; Nakai, K.; Yano, K.; Hosokawa, K.; Shibata, M.; Mashimo, T. The animal model of spinal cord injury as an experimental pain model. J. Biomed. Biotechnol. 2011, 2011, 939023. [Google Scholar] [CrossRef] [PubMed]
- Kanellopoulos, G.K.; Kato, H.; Hsu, C.Y.; Kouchoukos, N.T. Spinal cord ischemic injury: Development of a new model in the rat. Stroke 1997, 28, 2532–2538. [Google Scholar] [CrossRef]
- Lang-Lazdunski, L.; Matsushita, K.; Hirt, L.; Waeber, C.; Vonsattel, J.-P.G.; Moskowitz, M.A. Spinal Cord Ischemia: Development of a Model in the Mouse. Stroke 2000, 31, 208–213. [Google Scholar] [CrossRef]
- Awad, H.; Ankeny, D.P.; Guan, Z.; Wei, P.; Mc Tigue, D.M.; Popovich, P.G. A mouse model of ischemic spinal cord injury with delayed paralysis caused by aortic cross-clamping. Anesthesiology 2010, 113, 880–891. [Google Scholar] [CrossRef]
- Yezierski, R.P.; Park, S.H. The mechanosensitivity of spinal sensory neurons following intraspinal injections of quisqualic acid in the rat. Neurosci. Lett. 1993, 157, 115–119. [Google Scholar] [CrossRef]
- Yezierski, R.P.; Santana, M.; Park, S.H.; Madsen, P.W. Neuronal degeneration and spinal cavitation following intraspinal injections of quisqualic acid in the rat. J. Neurotrauma 1993, 10, 445–456. [Google Scholar] [CrossRef] [PubMed]
- Yezierski, R.P.; Liu, S.; Ruenes, G.L.; Kajander, K.J.; Brewer, K.L. Excitotoxic spinal cord injury: Behavioral and morphological characteristics of a central pain model. Pain 1998, 75, 141–155. [Google Scholar] [CrossRef]
- Sandler, A.N.; Tator, C.H. Effect of acute spinal cord compression injury on regional spinal cord blood flow in primates. J. Neurosurg. 1976, 45, 660–676. [Google Scholar] [CrossRef]
- Ma, Z.; Zhang, Y.P.; Liu, W.; Yan, G.; Li, Y.; Shields, L.B.E.; Shields, C.B. A controlled spinal cord contusion for the rhesus macaque monkey. Exp. Neurol. 2016, 279, 261–273. [Google Scholar] [CrossRef]
- Piedras, M.J.; Hernandez-Lain, A.; Cavada, C. Clinical care and evolution of paraplegic monkeys (Macaca mulatta) over fourteen months post-lesion. Neurosci. Res. 2011, 69, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, C.D.; Slotkin, J.R.; Yu, D.; Dai, H.; Lawrence, M.S.; Bronson, R.T.; Reynolds, F.M.; Teng, Y.D.; Woodard, E.J.; Langer, R.S. Establishing a model spinal cord injury in the African green monkey for the preclinical evaluation of biodegradable polymer scaffolds seeded with human neural stem cells. J. Neurosci. Methods 2010, 188, 258–269. [Google Scholar] [CrossRef]
- Nout, Y.S.; Rosenzweig, E.S.; Brock, J.H.; Strand, S.C.; Moseanko, R.; Hawbecker, S.; Zdunowski, S.; Nielson, J.L.; Roy, R.R.; Courtine, G.; et al. Animal models of neurologic disorders: A nonhuman primate model of spinal cord injury. Neurotherapeutics 2012, 9, 380–392. [Google Scholar] [CrossRef]
- Schneider, R.J. Loss of information concerning hair displacement and other somatic stimuli in the first somatic sensory cortex of unanesthetized Macaca mulatta monkeys following dorsal funiculus transections. Exp. Brain Res. 1990, 83, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, H.; Ninomiya, T.; Yamashita, T.; Takada, M. Reorganization of corticospinal tract fibers after spinal cord injury in adult macaques. Sci. Rep. 2015, 5, 11986. [Google Scholar] [CrossRef]
- Yeo, J.D.; Payne, W.; Hinwood, B.; Kidman, A.D. The experimental contusion injury of the spinal cord in sheep. Paraplegia 1975, 12, 275–296. [Google Scholar] [CrossRef]
- Yeo, J.D.; Stabback, S.; McKenzie, B. Central necrosis following contusion to the sheep’s spinal cord. Paraplegia 1977, 14, 276–285. [Google Scholar] [CrossRef] [PubMed]
- Wilson, S.; Abode-Iyamah, K.O.; Miller, J.W.; Reddy, C.G.; Safayi, S.; Fredericks, D.C.; Howard, A., 3rd. An ovine model of spinal cord injury. J. Spinal Cord Med. 2016, 40, 346–360. [Google Scholar] [CrossRef]
- Gayen, C.D.; Bessen, M.A.; Dorrian, R.M.; Quarrington, R.D.; Mulaibrahimovic, A.; Doig, R.L.; Jones, C.F. Survival Model of Thoracic Contusion Spinal Cord Injury in the Domestic Pig. J. Neurotrauma 2023, 40, 965–980. [Google Scholar] [CrossRef]
- Lee, J.H.; Jones, C.F.; Okon, E.B.; Anderson, L.; Tigchelaar, S.; Kooner, P.; Godbey, T.; Chua, B.; Gray, G.; Hildebrandt, R.; et al. A novel porcine model of traumatic thoracic spinal cord injury. J. Neurotrauma 2013, 30, 142–159. [Google Scholar] [CrossRef] [PubMed]
- Jutzeler, C.R.; Streijger, F.; Aguilar, J.; Shortt, K.; Manouchehri, N.; Okon EHupp, M.; Curt, A.; Kwon, B.K.; Kramer, J.L.K. Sensorimotor plasticity after spinal cord injury: A longitudinal and translational study. Ann. Clin. Transl. Neurol. 2018, 6, 68–82. [Google Scholar] [CrossRef]
- Islamov, R.; Bashirov, F.; Izmailov, A.; Fadeev, F.; Markosyan, V.; Sokolov, M.; Shmarov, M.; Logunov, D.; Naroditsky, B.; Lavrov, I. New Therapy for Spinal Cord Injury: Autologous Genetically-Enriched Leucoconcentrate Integrated with Epidural Electrical Stimulation. Cells 2022, 11, 144. [Google Scholar] [CrossRef]
- Blight, A.R.; Decrescito, V. Morphometric analysis of experimental spinal cord injury in the cat: The relation of injury intensity to survival of myelinated axons. Neuroscience 1986, 19, 321–341. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, H.; Shen, B.; Roppolo, J.R.; de Groat, W.C.; Tai, C. Bladder Inhibition or Excitation by Electrical Perianal Stimulation in the Chronic SCI Cat. BJU Int. 2008, 103, 530. [Google Scholar] [CrossRef]
- Martinez, M.; Rossignol, S. A dual spinal cord lesion paradigm to study spinal locomotor plasticity in the cat. Ann. N. Y. Acad. Sci. 2013, 1279, 127–134. [Google Scholar] [CrossRef]
- Musienko, P.E.; Gorskiĭ, O.V.; Kilimnik, V.A.; Kozlovskaia, I.B.; Courtine, G.; Edgerton, V.R.; Gerasimenko, I.u.P. [Neuronal control of posture and locomotion in decerebrated and spinalized animals]. Ross. Fiziol. Zhurnal Imeni I.M. Sechenova 2013, 99, 392–405. (In Russian) [Google Scholar]
- Brustein, E.; Rossignol, S. Recovery of locomotion after ventral and ventrolateral spinal lesions in the cat. II. Effects of noradrenergic and serotoninergic drugs. J. Neurophysiol. 1999, 81, 1513–1530. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.H.; Jung, C.S.; Byeon, Y.E.; Kim, W.H.; Yoon, J.H.; Kang, K.S.; Kweon, O.K. Establishment of a canine spinal cord injury model induced by epidural balloon compression. J. Vet. Sci. 2007, 8, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Nakamoto, Y.; Tsujimoto, G.; Ikemoto, A.; Omori, K.; Nakamura, T. Pathological changes within two weeks following spinal cord injury in a canine model. Eur. Spine J. 2021, 30, 3107–3114. [Google Scholar] [CrossRef] [PubMed]
- Assina, R.; Sankar Tejas, T.; Nicholas, J.; Sam, P.; Gibson, A.R.; Horn, K.M.; Berens, M.; Volker, K.H.; Sonntag, M.D.; Preul, M.C. Activated autologous macrophage implantation in a large-animal model of spinal cord injury. Neurosurg. Focus 2008, 25, E3. [Google Scholar] [CrossRef] [PubMed]
- Baydin Cokluk, C.; Aydin, K. A new minimally invasive experimental spinal cord injury model in rabbits. Minim. Invas. Neurosurg. 2007, 50, 170–172. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Qin, C.; Jing, Y.; Yang, D.; Liu, C.; Gao, F.; Li, J. Therapeutic effects of rapamycin and surgical decompression in a rabbit spinal cord injury model. Cell Death Dis. 2020, 11, 567. [Google Scholar] [CrossRef]
- Gunasekaran, S.; Rayle, S.; Weinstein, P.; Vostal, J.J.; Chvapil, M. Therapeutic effects of disulfiram in spinal cord contusion of rabbits. Exp. Mol. Pathol. 1985, 43, 359–363. [Google Scholar] [CrossRef]
- Wu, J.; Xue, J.; Huan, R.; Zheng, C.; Cui, Y.; Rao, S. A rabbit model of lumbar distraction spinal cord injury. Spine J. 2016, 16, 643–658. [Google Scholar] [CrossRef] [PubMed]
- Poon, P.C.; Gupta, D.; Shoichet, M.S.; Tator, C.H. Clip compression model is useful for thoracic spinal cord injuries: Histologic and functional correlates. Spine 2007, 32, 2853–2859. [Google Scholar] [CrossRef]
- Tator, C.H.; Poon, P. Acute clip impact-compression model. In Animal Models of Acute Neurological Injuries; Chen, J., Xu, Z.C., Xu, X.-M., Zhang, J.H., Eds.; Humana Press: Totowa, NJ, USA, 2009; pp. 449–460. [Google Scholar] [CrossRef]
- Abdullahi, D.; Annuar, A.A.; Mohamad, M.; Aziz, I.; Sanusi, J. Experimental spinal cord trauma: A review of mechanically induced spinal cord injury in rat models. Rev. Neurosci. 2017, 28, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Young, W. MASCIS spinal cord contusion model. In Animal Models of Acute Neurological Injuries; Chen, J., Xu, Z.C., Xu, X.-M., Zhang, J.H., Eds.; Humana Press: Totowa, NJ, USA, 2009; pp. 411–421. [Google Scholar] [CrossRef]
