New Clinical View on the Relationship Between the Diameter of the Deep Femoral Artery and Sex: Index δ-Anatomical and Radiological Study
Abstract
:1. Introduction
2. Material and Methods
2.1. Anatomical Study
2.2. Radiological Study
2.3. Statistical Analysis
3. Results
4. Discussion
4.1. Embryological Background
4.2. Anatomical Findings and Variability
4.3. Clinical Implications of the δ Index
4.4. Broader Surgical Context
4.5. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bochenek, A.; Reicher, M. Anatomia Człowieka. Tom III; Wydawnictwo Lekarskie PZWL: Warszawa, Poland, 2007; pp. 318–329. [Google Scholar]
- Woźniak, W. Anatomia Człowieka; Wydawnictwo Medyczne Urban&Partner: Wrocław, Poland, 2016; pp. 454–455. [Google Scholar]
- Tomaszewski, K.A.; Henry, B.M.; Vikse, J.; Roy, J.; Pękala, P.A.; Svensen, M.; Guay, D.L.; Saganiak, K.; Walocha, J.A. The origin of the medial circumflex femoral artery: A meta-analysis and proposal of a new classification system. PeerJ 2016, 4, e1726. [Google Scholar] [CrossRef] [PubMed]
- Tanyeli, E.; Uzel, M.; Yildirim, M.; Celik, H.H. An anatomical study of the origins of the medial circumflex femoral artery in the Turkish population. Folia Morphol. 2006, 65, 209–212. [Google Scholar]
- Vuksanović-Božarić, A.; Abramović, M.; Vučković, L.; Golubović, M.; Vukčević, B.; Radunović, M. Clinical significance of understanding lateral and medial circumflex femoral artery origin variability. Anat. Sci. Int. 2018, 93, 449–455. [Google Scholar] [CrossRef]
- Zito, A.J.; Teitelbaum, G.P.; Matsumoto, A.H.; Barth, K.H. The use of double guidewires through a single vascular sheath for obtaining profunda femoris arterial access: Technical note. Cardiovasc. Interv. Radiol. 1990, 13, 113–114. [Google Scholar] [CrossRef]
- Siddharth, P.; Smith, N.L.; Mason, R.A.; Giron, F. Variational anatomy of the deep femoral artery. Anat. Rec. 1985, 212, 206–209. [Google Scholar] [CrossRef]
- Ikeda, H.; Takeo, M.; Murakami, T.; Yamamoto, M. A case of deep femoral artery aneurysm. J. Surg. Case Rep. 2015, 2015, rjv111. [Google Scholar] [CrossRef]
- Olasińska-Wiśniewska, A.; Grygier, M.; Lesiak, M.; Araszkiewicz, A.; Trojnarska, O.; Komosa, A.; Misterski, M.; Jemielity, M.; Proch, M.; Grajek, S. Femoral artery anatomy-tailored approach in transcatheter aortic valve implantation. Adv. Interv. Cardiol. 2017, 2, 150–156. [Google Scholar] [CrossRef]
- Dacie, J.E.; Daniell, S.J. The value of percutaneous transluminal angioplasty of the profunda femoris artery in threatened limb loss and intermittent claudication. Clin. Radiol. 1991, 44, 311–316. [Google Scholar] [CrossRef]
- Sugawara, Y.; Sato, O.; Miyata, T.; Kimura, H.; Namba, T.; Makuuchi, M. Utilization of the lateral circumflex femoral artery as a midway outflow for aorto-popliteal grafting: Report of a case. Surg. Today 1998, 28, 967–970. [Google Scholar] [CrossRef]
- Dixit, D.P.; Mehta, L.A.; Kothari, M.L. Variations in the origin and course of profunda femoris. J. Anat. Soc. India 2001, 50, 6–7. [Google Scholar]
- Quain, R. The Anatomy of the Arteries of the Human Body; Taylor and Walton: London, UK, 1844. [Google Scholar]
- Gautier, E.; Ganz, K.; Krügel, N.; Gill, T.; Ganz, R. Anatomy of the medial femoral circumflex artery and its surgical implications. J. Bone Joint Surg. Br. 2000, 82, 679–683. [Google Scholar] [CrossRef] [PubMed]
- Zlotorowicz, M.; Szczodry, M.; Czubak, J.; Ciszek, B. Anatomy of the medial femoral circumflex artery with respect to the vascularity of the femoral head. J. Bone Joint Surg. Br. 2011, 93, 1471–1474. [Google Scholar] [CrossRef] [PubMed]
- Grose, A.W.; Gardner, M.J.; Sussmann, P.S.; Helfet, D.L.; Lorich, D.G. The surgical anatomy of the blood supply to the femoral head: Description of the anastomosis between the medial femoral circumflex and inferior gluteal arteries at the hip. J. Bone Joint Surg. Br. 2008, 90, 1298–1303. [Google Scholar] [CrossRef] [PubMed]
- Letournel, E.; Judet, R. Fractures of the Acetabulum, 2nd ed.; Springer: Berlin, Germany, 1993. [Google Scholar]
- Epstein, H.C. Posterior fracture-dislocation of the hip: Long-term follow-up. J. Bone Joint Surg. 1974, 56, 1103–1127. [Google Scholar] [CrossRef]
- Epstein, H. Traumatic anterior and simple posterior dislocations of the hip in adults and children. Instr. Course Lect. 1973, 22, 115–145. [Google Scholar]
- Yiming, A.; Baqué, P.; Rahili, A.; Mayer, J.; Braccini, A.L.; Fontaine, A.; Leplatois, A.; Clavé, A.; Bourgeon, A.; de Peretti, F. Anatomical study of the blood supply of the coxal bone: Radiological and clinical application. Surg. Radiol. Anat. 2002, 24, 81–86. [Google Scholar] [CrossRef]
- Imhof, H.; Breitenseher, M.; Trattnig, S.; Kramer, J.; Hofmann, S.; Plenk, H.; Schneider, W.; Engel, A. Imaging of avascular necrosis of bone. Eur. Radiol. 1997, 7, 180–186. [Google Scholar] [CrossRef]
- Yue, J.J.; Wilber, J.H.; Lipuma, J.P.; Murthi, A.; Carter, J.R.; Marcus, R.E.; Valentz, R. Posterior hip dislocations: A cadaveric angiographic study. J. Orthop. Trauma. 1996, 10, 447–454. [Google Scholar] [CrossRef]
- Cooper, C.; Melton, L.J., III. Epidemiology of osteoporosis. Trends Endocrinol. Metab. 1992, 3, 224–229. [Google Scholar] [CrossRef]
- Cooper, C.; Campion, G.; Melton, L.J., III. Hip fractures in the elderly: A world-wide projection. Osteoporos. Int. 1992, 2, 285–289. [Google Scholar] [CrossRef]
- Cooper, C.; Atkinson, E.J.; Jacobsen, S.J.; O’Fallon, W.M.; Melton, L.J., III. Population-based study of survival after osteoporotic fractures. Am. J. Epidemio. 1993, 137, 1001–1005. [Google Scholar] [CrossRef] [PubMed]
- Cooper, C.; Cole, Z.A.; Holroyd, C.R.; Earl, S.C.; Harvey, N.C.; Dennison, E.M.; Melton, L.J.; Cummings, S.R.; Kanis, J.A. Secular trends in the incidence of hip and other osteoporotic fractures. Osteoporos. Int. 2011, 22, 1277–1288. [Google Scholar] [CrossRef]
- Seth, R.; Manz, R.M.; Dahan, I.J.; Nuara, M.J.; Meltzer, N.E.; McLennan, G.; Alam, D.S. Comprehensive analysis of the anterolateral thigh flap vascular anatomy. Arch. Facial Plast Surg. 2011, 13, 347–354. [Google Scholar] [CrossRef]
- De Beule, T.; Van Deun, W.; Vranckx, J.; de Dobbelaere, B.; Maleux, G.; Heye, S. Anatomical variations and pre-operative imaging technique concerning the anterolateral thigh flap: Guiding the surgeon. Br. J. Radiol. 2016, 89, 20150920. [Google Scholar] [CrossRef]
- Agarwal, A.K.; Gupta, S.; Bhattacharya, N.; Guha, G.; Agarwal, A. Tensor fascia lata flap reconstruction in groin malignancy. Singapore Med. J. 2009, 50, 781–784. [Google Scholar]
- Contedini, F.; Negosanti, L.; Pinto, V.; Tavaniello, B.; Fabbri, E.; Sgarzani, R.; Tassone, D.; Cipriani, R. Tensor fascia latae perforator flap: An alternative reconstructive choice for anterolateral thigh flap when no sizable skin perforator is available. Indian J. Plast. Surg. 2013, 46, 55–58. [Google Scholar]
- Wong, C.H.; Wei, F.C. Anterolateral thigh flap. Head Neck 2010, 32, 529–540. [Google Scholar] [CrossRef]
- Spirito, A.; Gragnano, F.; Corpataux, N.; Vaisnora, L.; Galea, R.; Svab, S.; Gargiulo, G.; Siontis, G.C.M.; Praz, F.; Lanz, J.; et al. Sex-Based Differences in Bleeding Risk After Percutaneous Coronary Intervention and Implications for the Academic Research Consortium High Bleeding Risk Criteria. J. Am. Heart Assoc. 2021, 10, e021965. [Google Scholar] [CrossRef]