- Shah, P.K.; Gerasimenko, Y.; Shyu, A.; Lavrov, I.; Zhong, H.; Roy, R.R.; Edgerton, V.R. Variability in step training enhances locomotor recovery after a spinal cord injury. Eur. J. Neurosci. 2012, 36, 2054–2062. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, R.U.; Alam, M.; Zheng, Y.P. Experimental spinal cord injury and behavioral tests in laboratory rats. Heliyon 2019, 5, e01324. [Google Scholar] [CrossRef] [PubMed]
- Arvanian, V.L.; Schnell, L.; Lou, L.; Golshani, R.; Hunanyan, A.; Ghosh, A.; Pearse, D.D.; Robinson, J.K.; Schwab, M.E.; Fawcett, J.W.; et al. Chronic spinal hemisection in rats induces a progressive decline in transmission in uninjured fibers to motoneurons. Exp. Neurol. 2009, 216, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Dominici, N.; Keller, U.; Vallery, H.; Friedli, L.; van den Brand, R.; Starkey, M.L.; Musienko, P.; Riener, R.; Courtine, G. Versatile robotic interface to evaluate, enable and train locomotion and balance after neuromotor disorders. Nat. Med. 2012, 18, 1142–1147. [Google Scholar] [CrossRef]
- Sysoev, Y.; Bazhenova, E.; Lyakhovetskii, V.; Kovalev, G.; Shkorbatova, P.; Islamova, R.; Pavlova, N.; Gorskii, O.; Merkulyeva, N.; Shkarupa, D.; et al. Site-Specific Neuromodulation of Detrusor and External Urethral Sphincter by Epidural Spinal Cord Stimulation. Front. Syst. Neurosci. 2020, 14, 47. [Google Scholar] [CrossRef]
- Beauparlant, J.; van den Brand, R.; Barraud, Q.; Friedli, L.; Musienko, P.; Dietz, V.; Courtine, G. Undirected compensatory plasticity contributes to neuronal dysfunction after severe spinal cord injury. Brain 2013, 136 Pt 11, 3347–3361. [Google Scholar] [CrossRef]
- Vessal, M.; Aycock, A.; Garton, M.T.; Ciferri, M.; Darian-Smith, C. Adult neurogenesis in primate and rodent spinal cord: Comparing a cervical dorsal rhizotomy with a dorsal column transection. Eur. J. Neurosci. 2007, 26, 2777–2794. [Google Scholar] [CrossRef]
- Schucht, P.; Raineteau, O.; Schwab, M.E.; Fouad, K. Anatomical correlates of locomotor recovery following dorsal and ventral lesions of the rat spinal cord. Exp. Neurol. 2002, 176, 143–153. [Google Scholar] [CrossRef]
- Marques, S.A.; Garcez, V.F.; Del Bel, E.A.; Martinez, A.M. A simple, inexpensive and easily reproducible model of spinal cord injury in mice: Morphological and functional assessment. J. Neurosci. Methods 2009, 177, 183–193. [Google Scholar] [CrossRef]
- Kuhn, P.L.; Wrathall, J.R. A Mouse Model of Graded Contusive Spinal Cord Injury. J. Neurotrauma 1998, 15, 125–140. [Google Scholar] [CrossRef]
- Battistuzzo, C.R.; Rank, M.M.; Flynn, J.R.; Morgan, D.L.; Callister, R.; Callister, R.J.; Galea, M.P. Gait recovery following spinal cord injury in mice: Limited effect of treadmill training. J. Spinal Cord Med. 2016, 39, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Davis, B.M.; Ayers, J.L.; Koran, L.; Carlson, J.; Anderson, M.C.; Simpson, S.B., Jr. Time course of salamander spinal cord regeneration and recovery of swimming: HRP retrograde pathway tracing and kinematic analysis. Exp. Neurol. 1990, 108, 198–213. [Google Scholar] [CrossRef] [PubMed]
- Bloom, O. Non-mammalian model systems for studying neuro-immune interactions after spinal cord injury. Exp. Neurol. 2014, 258, 130–140. [Google Scholar] [CrossRef]
- Zhang, G.; Jin, L.Q.; Rodemer, W.; Hu, J.; Root, Z.D.; Medeiros, D.M.; Selzer, M.E. The composition and cellular sources of cspgs in the glial scar after spinal cord injury in the lamprey. Front. Mol. Neurosci. 2022, 15, 918871. [Google Scholar] [CrossRef]
- Vitalo, A.G.; Sîrbulescu, R.F.; Ilieş, I.; Zupanc, G.K.H. Absence of gliosis in a teleost model of spinal cord regeneration. J. Comp. Physiol. A 2016, 202, 445–456. [Google Scholar] [CrossRef] [PubMed]
- Diaz Quiroz, J.F.; Echeverri, K. Spinal cord regeneration: Where fish, frogs and salamanders lead the way, can we follow? Biochem. J. 2013, 451, 353–364. [Google Scholar] [CrossRef]
- Lee-Liu, D.; Méndez-Olivos, E.E.; Muñoz, R.; Larraín, J. The African clawed frog Xenopus laevis: A model organism to study regeneration of the central nervous system. Neurosci. Lett. 2017, 652, 82–93. [Google Scholar] [CrossRef]
- Edwards-Faret, G.; Muñoz, R.; Méndez-Olivos, E.E.; Lee-Liu, D.; Tapia, V.S.; Larraín, J. Spinal cord regeneration in Xenopus laevis. Nat. Prot. 2017, 12, 372–389. [Google Scholar] [CrossRef]
- Edwards-Faret, G.; González-Pinto, K.; Cebrián-Silla, A.; Peñailillo, J.; García-Verdugo, J.M.; Larraín, J. Cellular response to spinal cord injury in regenerative and non-regenerative stages in Xenopus laevis. Neural Dev. 2021, 16, 2. [Google Scholar] [CrossRef]
- Maxson, J.K.; Morgan, J.R. Lampreys and spinal cord regeneration: “a very special claim on the interest of zoologists,” 1830s-present. Front. Cell Dev. Biol. 2023, 11, 1113961. [Google Scholar] [CrossRef]
- Rovainen, C.M. Müller cells, Mauthner cells, and other reticulospinal neurons in the lamprey. In Neurobiology of the Mauthner Cell; Faber, D., Korn, H., Eds.; Raven: New York, NY, USA, 1978; pp. 245–269. [Google Scholar]
- McClellan, A.D. Spinal cord injury: The lamprey model. In Animal Models of Spinal Cord Repair; Humana Press: Totowa, NJ, USA, 2013; Chapter 4; pp. 63–108. [Google Scholar] [CrossRef]
- Rovainen, C.M. The neurobiology of lampreys. Physiol. Rev. 1979, 59, 1007–1077. [Google Scholar] [CrossRef]
- Nieuwenhuys, R.; Nicholson, C. Lampreys, Petromyzontoidea. In The Central Nervous System of Vertebrates; Nieuwenhuys, R., Ten Donkelaar, H.J., Nicholson, C., Eds.; Springer: Heidelberg, Germany, 1998; pp. 397–495. [Google Scholar]
- Webb, A.A.; Gowribai, K.; Muir, G.D. Fischer (F-344) rats have different morphology, sensorimotor and locomotor abilities compared to Lewis, long-Evans, Sprague-Dawley and Wistar rats. Behav. Brain Res. 2003, 144, 143–156. [Google Scholar] [CrossRef] [PubMed]
- Basso, D.M.; Fisher, L.C.; Anderson, A.J.; Jakeman, L.B.; McTigue, D.M.; Popovich, P.G. Basso mouse scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains. J. Neurotrauma 2006, 23, 635–659. [Google Scholar] [CrossRef] [PubMed]
- Lilley, E.; Andrews, M.R.; Bradbury, E.J.; Elliott, H.; Hawkins, P.; Ichiyama, R.M.; Yip, P.K. Refining rodent models of spinal cord injury. Exp. Neurol. 2020, 328, 113273. [Google Scholar] [CrossRef]
- Mills, C.D.; Hains, B.C.; Johnson, K.M.; Hulsebosch, C.E. Strain and Model Differences in Behavioral Outcomes after Spinal Cord Injury in Rat. J. Neurotrauma 2001, 18, 743–756. [Google Scholar] [CrossRef]
- Kjell, J.; Sandor, K.; Josephson, A.; Svensson, C.; Abrams, M. Rat substrains differ in the magnitude of spontaneous locomotor recovery and in the development of mechanical hypersensitivity after experimental spinal cord injury. J. Neurotrauma 2013, 30, 1805–1811. [Google Scholar] [CrossRef]
- van Gorp, S.; Leerink, M.; Nguyen, S.; Platoshyn, O.; Marsala, M.; Joosten, E.A. Translation of the rat thoracic contusion model; part 2—Forward versus backward locomotion testing. Spinal Cord 2014, 52, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Cregg, J.M.; DePaul, M.A.; Filous, A.R.; Lang, B.T.; Tran, A.; Silver, J. Functional regeneration beyond the glial scar. Exp. Neurol. 2014, 253, 197–207. [Google Scholar] [CrossRef]
- Moonen, G.; Satkunendrarajah, K.; Wilcox, J.T.; Badner, A.; Mothe, A.; Foltz, W.; Fehlings, M.G.; Tator, C.H. A new acute impact-compression lumbar spinal cord injury model in the rodent. J. Neurotrauma 2016, 33, 278–289. [Google Scholar] [CrossRef]
- Flores-Leal, M.; Morales-Guadarrama, A.; Salgado-Ceballos, H.; Sacristán-Rock, E. Rat spinal cord transection injury progression: An MRI study. In Proceedings of the VII Latin American Congress on Biomedical Engineering CLAIB 2016, Bucaramanga, Colombia, 26–28 October 2016; Springer: Singapore, 2016; pp. 749–752. [Google Scholar] [CrossRef]
- Wang, F.; Huang, S.-L.; He, X.-J.; Li, X.-H. Determination of the ideal rat model for spinal cord injury by diffusion tensor imaging. Neuroreport 2014, 25, 1386–1392. [Google Scholar] [CrossRef]
- Steward, O.; Willenberg, R. Rodent spinal cord injury models for studies of axon regeneration. Exp. Neurol. 2017, 287, 374–383. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wu, Z.; Zhou, L.; Shao, J.; Hu, X.; Xu, W.; Cheng, L. Temporal and spatial cellular and molecular pathological alterations with single-cell resolution in the adult spinal cord after injury. Signal Transduct. Target. Ther. 2022, 7, 65. [Google Scholar] [CrossRef] [PubMed]
- Forgione, N.; Chamankhah, M.; Fehlings, M.G. A Mouse Model of Bilateral Cervical Contusion-Compression Spinal Cord Injury. J. Neurotrauma 2017, 34, 1227–1239. [Google Scholar] [CrossRef] [PubMed]
- Musienko, P.E.; Zelenin, P.V.; Lyalka, V.F.; Orlovsky, G.N.; Deliagina, T.G. Postural performance in decerebrated rabbit. Behav. Brain Res. 2008, 190, 124–134. [Google Scholar] [CrossRef] [PubMed]