- Hoffman, H.; Jalal, M.S.; Masoud, H.E.; Pons, R.B.; Rodriguez Caamaño, I.; Khandelwal, P.; Prakash, T.; Gould, G.C. Distal Transradial Access for Diagnostic Cerebral Angiography and Neurointervention: A Systematic Review and Meta-analysis. AJNR Am. J. Neuroradiol. 2021, 42, 888–895. [Google Scholar] [CrossRef]
- Fabbrocini, M.; Fattouch, K.; Camporini, G.; DeMicheli, G.; Bertucci, C.; Cioffi, P.; Mercogliano, D. The Descending Branch of Lateral Femoral Circumflex Artery in Arterial CABG: Early and Midterm Results. Ann. Thorac. Surg. 2003, 75, 1836–1841. [Google Scholar] [CrossRef]
- Faidutti, B. Coronary artery bypass grafting with the descending branch of the lateral femoral circumflex artery used as an arterial graft: Is arteriographic evaluation necessary before its use? J. Thorac. Cardiovasc. Surg. 1999, 117, 1229–1230. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, Y.Q.; Liu, B.; Wang, H.; Zhang, D.-M. Short-term and long-term effects of covered stent endovascular graft exclusion for the treatment of abdominal aortic aneurysm rupture. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 73–77. [Google Scholar] [PubMed]
- Biancari, F.; Paone, R.; Venermo, M.; D’Andrea, V.; Perälä, J. Diagnostic accuracy of computed tomography in patients with suspected abdominal aortic aneurysm rupture. Eur. J. Vasc. Endovasc. Surg. 2013, 45, 227–230. [Google Scholar] [CrossRef] [PubMed]
- Wibmer, A.; Schoder, M.; Wolff, K.S.; Prusa, A.M.; Sahal, M.; Lammer, J.; Huk, I.; Polterauer, P.; Kretschmer, G.; Teufelsbauer, H. Improved survival after abdominal aortic aneurysm rupture by offering both open and endovascular repair. Arch. Surg. 2008, 143, 544–549. [Google Scholar] [CrossRef]
The δ index vs. body side | Anatomical Study | ||||
N—Right | N—Left | Mean (±SD) Value Right | Mean (±SD) Value Left | p-Value | |
39 | 41 | 0.95 (±0.23) | 0.94 (±0.23) | 0.8531 | |
Radiological Study | |||||
N—Right | N—Left | Mean (±SD) Value Right | Mean (±SD) value left | p-Value | |
100 | 100 | 0.89 (±0.21) | 0.89 (±0.27) | 0.9480 |
The δ index vs. sex | Anatomical Study | ||||
N—Male | N—Female | Mean (±SD) Value Male | Mean (±SD) Value Female | p-Value | |
46 | 34 | 0.88 (±0.18) | 1.04 (±0.26) | 0.0031 | |
Radiological Study | |||||
N—Male | N—Female | Mean (±SD) Value Male | Mean (±SD) value female | p-Value | |
142 | 58 | 0.80 (±0.17) | 1.12 (±0.23) | 0.0000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łabętowicz, P.; Zielinska, N.; Pilewski, D.; Olewnik, Ł.; Ruzik, K. New Clinical View on the Relationship Between the Diameter of the Deep Femoral Artery and Sex: Index δ-Anatomical and Radiological Study. Biomedicines 2025, 13, 1428. https://doi.org/10.3390/biomedicines13061428
Łabętowicz P, Zielinska N, Pilewski D, Olewnik Ł, Ruzik K. New Clinical View on the Relationship Between the Diameter of the Deep Femoral Artery and Sex: Index δ-Anatomical and Radiological Study. Biomedicines. 2025; 13(6):1428. https://doi.org/10.3390/biomedicines13061428
Chicago/Turabian StyleŁabętowicz, Piotr, Nicol Zielinska, Dawid Pilewski, Łukasz Olewnik, and Kacper Ruzik. 2025. "New Clinical View on the Relationship Between the Diameter of the Deep Femoral Artery and Sex: Index δ-Anatomical and Radiological Study" Biomedicines 13, no. 6: 1428. https://doi.org/10.3390/biomedicines13061428
APA StyleŁabętowicz, P., Zielinska, N., Pilewski, D., Olewnik, Ł., & Ruzik, K. (2025). New Clinical View on the Relationship Between the Diameter of the Deep Femoral Artery and Sex: Index δ-Anatomical and Radiological Study. Biomedicines, 13(6), 1428. https://doi.org/10.3390/biomedicines13061428