- Bogacheva, I.N.; Nikitin, O.A.; Musienko, P.E.; Savokhin, A.A.; Gerasimenko, Y.P. Mechanisms of stepping rhythm formation in decerebrated and chronic spinal cats under epidural stimulation. Biophysics 2009, 54, 370–374. [Google Scholar] [CrossRef]
- Ahmed, R.U.; Knibbe, C.A.; Wilkins, F.; Sherwood, L.C.; Howland, D.R.; Boakye, M. Porcine spinal cord injury model for translational research across multiple functional systems. Exp. Neurol. 2023, 359, 114267. [Google Scholar] [CrossRef]
- Weber-Levine, C.; Hersh, A.M.; Jiang, K.; Routkevitch, D.; Tsehay, Y.; Perdomo-Pantoja, A.; Theodore, N. Porcine model of spinal cord injury: A systematic review. Neurotrauma Rep. 2022, 3, 352–368. [Google Scholar] [CrossRef]
- Wathen, C.A.; Ghenbot, Y.G.; Ozturk, A.K.; Cullen, D.K.; O’Donnell, J.C.; Petrov, D. Porcine Models of Spinal Cord Injury. Biomedicines 2023, 11, 2202. [Google Scholar] [CrossRef]
- Kuluz, J.; Samdani, A.; Benglis, D.; Gonzalez-Brito, M.; Solano, J.P.; Ramirez, M.A.; Luqman, A.; De los Santos, R.; Hutchinson, D.; Nares, M.; et al. Pediatric spinal cord injury in infant piglets: Description of a new large animal model and review of the literature. J. Spinal Cord Med. 2010, 33, 43–57. [Google Scholar] [CrossRef]
- Gibson-Corley, K.N.; Oya, H.; Flouty, O.; Fredericks, D.C.; Jeffery, N.D.; Gillies, G.T. Ovine tests of a novel spinal cord neuromodulator and dentate ligament fixation method. J. Investig. Surg. 2012, 25, 366–374. [Google Scholar] [CrossRef]
- Flouty, O.E.; Oya, H.; Kawasaki, H.; Reddy, C.G.; Fredericks, D.C.; Gibson-Corley, K.N.; Jeffery, N.D.; Gillies, G.T.; Howard, M.A., III. Intracranial somatosensory responses with direct spinal cord stimulation in anesthetized sheep. PLoS ONE 2013, 8, e56266. [Google Scholar] [CrossRef] [PubMed]
- Safayi, S.; Jeffery, N.D.; Fredericks, D.C.; Viljoen, S.; Dalm, B.D.; Reddy, C.G.; Wilson, S.; Gillies, G.T.; Howard, M.A., III. Biomechanical performance of an ovine model of intradural spinal cord stimulation. J. Med. Eng. Technol. 2014, 38, 269–273. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Burke, D.A.; Shields, L.B.E.; Chekmenev, S.Y.; Dincman, T.; Zhang, Y.; Zheng, Y.; Smith, R.R.; Benton, R.L.; DeVries, W.H.; et al. Spinal cord contusion based on precise vertebral stabilization and tissue displacement measured by combined assessment to discriminate small functional differences. J. Neurotrauma 2008, 25, 1227–1240. [Google Scholar] [CrossRef]
- Beaud, M.L.; Rouiller, E.M.; Bloch, J.; Mir, A.; Schwab, M.E.; Wannier, T.; Schmidlin, E. Invasion of lesion territory by regenerating fibers after spinal cord injury in adult macaque monkeys. Neuroscience 2012, 227, 271–282. [Google Scholar] [CrossRef]
- Wu, W.; Wu, W.; Zou, J.; Shi, F.; Yang, S.; Liu, Y.; Lu, P.; Ma, Z.; Zhu, H.; Xu, X.M. Axonal and Glial responses to a mid-thoracic spinal cord hemisection in the macaca fascicularis monkey. J. Neurotrauma 2013, 30, 826–839. [Google Scholar] [CrossRef]
- Capogrosso, M.; Milekovic, T.; Borton, D.; Wagner, F.; Moraud, E.M.; Mignardot, J.B.; Courtine, G. A brain–spine interface alleviating gait deficits after spinal cord injury in primates. Nature 2016, 539, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Salegio, E.A.; Bresnahan, J.C.; Sparrey, C.J.; Camisa, W.; Fischer, J.; Leasure, J.; Buckley, J.; Nout-Lomas, Y.S.; Rosenzweig, E.S.; Moseanko, R.; et al. A unilateral cervical spinal cord contusion injury model in non-human primates (Macaca mulatta). J. Neurotrauma 2016, 33, 439–459. [Google Scholar] [CrossRef]
- McKinley, W.; Santos, K.; Meade, M.; Brooke, K. Incidence and outcomes of spinal cord injury clinical syndromes. J. Spinal Cord Med. 2007, 30, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Friedli, L.; Rosenzweig, E.S.; Barraud, Q.; Schubert, M.; Dominici, N.; Awai, L.; Nielson, J.L.; Musienko, P.; Nout-Lomas, Y.; Zhong, H.; et al. Pronounced species divergence in corticospinal tract reorganization and functional recovery after lateralized spinal cord injury favors primates. Sci. Transl. Med. 2015, 7, 302ra134. [Google Scholar] [CrossRef]
- Le Corre, M.; Noristani, H.N.; Mestre-Frances, N.; Saint-Martin, G.P.; Coillot, C.; Goze-Bac, C.; Perrin, F.E. A novel translational model of spinal cord injury in nonhuman primate. Neurotherapeutics 2018, 15, 751–769. [Google Scholar] [CrossRef]
- Filipp, M.E.; Travis, B.J.; Henry, S.S.; Idzikowski, E.C.; Magnuson, S.A.; Loh, M.Y.; Hanna, A.S. Differences in neuroplasticity after spinal cord injury in varying animal models and humans. Neural Regen. Res. 2019, 14, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Watson, C.; Paxinos, G.; Kayalioglu, G.; Heise, C. Atlas of the rat spinal cord. In The Spinal Cord; Academic Press: Cambridge, MA, USA, 2009; pp. 238–306. [Google Scholar] [CrossRef]
- Watson, C.; Paxinos, G.; Kayalioglu, G.; Heise, C. Atlas of the mouse spinal cord. In The Spinal Cord; Academic Press: Cambridge, MA, USA, 2009; pp. 308–379. [Google Scholar] [CrossRef]
- Russ, D.E.; Cross, R.B.P.; Li, L.; Koch, S.C.; Matson, K.J.E.; Yadav, A.; Levine, A.J. A harmonized atlas of mouse spinal cord cell types and their spatial organization. Nat. Commun. 2021, 12, 5722. [Google Scholar] [CrossRef]
- Shi, H.; He, Y.; Zhou, Y.; Huang, J.; Maher, K.; Wang, B.; Wang, X. Spatial atlas of the mouse central nervous system at molecular resolution. Nature 2023, 622, 552–561. [Google Scholar] [CrossRef] [PubMed]
- Byrnes, K.R.; Fricke, S.T.; Faden, A.I. Neuropathological differences between rats and mice after spinal cord injury. J. Magn. Reson. Imaging 2010, 4, 836–846. [Google Scholar] [CrossRef] [PubMed]
- Hellenbrand, D.J.; Kaeppler, K.E.; Hwang, E.; Ehlers, M.E.; Toigo, R.D.; Giesler, J.D.; Vassar-Olsen, E.R.; Hanna, A. Basic techniques for long distance axon tracing in the spinal cord. Microsc. Res. Tech. 2013, 76, 1240–1249. [Google Scholar] [CrossRef]
- Lemon, R.N.; Griffiths, J. Comparing the function of the corticospinal system in different species: Organizational differences for motor specialization? Muscle Nerve 2005, 32, 261–279. [Google Scholar] [CrossRef]
- Nakajima, K.; Maier, M.A.; Kirkwood, P.A.; Lemon, R.N. Striking differences in transmission of corticospinal excitation to upper limb motoneurons in two primate species. J. Neurophysiol. 2000, 84, 698–709. [Google Scholar] [CrossRef]
- Courtine, G.; Bunge, M.B.; Fawcett, J.W.; Grossman, R.G.; Kaas, J.H.; Lemon, R.; Maier, I.; Martin, J.; Nudo, R.J.; Ramon-Cueto, A.; et al. Can experiments in nonhuman primates expedite the translation of treatments for spinal cord injury in humans? Nat. Med. 2007, 13, 561–566. [Google Scholar] [CrossRef]
- Darian-Smith, C. Synaptic plasticity, neurogenesis, and functional recovery after spinal cord injury. Neuroscientist 2009, 15, 149–165. [Google Scholar] [CrossRef]
- Onodera, S.; Hicks, T.P. A comparative neuroanatomical study of the red nucleus of the cat, macaque and human. PLoS ONE 2009, 4, e6623. [Google Scholar] [CrossRef]
- Smith, P.M.; Jeffery, N.D. Spinal shock-comparative aspects and clinical relevance. J. Vet. Intern. Med. 2005, 19, 788–793. [Google Scholar] [CrossRef] [PubMed]
- Bradbury, E.J.; McMahon, S.B. Spinal cord repair strategies: Why do they work? Nat. Rev. Neurosci. 2006, 7, 644–653. [Google Scholar] [CrossRef] [PubMed]
- Talevi, A.; Bellera, C.L.; Di Ianni, M.; Gantner, M.; Bruno-Blanch, L.E.; Castro, E.A. CNS drug development—Lost in translation? Mini Rev. Med. Chem. 2012, 12, 959–970. [Google Scholar] [CrossRef]
- Schumacher, M.; Denier, C.; Oudinet, J.P.; Adams, D.; Guennoun, R. Progesterone neuroprotection: The background of clinical trial failure. J. Steroid Biochem. Mol. Biol. 2016, 160, 53–66. [Google Scholar] [CrossRef] [PubMed]
- Agoston, D.V. How to translate time? The temporal aspect of human and rodent biology. Front. Neurol. 2017, 8, 250535. [Google Scholar] [CrossRef]
- Tallan, H.H.; Cohen, P.A. Methionine adenosyltransferase: Kinetic properties of human and rat liver enzymes. Biochem. Med. 1976, 16, 234–250. [Google Scholar] [CrossRef]
- Seok, J.; Warren, H.S.; Cuenca, A.G.; Mindrinos, M.N.; Baker, H.V.; Xu, W.; Richards, D.R.; McDonald-Smith, G.P.; Gao, H.; Hennessy, L.; et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl. Acad. Sci. USA 2013, 110, 3507–3512. [Google Scholar] [CrossRef]
- Schoch, G.; Topp, H.; Held, A.; Heller-Schoch, G.; Ballauff, A.; Manz, F.; Sander, G. Interrelation between whole-body turnover rates of RNA and protein. Eur. J. Clin. Nutr. 1990, 44, 647–658. [Google Scholar] [PubMed]
- Mc Nab, B.K. On the utility of uniformity in the definition of basal rate of metabolism. Physiol. Zool. 1997, 70, 718–720. [Google Scholar] [CrossRef]
- Quinn, R. Comparing rat’s to human’s age: How old is my rat in people years? Nutrition 2005, 21, 775–777. [Google Scholar] [CrossRef]
- Andreollo, N.A.; Santos, E.F.; Araujo, M.R.; Lopes, L.R. Rat’s age versus human’s age: What is the relationship? Arq. Bras. Cir. Dig. 2012, 25, 49–51. [Google Scholar] [CrossRef] [PubMed]
- Bunge, R.P.; Puckett, W.R.; Becerra, J.L.; Marcillo, A.; Quencer, R.M. Observations on the pathology of human spinal cord injury. A review and classification of 22 new cases with details from a case of chronic cord compression with extensive focal demyelination. Adv. Neurol. 1993, 59, 75–89. [Google Scholar] [PubMed]
- Puckett, W.R.; Hiester, E.D.; Norenberg, M.D.; Marcillo, A.E.; Bunge, R.P. The astroglial response to Wallerian degeneration after spinal cord injury in humans. Exp. Neurol. 1997, 148, 424–432. [Google Scholar] [CrossRef] [PubMed]
- Murray, M.; Wang, S.D.; Goldberger, M.E.; Levitt, P. Modification of astrocytes in the spinal cord following dorsal root or peripheral nerve lesions. Exp. Neurol. 1990, 110, 248–257. [Google Scholar] [CrossRef]
- Romero, M.I.; Rangappa, N.; Li, L.; Lightfoot, E.; Garry, M.G.; Smith, G.M. Extensive sprouting of sensory afferents and hyperalgesia induced by conditional expression of nerve growth factor in the adult spinal cord. J. Neurosci. 2000, 20, 4435–4445. [Google Scholar] [CrossRef]
- Weaver, L.C.; Marsh, D.R.; Gris, D.; Brown, A.; Dekaban, G.A. Autonomic dysreflexia after spinal cord injury: Central mechanisms and strategies for prevention. Prog. Brain Res. 2006, 152, 245–263. [Google Scholar] [CrossRef]
- Burchiel, K.J.; Hsu, F.P. Pain and spasticity after spinal cord injury: Mechanisms and treatment. Spine 2001, 26, 146–160. [Google Scholar] [CrossRef]
- Siddall, P.J.; McClelland, J.M.; Rutkowski, S.B.; Cousins, M.J. A longitudinal study of the prevalence and characteristics of pain in the first 5 years following spinal cord injury. Pain 2003, 103, 249–257. [Google Scholar] [CrossRef]
- Adams, M.M.; Hicks, A.L. Spasticity after spinal cord injury. Spinal Cord 2005, 43, 577–586. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, A.K. Autonomic dysfunction in spinal cord injury: Clinical presentation of symptoms and signs. Prog. Brain Res. 2006, 152, 1–8. [Google Scholar] [CrossRef]
- Williams, B.; Terry, A.F.; Jones, F.; Mc Sweeney, T. Syringomyelia as a sequel to traumatic paraplegia. Paraplegia 1981, 19, 67–80. [Google Scholar] [CrossRef] [PubMed]
- Bunge, M.B. Transplantation of purified populations of Schwann cells into lesioned adult rat spinal cord. J. Neurol. 1994, 242, 36–39. [Google Scholar] [CrossRef]
- Fitch, M.T.; Doller, C.; Combs, C.K.; Landreth, G.E.; Silver, J. Cellular and molecular mechanisms of glial scarring and progressive cavitation: In vivo and in vitro analysis of inflammation-induced secondary injury after CNS trauma. J. Neurosci. 1999, 19, 8182–8198. [Google Scholar] [CrossRef]
- Dusart, I.; Schwab, M.E. Secondary cell death and the inflammatory reaction after dorsal hemisection of the rat spinal cord. Eur. J. Neurosci. 1994, 6, 712–724. [Google Scholar] [CrossRef]
- Liu, X.Z.; Xu, X.M.; Hu, R.; Du, C.; Zhang, S.X.; McDonald, J.W.; Dong, H.X.; Wu, Y.J.; Fan, G.S.; Jacquin, M.F.; et al. Neuronal and glial apoptosis after traumatic spinal cord injury. J. Neurosci. 1997, 17, 5395–5406. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yang, Z.; Wu, X.; Huang, Z.; Huang, Z.; Chen, X.; Zhu, Q. Comparison of the anatomical morphology of cervical vertebrae between humans and macaques: Related to a spinal cord injury model. Exp. Anim. 2021, 70, 108–118. [Google Scholar] [CrossRef]
- Wilke, H.J.; Kettler, A.; Wenger, K.H.; Claes, L.E. Anatomy of the sheep spine and its comparison to the human spine. Anat. Rec. 1997, 247, 542–555. [Google Scholar] [CrossRef]
- Veshchitskii, A.; Shkorbatova, P.; Merkulyeva, N. Neurochemical atlas of the cat spinal cord. Front. Neuroanat. 2022, 16, 1034395. [Google Scholar] [CrossRef]
- Toossi, A.; Bergin, B.; Marefatallah, M.; Parhizi, B.; Tyreman, N.; Everaert, D.G.; Mushahwar, V.K. Comparative neuroanatomy of the lumbosacral spinal cord of the rat, cat, pig, monkey, and human. Sci. Rep. 2021, 11, 1955. [Google Scholar] [CrossRef]
- Jopling, C.; Sleep, E.; Raya, M.; Martí, M.; Raya, A.; Belmonte, J.C.I. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 2010, 464, 606–609. [Google Scholar] [CrossRef]
- Zeng, C.W. Macrophage–neuroglia interactions in promoting neuronal regeneration in zebrafish. Int. J. Mol. Sci. 2023, 24, 6483. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.; Tsai, H. The Promising Role of a Zebrafish Model Employed in Neural Regeneration Following a Spinal Cord Injury. Int. J. Mol. Sci. 2023, 24, 13938. [Google Scholar] [CrossRef] [PubMed]
- Kaslin, J.; Ganz, J. The Zebrafish in Biomedical Research. In Zebrafish Nervous Systems; IntechOpen: London, UK, 2020; pp. 181–189. [Google Scholar] [CrossRef]
- Djenoune, L.; Wyart, C. Light on a sensory interface linking the cerebrospinal fluid to motor circuits in vertebrates. J. Neurogenet. 2017, 31, 113–127. [Google Scholar] [CrossRef] [PubMed]
- Lewis, K.E.; Eisen, J.S. From cells to circuits: Development of the zebrafish spinal cord. Prog. Neurobiol. 2003, 69, 419–449. [Google Scholar] [CrossRef]
- Berg, E.M.; Bjornfors, E.R.; Pallucchi, I.; Picton, L.D.; El Manira, A. Principles governing locomotion in vertebrates: Lessons from zebrafish. Front. Neural Circuits 2018, 12, 73. [Google Scholar] [CrossRef]
- Eisen, J.S.; Myers, P.Z.; Westerfield, M. Pathway selection by growth cones of identified motoneurones in live zebra fish embryos. Nature 1986, 320, 269–271. [Google Scholar] [CrossRef]
- Myers, P.Z.; Eisen, J.S.; Westerfield, M. Development and axonal outgrowth of identified motoneurons in the zebrafish. J. Neurosci. 1986, 6, 2278–2289. [Google Scholar] [CrossRef]
- Hill, R.; Wyse, G.A.; Anderson, M. Animal Physiology; Sinauer: Sunderland, MA, USA, 2016. [Google Scholar]
- Auclair, F.; Dubuc, R. The Neural Control of Movement; Whelan, P.J., Sharples, S.A., Eds.; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Wilson, A.C.; Sweeney, L.B. Spinal cords: Symphonies of interneurons across species. Front. Neural Circuits 2023, 17, 1146449. [Google Scholar] [CrossRef]
- Combes, D.; Merrywest, S.D.; Simmers, J.; Sillar, K.T. Developmental segregation of spinal networks driving axial- and hindlimb-based locomotion in metamorphosing Xenopus laevis. J. Physiol. 2004, 559, 17–24. [Google Scholar] [CrossRef]
- Rauscent, A.; Le Ray, D.; Cabirol-Pol, M.J.; Sillar, K.T.; Simmers, J.; Combes, D. Development and neuromodulation of spinal locomotor networks in the metamorphosing frog. J. Physiol. Paris 2006, 100, 317–327. [Google Scholar] [CrossRef]
- Roberts, A.; Li, W.C.; Soffe, S.R. How neurons generate behavior in a hatchling amphibian tadpole: An outline. Front. Behav. Neurosci. 2010, 4, 16. [Google Scholar] [CrossRef] [PubMed]
- Bacqué-Cazenave, J.; Courtand, G.; Beraneck, M.; Lambert, F.M.; Combes, D. Temporal relationship of ocular and tail segmental movements underlying locomotor-induced gaze stabilization during undulatory swimming in larval xenopus. Front. Neural Circuits 2018, 12, 95. [Google Scholar] [CrossRef] [PubMed]
- Currie, S.P.; Sillar, K.T. Developmental changes in spinal neuronal properties, motor network configuration, and neuromodulation at free-swimming stages of xenopus tadpoles. J. Neurophysiol. 2018, 119, 786–795. [Google Scholar] [CrossRef] [PubMed]
- Rossignol, S. Neural control of stereotypic limb movements. Compr. Physiol. 2011, 173–216. [Google Scholar] [CrossRef]
- Basso, D.M.; Beattie, M.S.; Bresnahan, J.C. A sensitive and reliable locomotor rating scale for open field testing in rats. J. Neurotrauma 1995, 12, 1–21. [Google Scholar] [CrossRef]
- Borrell, J.A.; Gattozzi, D.; Krizsan-Agbas, D.; Jaeschke, M.W.; Nudo, R.J.; Frost, S.B. Chronic Stimulation Improves Motor Performance in an Ambulatory Rat Model of Spinal Cord Injury. J. Integr. Neurosci. 2023, 22, 71. [Google Scholar] [CrossRef]
- Irvine, K.A.; Ferguson, A.R.; Mitchell, K.D.; Beattie, S.B.; Beattie, M.S.; Bresnahan, J.C. A novel method for assessing proximal and distal forelimb function in the rat: The Irvine, Beatties and Bresnahan (IBB) forelimb scale. J. Vis. Exp 2010, e2246. [Google Scholar] [CrossRef]
- Xu, N.; Åkesson, E.; Holmberg, L.; Sundström, E. A sensitive and reliable test instrument to assess swimming in rats with spinal cord injury. Behav. Brain Res. 2015, 291, 172–183. [Google Scholar] [CrossRef]
- Smith, R.R.; Burke, D.A.; Baldini, A.D.; Shum-Siu, A.; Baltzley, R.; Bunger, M. The Louisville Swim Scale: A novel assessment of hindlimb function following spinal cord injury in adult rats. J. Neurotrauma 2006, 23, 1654–1670. [Google Scholar] [CrossRef]
- Baylo-Marín, O.; Flores, Á.; García-Alías, G. Long-term rehabilitation reduces task error variability in cervical spinal cord contused rats. Exp. Neurol. 2022, 348, 113928. [Google Scholar] [CrossRef]
- Lucas-Osma, A.M.; Schmidt, E.K.A.; Vavrek, R.; Bennett, D.J.; Fouad, K.; Fenrich, K.K. Rehabilitative training improves skilled forelimb motor function after cervical unilateral contusion spinal cord injury in rats. Behav. Brain Res. 2022, 422, 113731. [Google Scholar] [CrossRef] [PubMed]
- Anderson, K.D.; Gunawan ASteward, O. Quantitative assessment of forelimb motor function after cervical spinal cord injury in rats: Relationship to the corticospinal tract. Exp. Neurol. 2005, 194, 161–174. [Google Scholar] [CrossRef] [PubMed]
- M’Dahoma, S.; Bourgoin, S.; Kayser, V. Spinal cord transection-induced allodynia in rats-behavioral, physiopathological and pharmacological characterization. PLoS ONE 2014, 9, e102027. [Google Scholar] [CrossRef] [PubMed]
- Arnold, B.M.; Toosi, B.M.; Caine, S.; Mitchell, G.S.; Muir, G.D. Prolonged acute intermittent hypoxia improves forelimb reach-to-grasp function in a rat model of chronic cervical spinal cord injury. Exp. Neurol. 2021, 340, 113672. [Google Scholar] [CrossRef]
- Mills, C.D.; Grady, J.J.; Hulsebosch, C.E. Changes in exploratory behavior as a measure of chronic central pain following spinal cord injury. J. Neurotrauma 2001, 18, 1091–1105. [Google Scholar] [CrossRef]
- Zörner, B.; Filli, L.; Starkey, M.L.; Gonzenbach, R.; Kasper, H.; Röthlisberger, M. Profiling locomotor recovery: Comprehensive quantification of impairments after CNS damage in rodents. Nat. Methods 2010, 7, 701–708. [Google Scholar] [CrossRef]
- Khaing, Z.Z.; Geissler, S.A.; Jiang, S. Assessing forelimb function after unilateral cervical spinal cord injury: Novel forelimb tasks predict lesion severity and recovery. J. Neurotrauma 2012, 29, 488–498. [Google Scholar] [CrossRef]
- Musienko, P.; van den Brand, R.; Märzendorfer, O. Controlling specific locomotor behaviors through multidimensional monoaminergic modulation of spinal circuitries. J. Neurosci. 2011, 31, 9264–9278. [Google Scholar] [CrossRef]
- Popov, A.; Lyakhovetskii, V.; Bazhenova, E. The role of load-dependent sensory input in the control of balance during gait in rats. J. Exp. Biol. 2021, 224, jeb242138. [Google Scholar] [CrossRef]
- Nashmi, R.; Imamura, H.; Tator, C.H.; Fehlings, M.G. Serial recording of somatosensory and myoelectric motor evoked potentials: Role in assessing functional recovery after graded spinal cord injury in the rat. J. Neurotrauma 1997, 14, 151–159. [Google Scholar] [CrossRef]
- All, A.H.; Luo, S.; Liu, X.; Al-Nashash, H. Effect of thoracic spinal cord injury on forelimb somatosensory evoked potential. Brain Res. Bull. 2021, 173, 22–27. [Google Scholar] [CrossRef]
- Li, R.; Huang, Z.C.; Cui, H.Y. Utility of somatosensory and motor-evoked potentials in reflecting gross and fine motor functions after unilateral cervical spinal cord contusion injury. Neural Regen. Res. 2021, 16, 1323–1330. [Google Scholar] [CrossRef]
- Pu, J.; Xu, H.; Wang, Y.; Cui, H.; Hu, Y. Combined nonlinear metrics to evaluate spontaneous EEG recordings from chronic spinal cord injury in a rat model: A pilot study. Cogn. Neurodyn. 2016, 10, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Barrière, G.; Frigon, A.; Leblond, H.; Provencher, J.; Rossignol, S. Dual spinal lesion paradigm in the cat: Evolution of the kinematic locomotor pattern. J. Neurophysiol. 2010, 104, 1119–1133. [Google Scholar] [CrossRef] [PubMed]
- de la Torre, J.C.; Valdovinos, B.; Duenas Jimenez, J.M.; Estrada, I.J. Tamoxifen Promotes Axonal Preservation and Gait Locomotion Recovery after Spinal Cord Injury in Cats. J. Vet. Med. 2016, 9561968. [Google Scholar] [CrossRef]
- Delivet-Mongrain, H.; Dea, M.; Gossard, J.P.; Rossignol, S. Recovery of locomotion in cats after severe contusion of the low thoracic spinal cord. J. Neurophysiol. 2020, 123, 1504–1525. [Google Scholar] [CrossRef] [PubMed]
- Dalrymple, A.N.; Everaert, D.G.; Hu, D.S.; Mushahwar, V.K. A speed-adaptive intraspinal microstimulation controller to restore weight-bearing stepping in a spinal cord hemisection model. J. Neural Eng. 2018, 15, 056023. [Google Scholar] [CrossRef]
- Levy, W.; McCaffrey, M.; York, D. Motor evoked potential in cats with acute spinal cord injury. Neurosurgery 1986, 19, 9–19. [Google Scholar] [CrossRef]
- Şenel, O.O.; Şirin, Y.S.; Önyay, T.; Beşalti, O. Evaluation of spinal somatosensoryevoked potentials in cats with traumatic spinal cord injury without deeppain perception. Ank. Üniv. Vet. Fak. Derg. 2012, 59, 41445. [Google Scholar]
- Liu, Z.Q.; Zhang, H.B.; Wang, J.; Xia, L.J.; Zhang, W. Lipoxin A4 ameliorates ischemia/reperfusion induced spinal cord injury in rabbit model. Int. J. Clin. Exp. Med. 2015, 8, 12826–12833. [Google Scholar] [PubMed] [PubMed Central]
- Naganuma, M.; Saiki, Y.; Kanda, K.; Akiyama, M.; Adachi, O.; Horii, A.; Saiki, Y. Nanobubble technology to treat spinal cord ischemic injury. JTCVS Open 2020, 3, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Zivin, J.A.; DeGirolami, U.; Hurwitz, E.L. Spectrum of neurological deficits in experimental CNS ischemia. A quantitative study. Arch. Neurol. 1982, 39, 408–412. [Google Scholar] [CrossRef]
- Drummond, J.C.; Moore, S.S. The influence of dextrose administration on neurologic outcome after temporary spinal cord ischemia in the rabbit. Anesthesiology 1989, 70, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.H.; Kraime, J.M.; Graeber, G.M. Effects of flunarizine on neurological recovery and spinal cord blood flow in experimental spinal cord ischemia in rabbits. Stroke 1993, 24, 1547–1553. [Google Scholar] [CrossRef]
- Zelenin, P.V.; Lyalka, V.F.; Deliagina, T.G. Changes in operation of postural networks in rabbits with postural functions recovered after lateral hemisection of the spinal cord. J. Physiol. 2023, 601, 307–334. [Google Scholar] [CrossRef]
- Mirkiani, S.; Roszko, D.A.; O’Sullivan, C.L. Overground gait kinematics and muscle activation patterns in the Yucatan mini pig. J. Neural Eng. 2022, 19, 026009. [Google Scholar] [CrossRef]
- Parker, D. The Lesioned Spinal Cord Is a “New” Spinal Cord: Evidence from Functional Changes after Spinal Injury in Lamprey. Front. Neural Circuits 2017, 11, 84. [Google Scholar] [CrossRef]
- Katz, H.R.; Fouke, K.E.; Losurdo, N.A.; Morgan, J.R. Recovery of Burrowing Behavior After Spinal Cord Injury in the Larval Sea Lamprey. Biol. Bull. 2020, 239, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Oliphint, P.A.; Alieva, N.; Foldes, A.E.; Tytell, E.D.; Lau, B.Y.; Pariseau, J.S. Regenerated synapses in lamprey spinal cord are sparse and small even after functional recovery from injury. J. Comp. Neurol. 2010, 518, 2854–2872. [Google Scholar] [CrossRef]
- Fies, J.; Gemmell, B.J.; Fogerson, S.M.; Morgan, J.R.; Tytell, E.D.; Colin, S.P. Swimming kinematics and performance of spinal transected lampreys with different levels of axon regeneration. J. Exp. Biol. 2021, 224, jeb242639. [Google Scholar] [CrossRef]
- Benes, J.A.; House, K.N.; Burks, F.N.; Conaway, K.P.; Julien, D.P. Regulation of axonal regeneration following spinal cord injury in the lamprey. J. Neurophysiol. 2017, 118, 1439–1456. [Google Scholar] [CrossRef] [PubMed]
- Burris, B.; Mokalled, M.H. Spinal Cord Injury and Assays for Regeneration. Methods Mol. Biol. 2024, 2707, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Cigliola, V.; Shoffner, A.; Lee, N.; Ou, J.; Gonzalez, T.J.; Hoque, J.; Becker, C.J.; Han, Y.; Shen, G.; Faw, T.D.; et al. Spinal cord repair is modulated by the neurogenic factor Hb-egf under direction of a regeneration-associated enhancer. Nat. Commun. 2023, 14, 4857. [Google Scholar] [CrossRef]
- Mokalled, M.H.; Patra, C.; Dickson, A.L.; Endo, T.; Stainier, D.Y.; Poss, K.D. Injury-induced ctgfa directs glial bridging and spinal cord regeneration in zebrafish. Science 2016, 354, 630–634. [Google Scholar] [CrossRef]
- Chang, W.; Pedroni, A.; Bertuzzi, M.; Kizil, C.; Simon, A.; Ampatzis, K. Locomotion dependent neuron-glia interactions control neurogenesis and regeneration in the adult zebrafish spinal cord. Nat. Commun. 2021, 12, 4857. [Google Scholar] [CrossRef]
- Yu, Y.; Schachner, M. Syntenin-a promotes spinal cord regeneration following injury in adult zebrafish. Eur. J. Neurosci. 2013, 38, 2280–2289. [Google Scholar] [CrossRef]
- Peng, S.X.; Yao, L.; Cui, C.; Liu, C.J.; Li, Y.H.; Wang, L.F. Semaphorin 4D promotes axon regrowth and swimming ability during recovery following zebrafish spinal cord injury. Neuroscience 2017, 351, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.F.; Huang, S.B.; Zhao, H.D.; Liu, C.J.; Yao, L.; Shen, Y.Q. Activating transcription factor 3 promotes spinal cord regeneration of adult zebrafish. Biochem. Biophys. Res. Commun. 2017, 488, 522–527. [Google Scholar] [CrossRef]
- Nelson, C.M.; Lennon, V.A.; Lee, H. Glucocorticoids Target Ependymal Glia and Inhibit Repair of the Injured Spinal Cord. Front. Cell Dev. Biol. 2019, 7, 56. [Google Scholar] [CrossRef]
- Goldshmit, Y.; Sztal, T.E.; Jusuf, P.R.; Hall, T.E.; Nguyen-Chi, M.; Currie, P.D. Fgf-dependent glial cell bridges facilitate spinal cord regeneration in zebrafish. J. Neurosci. 2012, 32, 7477–7492. [Google Scholar] [CrossRef]
- Ellström, I.D.; Spulber, S.; Hultin, S. Spinal cord injury in zebrafish induced by near-infrared femtosecond laser pulses. J. Neurosci. Methods 2019, 311, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.; Zheng, P.; Kong, X.; Wang, S.; Cao, M.; Zhao, C. Rassf7a promotes spinal cord regeneration and controls spindle orientation in neural progenitor cells. EMBO Rep. 2023, 24, e54984. [Google Scholar] [CrossRef] [PubMed]
- Sahu, S.; Zhang, Z.; Li, R.; Hu, J.; Shen, H.; Loers, G. A Small Organic Compound Mimicking the L1 Cell Adhesion Molecule Promotes Functional Recovery after Spinal Cord Injury in Zebrafish. Mol. Neurobiol. 2018, 55, 859–878. [Google Scholar] [CrossRef]
- Vasudevan, D.; Liu, Y.C.; Barrios, J.P.; Wheeler, M.K.; Douglass, A.D.; Dorsky, R.I. Regenerated interneurons integrate into locomotor circuitry following spinal cord injury. Exp. Neurol. 2021, 342, 113737. [Google Scholar] [CrossRef] [PubMed]
- Hossainian, D.; Shao, E.; Jiao, B.; Ilin, V.A.; Parris, R.S.; Zhou, Y. Quantification of functional recovery in a larval zebrafish model of spinal cord injury. J. Neurosci. Res. 2022, 100, 2044–2054. [Google Scholar] [CrossRef]
- Gollmann-Tepeköylü, C.; Nägele, F.; Graber, M.; Pölzl, L.; Lobenwein, D.; Hirsch, J.; An, A.; Irschick, R.; Röhrs, B.; Kremser, C.; et al. Shock waves promote spinal cord repair via TLR3. JCI Insight. 2020, 5, e134552. [Google Scholar] [CrossRef]
- Fong, A.J.; Roy, R.R.; Ichiyama, R.M.; Lavrov, I.; Courtine, G.; Gerasimenko, Y. Recovery of control of posture and locomotion after a spinal cord injury: Solutions staring us in the face. Prog. Brain Res. 2009, 175, 393–418. [Google Scholar] [CrossRef]
- Noamani, A.; Lemay, J.F.; Musselman, K.E.; Rouhani, H. Postural control strategy after incomplete spinal cord injury: Effect of sensory inputs on trunk-leg movement coordination. J. Neuroeng. Rehabil. 2020, 17, 141. [Google Scholar] [CrossRef]
- Alam, M.; Garcia-Alias, G.; Jin, B.; Keyes, J.; Zhong, H.; Roy, R.R. Electrical neuromodulation of the cervical spinal cord facilitates forelimb skilled function recovery in spinal cord injured rats. Exp. Neurol. 2017, 291, 141–150. [Google Scholar] [CrossRef]
- Klein, A.; Dunnett, S.B. Analysis of skilled forelimb movement in rats: The single pellet reaching test and staircase test. Curr. Protoc. Neurosci. 2012, 58, 8–28. [Google Scholar] [CrossRef]
- Nishimaru, H.; Kudo, N. Formation of the central pattern generator for locomotion in the rat and mouse. Brain Res. Bull. 2000, 53, 661–669. [Google Scholar] [CrossRef] [PubMed]
- Marder, E.; Bucher, D. Central pattern generators and the control of rhythmic movements. Curr. Biol. 2001, 11, R986–R996. [Google Scholar] [CrossRef] [PubMed]
- Minassian, K.; Hofstoetter, U.S.; Dzeladini, F.; Guertin, P.A.; Ijspeert, A. The Human Central Pattern Generator for Locomotion: Does It Exist and Contribute to Walking? Neuroscientist 2017, 23, 649–663. [Google Scholar] [CrossRef]
- Fouad, K.; Hurd, C.; Magnuson, D.S. Functional testing in animal models of spinal cord injury: Not as straight forward as one would think. Front. Integr. Neurosci. 2013, 7, 85. [Google Scholar] [CrossRef]
- Widerström-Noga, E. Neuropathic Pain and Spinal Cord Injury: Management, Phenotypes, and Biomarkers. Drugs 2023, 83, 1001–1025. [Google Scholar] [CrossRef]
- Coronel, M.F.; Labombarda, F.; Villar, M.J.; De Nicola, A.F.; González, S.L. Progesterone prevents allodynia after experimental spinal cord injury. J. Pain 2011, 12, 71–83. [Google Scholar] [CrossRef] [PubMed]
- Kusuyama, K.; Tachibana, T.; Yamanaka, H.; Okubo, M.; Yoshiya, S.; Noguchi, K. Upregulation of calcium channel alpha-2-delta-1 subunit in dorsal horn contributes to spinal cord injury-induced tactile allodynia. Spine J. 2018, 18, 1062–1069. [Google Scholar] [CrossRef]
- Bonanno, M.; Papa, D.; Cerasa, A.; Maggio, M.G.; Calabrò, R.S. Psycho-Neuroendocrinology in the Rehabilitation Field: Focus on the Complex Interplay between Stress and Pain. Medicina 2024, 60, 285. [Google Scholar] [CrossRef]
- Deuis, J.R.; Dvorakova, L.S.; Vetter, I. Methods Used to Evaluate Pain Behaviors in Rodents. Front. Mol. Neurosci. 2017, 10, 284. [Google Scholar] [CrossRef]
- Detloff, M.R.; Clark, L.M.; Hutchinson, K.J.; Kloos, A.D.; Fisher, L.C.; Basso, D.M. Validity of acute and chronic tactile sensory testing after spinal cord injury in rats. Exp. Neurol. 2010, 225, 366–376. [Google Scholar] [CrossRef]
- Jasmin, L.; Kohan, L.; Franssen, M.; Janni, G.; Goff, J.R. The cold plate as a test of nociceptive behaviors: Description and application to the study of chronic neuropathic and inflammatory pain models. Pain 1998, 75, 367–382. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Y.; Gu, L.; Yan, J.; Guo, J.; Geng, X.; Shi, H. An effective and concise device for detecting cold allodynia in mice. Sci. Rep. 2018, 8, 14002. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Hao, J.X.; Xu, X.J.; Saydoff, J.; Haegerstrand, A.; Hökfelt, T. Long-term alleviation of allodynia-like behaviors by intrathecal implantation of bovine chromaffin cells in rats with spinal cord injury. Pain 1998, 74, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Rossignol, S.; Dubuc, R.; Gossard, J.P. Dynamic sensorimotor interactions in locomotion. Physiol. Rev. 2006, 86, 89–154. [Google Scholar] [CrossRef]
- Perrot, O.; Laroche, D.; Pozzo, T.; Marie, C. Kinematics of obstacle clearance in the rat. Behav. Brain Res. 2011, 224, 241–249. [Google Scholar] [CrossRef]
- Kalinina, D.S.; Lyakhovetskii, V.A.; Gorskii, O.V.; Shkorbatova, P.Y.; Pavlova, N.V.; Bazhenova, E.Y.; Sysoev, Y.I.; Gainetdinov, R.R.; Musienko, P.E. Alteration of Postural Reactions in Rats with Different Levels of Dopamine Depletion. Biomedicines 2023, 11, 1958. [Google Scholar] [CrossRef]
- Edgerton, V.R.; Courtine, G.; Gerasimenko, Y.P.; Lavrov, I.; Ichiyama, R.M.; Fong, A.J.; Cai, L.L.; Otoshi, C.K.; Tillakaratne, N.J.; Burdick, J.W.; et al. Training locomotor networks. Brain Res. Rev. 2008, 57, 241–254. [Google Scholar] [CrossRef]
- Bonizzato, M.; James, N.D.; Pidpruzhnykova, G.; Pavlova, N.; Shkorbatova, P.; Baud, L.; Martinez-Gonzalez, C.; Squair, J.W.; DiGiovanna, J.; Barraud, Q.; et al. Multi-pronged neuromodulation intervention engages the residual motor circuitry to facilitate walking in a rat model of spinal cord injury. Nat. Commun. 2021, 12, 1925. [Google Scholar] [CrossRef]
- Whelan, P.J. Control of locomotion in the decerebrate cat. Prog. Neurobiol. 1996, 49, 481–515. [Google Scholar] [CrossRef]
- Magnus, R. Körperstellung. Experimentell-physiologische Untersuchungen über die einzelnen bei der Körperstellung in Tätigkeit tretenden Reflexe, über ihr Zusammenwirken und ihre Strungen. In Monographien aus dem Gesamtgebiet der Pysiologie der Pflanzen und der Tiere; Gildemeister, M., Ed.; Springer: Berlin, Germany, 1924; Volume VI. [Google Scholar]
- Zelenin, P.V.; Lyalka, V.F.; Hsu, L.J.; Orlovsky, G.N.; Deliagina, T.G. Effects of reversible spinalization on individual spinal neurons. J. Neurosci. 2013, 33, 18987–18998. [Google Scholar] [CrossRef]
- Hanslik, K.L.; Allen, S.R.; Harkenrider, T.L.; Fogerson, S.M.; Guadarrama, E.; Morgan, J.R. Regenerative capacity in the lamprey spinal cord is not altered after a repeated transection. PLoS ONE 2019, 14, e0204193. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, A.Z.; Pippin, J.J.; Sandusky, C.B. Animal models in spinal cord injury: A review. Rev. Neurosci. 2008, 19, 47–60. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Fang, M.; Chen, H.; Gou, F.; Ding, M. Evaluation of spinal cord injury animal models. Neural Regen. Res. 2014, 9, 2008. [Google Scholar] [CrossRef]
- de la Torre, J.C. Spinal cord injury. Review of basic and applied research. Spine 1981, 6, 315–335. [Google Scholar] [CrossRef] [PubMed]
- AHSCIR Report. Alabama Head and Spinal Cord Injury Registry (AHSCIR) Report. 2022. Available online: https://www.alabamapublichealth.gov/ems/assets/2022.final.ahscir.document.pdf (accessed on 30 July 2024).
- Singh, A.; Tetreault, L.; Kalsi-Ryan, S.; Nouri, A.; Fehlings, M.G. Global prevalence and incidence of traumatic spinal cord injury. Clin. Epidemiol. 2014, 6, 309–331. [Google Scholar] [CrossRef]
- Lee, B.S.; Kim, O.; Ham, D. Epidemiological changes in traumatic spinal cord injuries for the last 30 years (1990–2019) in South Korea. Spinal Cord 2022, 60, 612–617. [Google Scholar] [CrossRef]
- Yang, T.W.; Yoo, D.H.; Huh, S.; Jang, M.H.; Shin, Y.B.; Kim, S.H. Epidemiology and assessment of traumatic spinal cord injury with concomitant brain injury: An observational study in a regional trauma center. Ann. Rehabil. Med. 2023, 47, 385. [Google Scholar] [CrossRef]
- Kim, H.S.; Lim, K.B.; Kim, J.; Kang, J.; Lee, H.; Lee, S.W.; Yoo, J. Epidemiology of spinal cord injury: Changes to its cause amid aging population, a single center study. Ann. Rehabil. Med. 2021, 45, 7–15. [Google Scholar] [CrossRef]
- Hilton, B.J.; Moulson, A.J.; Tetzlaff, W. Neuroprotection and secondary damage following spinal cord injury: Concepts and methods. Neurosci. Lett. 2017, 652, 3–10. [Google Scholar] [CrossRef]
- Quadri, S.A.; Farooqui, M.; Ikram, A.; Zafar, A.; Khan, M.A.; Suriya, S.S.; Claus, C.F.; Fiani, B.; Rahman, M.; Ramachandran, A.; et al. Recent update on basic mechanisms of spinal cord injury. Neurosurg. Rev. 2020, 43, 425–441. [Google Scholar] [CrossRef]
- Clifford, T.; Finkel, Z.; Rodriguez, B.; Joseph, A.; Cai, L. Current Advancements in Spinal Cord Injury Research-Glial Scar Formation and Neural Regeneration. Cells 2023, 12, 853. [Google Scholar] [CrossRef] [PubMed]
- Bareyre, F.M.; Kerschensteiner, M.; Raineteau, O.; Mettenleiter, T.C.; Weinmann, O.; Schwab, M.E. The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat. Neurosci. 2004, 7, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Courtine, G.; Song, B.; Roy, R.R. Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury. Nat. Med. 2008, 14, 69–74. [Google Scholar] [CrossRef]
- Gerasimenko, Y.; Musienko, P.; Bogacheva, I. Propriospinal bypass of the serotonergic system that can facilitate stepping. J. Neurosci. 2009, 29, 5681–5689. [Google Scholar] [CrossRef]
- Cigliola, V.; Becker, C.J.; Poss, K.D. Building bridges, not walls: Spinal cord regeneration in zebrafish. Dis. Model. Mech. 2020, 13, dmm044131. [Google Scholar] [CrossRef]
- Herrmann, K.; Pistollato, F.; Stephens, M. Beyond the 3Rs: Expanding the use of human-relevant replacement methods in biomedical research. ALTEX—Altern. Anim. Exp. 2019, 36, 343–352. [Google Scholar] [CrossRef]
- Freires, I.A.; Sardi, J.D.C.O.; de Castro, R.D.; Rosalen, P.L. Alternative Animal and Non-Animal Models for Drug Discovery and Development: Bonus or Burden? Pharm. Res. 2017, 34, 681–686. [Google Scholar] [CrossRef] [PubMed]
- Storer, M.A.; Miller, F.D. Cellular and molecular mechanisms that regulate mammalian digit tip regeneration. Open Biol. 2020, 10, 200194. [Google Scholar] [CrossRef]
- Zeng, C.W.; Kamei, Y.; Shigenobu, S.; Sheu, J.C.; Tsai, H.J. Injury-induced Cavl-expressing cells at lesion rostral side play major roles in spinal cord regeneration. Open Biol. 2021, 11, 200304. [Google Scholar] [CrossRef]
- Lee, H.C.; Lai, W.L.; Lin, C.Y.; Zeng, C.W.; Sheu, J.C.; Chou, T.B.; Tsai, H.J. Anp32a promotes neuronal regeneration after spinal cord injury of zebrafish embryos. Int. J. Mol. Sci. 2022, 23, 15921. [Google Scholar] [CrossRef]
- Silva, N.J.; Nagashima, M.; Li, J.; Kakuk-Atkins, L.; Ashrafzadeh, M.; Hyde, D.R.; Hitchcock, P.F. Inflammation and matrix metalloproteinase 9 (Mmp-9) regulate photoreceptor regeneration in adult zebrafish. Glia 2020, 68, 1445–1465. [Google Scholar] [CrossRef] [PubMed]
- Schuster, C.J.; Kao, R.M. Glial cell ecology in zebrafish development and regeneration. Heliyon 2020, 6, e03507. [Google Scholar] [CrossRef] [PubMed]
- Hentig, J.; Cloghessy, K.; Lahne, M.; Jung, Y.J.; Petersen, R.A.; Morris, A.C.; Hyde, D.R. Zebrafish blunt-force TBI induces heterogenous injury pathologies that mimic human TBI and responds with sonic hedgehog-dependent cell proliferation across the neuroaxis. Biomedicines 2021, 9, 861. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Han, G.; Li, H.; Liang, X.; Hu, D.; Zhang, L.; Tang, P. Identification of key genes and pathways involved in the heterogeneity of intrinsic growth ability between neurons after spinal cord injury in adult Zebrafish. Neurochem. Res. 2019, 44, 2057–2067. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Tian, X.; Mo, B.; Xu, H.; Zhang, L.; Huang, L. Adipose mesenchymal stem cell transplantation alleviates spinal cord injury-induced neuroinflammation partly by suppressing the Jagged1/Notch pathway. Stem Cell Res. Ther. 2020, 11, 212. [Google Scholar] [CrossRef]
- Li, J.-H.; Shi, Z.-J.; Li, Y.; Pan, B.; Yuan, S.-Y.; Shi, L.-L. Bioinformatic identification of key candidate genes and pathways in axon regeneration after spinal cord injury in zebrafish. Neural Regen. Res. 2020, 15, 103. [Google Scholar] [CrossRef]
- Riley, S.E.; Feng, Y.; Hansen, C.G. Hippo-Yap/Taz signalling in zebrafish regeneration. npj Regen. Med. 2022, 7, 9. [Google Scholar] [CrossRef]
- Kowianski, P.; Lietzau, G.; Czuba, E.; Waskow, M.; Steliga, A. Mory’s J. BDNF: A key factor with multipotent impact on brain signaling and synaptic plasticity. Cell. Mol. Neurobiol. 2018, 38, 579–593. [Google Scholar] [CrossRef]
- Costa, R.O.; Martins, L.F.; Tahiri, E.; Duarte, C.B. Brain-derived neurotrophic factor-induced regulation of RNA metabolism in neuronal development and synaptic plasticity. Wiley Interdiscip. Rev. RNA 2022, 13, e1713. [Google Scholar] [CrossRef]
- DePaul, M.A.; Lin, C.Y.; Silver, J.; Lee, Y.S. Combinatory repair strategy to promote axon regeneration and functional recovery after chronic spinal cord injury. Sci. Rep. 2017, 7, 9018. [Google Scholar] [CrossRef]
- Feng, Y.; Li, Y.; Shen, P.P.; Wang, B. Gene-modified stem cells for spinal cord injury: A promising better alternative therapy. Stem Cell Rev. Rep. 2022, 18, 2662–2682. [Google Scholar] [CrossRef] [PubMed]
- Assuncao Silva, R.C.; Pinto, L.; Salgado, A.J. Cell transplantation and secretome based approaches in spinal cord injury regenerative medicine. Med. Res. Rev. 2022, 42, 850–896. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.; Khan, A.W.; Kim, M.S.; Choi, S. The role of fibroblast growth factor (FGF) signaling in tissue repair and regeneration. Cells 2021, 10, 3242. [Google Scholar] [CrossRef] [PubMed]
- Goldshmit, Y.; Tang, J.K.; Siegel, A.K.; Nguyen, P.D.; Kaslin, J.; Currie, P.D.; Jusuf, P.R. Different Fgfs have distinct roles in regulating neurogenesis after spinal cord injury in zebrafish. Neural Dev. 2018, 13, 24. [Google Scholar] [CrossRef]
Class | Order/Species | Type of SCI | Time to Recovery of Spontaneous Locomotion or Swimming | References | ||
---|---|---|---|---|---|---|
Mammals | Primates | Rhesus monkey (Macaca mulatta) | Compression | Several weeks to several months, depending on the severity of the injury. No recovery occurs with complete transection or severe compression/contraction | [90] | |
Contusion | [91] | |||||
Complete transection | [92] | |||||
Partial transection | Hemisection | [93,94] | ||||
Dorsal funiculus | [95] | |||||
Lateral funiculus (mainly corticospinal tract) | [96] | |||||
Artiodactyl | Sheep (Ovis aries) | Contusion | [97,98,99] | |||
Pig (Sus domesticus) | Contusion | [100] | ||||
Minipig | Contusion | [101,102,103] | ||||
Predators | Cat (Felis catus) | Contusion | [104] | |||
Complete transection | [105,106,107] | |||||
Partial transection | Dorsal funiculus | [76] | ||||
Dorsal funiculus + dorsolateral funiculus | [76] | |||||
ventral column | [79,108] | |||||
Dog (Canis familiaris) | Compression | [109,110] | ||||
Partial transection | [111] | |||||
Lagomorha | Rabbit (Oryctolagus) | Compression | [112,113] | |||
Contusion | [114] | |||||
Distraction | [115] | |||||
Rodents | Rat (Rattus norvegicus) | Compression | [116,117,118] | |||
Contusion | [25,119] | |||||
Complete transection | [120,121,122,123] | |||||
Partial transection | Over-hemisection | [123,124] | ||||
Staggered hemisection (two hemisections at different vertebral levels) | [74,75,123,124,125] | |||||
Dorsal column section | [78,126] | |||||
Ventral lesions | [127] | |||||
Mouse (Mus musculus) | Compression | [128] | ||||
Contusion | [129] | |||||
Transection (complete or partial) | [130] | |||||
Amphibians | Salamander | Tail amputation or complete transection | 2–3 months | [131,132] | ||
African clawed frog (Xenopus laevis) | 20–30 days | |||||
Lampreys | Sea lamprey (Petromyzon marinus) | Complete transection at the most rostral levels of the spine | 2–3 months | [133] | ||
Fish | Gold fish (Carassius auratus) Zebrafish (Danio rerio) Eurasian minnow (Phoxinus phoxinus) Guppie (Poecilia reticulata) Eel (Anguilla anguilla) | Complete transection | 1–2 months | [58,67,134] | ||
Black ghost knifefish (Apteronotus albifrons) Brown ghost knifefish (A. leptorhynchus) | Caudal amputation |
Human | Rattus Norvegicus | Times Faster in Rat | One Human Year ≈ Rat Days | One Human Day ≈ Rat Hours | One Human Hour ≈ Rat Minutes | |
---|---|---|---|---|---|---|
m/tRNA turnover | 0.8/day/kg | 2/day/kg | 2.5 | |||
Protein turnover | 1.25/day/kg | 12/day/kg | 9.6 | |||
Metabolic rate | 1.25 W/kg | 8 W/kg | 6.4 | |||
Heart rate | 60–80 | 260–400 | 4.7 | |||
Respiratory rate | 12–18 | 75–115 | 6.3 | |||
Gestation | 280 days | 21–23 days | 12.7 | 28.7 | 1.9 | 4.7 |
Weaning | 180 days | 21 days | 8.6 | 42.6 | 2.8 | 7 |
Reaching sexual maturity | 4197 days | 50 days | 84 | 4.3 | 0.3 | 0.8 |
Reaching adulthood | 7300 (20 years) | 210 days | 35 | 10.5 | 0.7 | 1.7 |
Reaching reproductive senescence (females) | 18,615 days (51 years) | 532 days (1.6 years) | 35 | 10.4 | 0.7 | 1.7 |
Post-senescence | 10,585 days (29 years) | 486 days | 22 | 16.8 | 1.1 | 2.7 |
Life span | 29,200 days (80 years) | 1095 days (3 years) | 26.7 | 13.7 | 0.9 | 2.3 |
Animal Species | Method of Analysis | Analysed Parameters | Periods After SCI | Possibility of Multiple Testing | References |
---|---|---|---|---|---|
Mammals | |||||
Rat/mice | Point scales | ||||
Basso, Beattie, and Bresnahan Scale (BBB) | Points characterising motor function of fore and hind limbs | Days to weeks after SCI | Yes | [233,234] | |
Irvine, Beatties, and Bresnahan (IBB) | Points characterising motor function of forelimbs | [235] | |||
Karolinska Institutet Swim Assessment Tool (KSAT) | Points characterising motor function in swimming | [236] | |||
Louisville Swimming Scale (LSS) | [237] | ||||
Tests to assess motor function of the forelimbs | |||||
Skilled forelimb reaching | Success rate, pellet pulling time | Days to weeks after SCI | Yes | [238,239] | |
Grip strength | Grip strength of the forelimbs | [240] | |||
Sensory tests | |||||
Von Frey test | Minimum reaction threshold causing paw retraction | Days to weeks after SCI | Yes | [241] | |
Assessment of temperature sensitivity (hot/cold plate, tail twitching, etc.). | Threshold temperature eliciting response or pain response score in points | [241] | |||
Sensorimotor tests | |||||
Rung ladder | Number of correct paw placements on the bars, number of slips, misses, etc. | Days to weeks after SCI | Yes | [234,242] | |
Tapered beam walking | Number of missteps and slips | [234] | |||
Locomotor tests | |||||
Open field | Distance travelled, number of freezes, average speed, etc. | Days to weeks after SCI | Yes | [243] | |
Analysis of the kinematics of walking on the treadban | Hind limb joint angles, stride length, stride duration, etc. | [75] | |||
Analysis of swimming kinematics | [244] | ||||
Postural tests | |||||
Postural instability test (PIT) | Offset required to initiate a step | [245] | |||
Neurophysiological methods | |||||
Electromyography during walking/swimming | EMG bursts duration and amplitude, area under the curve, inter-bursts interval, level of reciprocity of muscle pairs, etc. | Days to weeks after SCI | Yes | [246,247] | |
Evoked potentials (SSEP, motor cortex and SC stimulation) | Shape of evoked potentials, their latency and amplitude | [248,249,250] | |||
EEG/ECoG | Sample entropy, detrended fluctuation analysis (DFA), Kolmogorov complexity index | [251] | |||
Cat | Analysis of the kinematics of walking on the treadban | Hind limb joint angles, stride length, duration of swing and stance, etc. | Days to weeks after SCI | Yes | [106,252,253] |
Electromyography in locomotion | Duration and amplitude of EMG bursts, etc. | [252,254] | |||
Support reaction force | Support reaction force when walking on the treadban | [254,255] | |||
Evoked potentials (SSEP, motor cortex, and SC stimulation) | Shape of evoked potentials, their latency and amplitude | [256,257] | |||
Rabbit | Point scales for assessing the degree of motor deficits (Zivin et al., Drummond and Moore, Tarlov, Johnson et al.) | Points characterising motor function | Days to weeks after SCI | Yes | [30,258,259,260,261,262] |
Electromyography in postural tests on an inclined platform | Evaluation of the types (correct, incorrect, correct/incorrect, no response) of EMG responses to platform tilt, the ratio of these types, etc. | Yes | [157,263] | ||
Registration of spinal neuron activity in postural tests on an inclined platform | Average frequency, batch frequency, inter-batch frequency, etc. | No | [263] | ||
Mini-pig | Porcine Thoracic Injury Behavioural Scale | Points characterising motor function | Days to weeks after SCI | Yes | [101,102,103] |
Analysis of the kinematics of walking on the treadban | Hind limb joint angles, stride length, duration of swing and stance phases, etc. | [102,103] | |||
Electromyography in locomotion | Duration and amplitude of EMG bursts, etc. | [264] | |||
Evoked potentials (SVEP, motor and during stimulation of the SC or n.sciaticus) | Shape of evoked potentials, their latency and amplitude | [102,103] | |||
Other species | |||||
Lamprey | Free swimming | Points characterising locomotion during swimming | Days to weeks after SCI | Yes | [265,266,267] |
Electromyography | Number of locomotor cycles, intersegmental rostrocaudal phase delays, etc. | [265] | |||
Evaluation of the ability to burrow into sand | Points characterising the completeness of burial | [266] | |||
Analysis of swimming kinematics | Maximum amplitude of deviation from the midline, frequency of locomotor movements, etc. | [268] | |||
Intracellular neuronal registration | Resting potential, action potential amplitudes, firing pattern, etc. | No | [269] | ||
Danio rerio (adult) | Analysis of swimming in the Swim Tunnel (Loligo Systems) | Swimming duration and maximum speed | Days to weeks after SCI | Yes | [270,271,272,273] |
Analysis of free swimming in the aquarium | Distance swum, number and duration of freezes, average speed, etc. | Yes | [67,274,275,276] | ||
Assessment of locomotor function using point scales | Points characterising locomotion in free swimming | Yes | [277,278] | ||
Danio rerio (larvae) | Assessment of locomotor activity in the Daniovision system (Noldus Information Technology) or ZebraLab Videotrack software (ViewPoint Life Sciences). | Distance swum, number and duration of freezes, average speed, etc. | 24–48 h. | Yes | [279,280,281] |
Analysis of swimming kinematics | Maximum angles of inclination between body points, angular velocities, etc. | 2–9 days | Yes | [282,283] | |
Startle reflex triggered by tail tip touch, vibration, or flash of light | Distance swum | 12–72 h. | Yes | [281,284] | |
Local fixation of the spinal neuron potential | Evaluation of the correlation of motor activity with neuronal activity | 3–9 days | No | [282] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobolev, V.E.; Sysoev, Y.I.; Vyunova, T.V.; Musienko, P.E. Animal Models of Spinal Cord Injury. Biomedicines 2025, 13, 1427. https://doi.org/10.3390/biomedicines13061427
Sobolev VE, Sysoev YI, Vyunova TV, Musienko PE. Animal Models of Spinal Cord Injury. Biomedicines. 2025; 13(6):1427. https://doi.org/10.3390/biomedicines13061427
Chicago/Turabian StyleSobolev, Vladislav E., Yuriy I. Sysoev, Tatiana V. Vyunova, and Pavel E. Musienko. 2025. "Animal Models of Spinal Cord Injury" Biomedicines 13, no. 6: 1427. https://doi.org/10.3390/biomedicines13061427
APA StyleSobolev, V. E., Sysoev, Y. I., Vyunova, T. V., & Musienko, P. E. (2025). Animal Models of Spinal Cord Injury. Biomedicines, 13(6), 1427. https://doi.org/10.3390/biomedicines13061427