Next Article in Journal
New and Emerging Biomarkers in Chronic Kidney Disease
Previous Article in Journal
Advancing Precision in IBD Care: Innovations in Diagnosis, Monitoring, and Multidisciplinary Management
Previous Article in Special Issue
Trends and Disparities in Cardiovascular Disease in US Adults with Metabolic Dysfunction-Associated Steatotic Liver Disease
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Orchestration of Gut–Liver-Associated Transcription Factors in MAFLD: From Cross-Organ Interactions to Therapeutic Innovation

1
Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
2
Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
*
Authors to whom correspondence should be addressed.
These authors contributed equally to this work.
Biomedicines 2025, 13(6), 1422; https://doi.org/10.3390/biomedicines13061422
Submission received: 30 April 2025 / Revised: 30 May 2025 / Accepted: 7 June 2025 / Published: 10 June 2025
(This article belongs to the Special Issue New Insights Into Non-Alcoholic Fatty Liver Diseases)

Abstract

:
Metabolic dysfunction-associated fatty liver disease (MAFLD) represents a global health burden, however, therapeutic advancements remain hindered by incomplete insights on mechanisms and suboptimal clinical interventions. This review focused on the transcription factors (TFs) associated with the gut–liver axis, emphasizing their roles as molecular interpreters of systemic crosstalk in MAFLD. We delineate how TF networks integrate metabolic, immune, and gut microbial signals to manage hepatic steatosis, inflammation, and fibrosis. For instance, metabolic TFs such as peroxisome proliferator-activated receptor α (PPARα) and farnesoid X receptor (FXR) are responsible for regulating lipid oxidation and bile acid homeostasis, while immune-related TFs like signal transducer and activator of transcription 3 (STAT3) modulate inflammatory cascades involving immune cells. Emerging evidence highlights microbiota-responsive TFs, like hypoxia-inducible factor 2α (HIF2α) and aryl hydrocarbon receptor (AHR), linking microbial metabolite signaling to hepatic metabolic reprogramming. Critically, TF-centric therapeutic strategies, including selective TF-agonists, small molecules targeted to degrade TF, and microbiota modulation, hold considerable promise for treating MAFLD. By synthesizing these insights, this review underscores the necessity to dissect TF-mediated interorgan communication and proposes a roadmap for translating mechanism discoveries into precision therapies. Future research should prioritize the use of multi-omics approaches to map TF interactions and validate their clinical relevance to MAFLD.

1. Introduction

Metabolic dysfunction-associated fatty liver disease (MAFLD) has emerged as a leading cause of chronic liver disease and affects approximately 30% adults worldwide, with its prevalence rising in parallel with obesity and type 2 diabetes [1,2]. Current therapies, including lifestyle modifications and conventional medications, exhibit constrained therapeutic outcomes due to suboptimal patient compliance and side effects [3,4]. These highlight the imperative to elucidate the molecular mechanisms governing pathophysiological abnormalities of MAFLD, particularly those integrating systemic metabolic crosstalk.
The gut–liver axis constitutes a critical regulatory interface in MAFLD progression, characterized by dynamic interactions between the gut microbial metabolites, intestinal barrier integrity, and hepatic metabolic reprogramming. The pathological overproliferation of Clostridium spp. drives the excessive accumulation of deoxycholic acid (DCA) through upregulated 7α-dehydroxylase activity, thereby exacerbating hepatocellular injury [5]. Conversely, the microbial metabolites acetate and hyodeoxycholic acid translocate to the liver via the gut–liver axis, where they respectively suppress transcription factor (TF) signal transducer and activator of transcription 3 (STAT3) and activate TF peroxisome proliferator-activated receptor α (PPARα), ameliorating the progression of MAFLD [6,7]. These findings validate the axis as a therapeutic nexus and also underscore the necessity of exploring TFs that mediate the bidirectional signaling.
TFs are DNA-binding proteins that regulate gene expression by recruiting co-activators or repressors. In MAFLD, TFs act as molecular switches, translating extracellular cues (e.g., nutrients, microbial metabolites) into transcriptional programs governing lipid metabolism, immune responses, and fibrogenesis [8,9]. TFs also serve as pivotal molecular mediators in systemic crosstalk due to their capacity to decode and integrate signals from diverse organs including the gut and liver. Despite extensive reviews on MAFLD pathogenesis, comprehensive analyses of TF networks orchestrating gut–liver interactions remain sparse. Existing literature has predominantly focused on isolated pathways (e.g., lipid metabolism or inflammation), overlooking the integrative roles of TFs in synchronizing metabolic, immune, and microbial signals. For instance, in MAFLD, TFs such as PPARα and farnesoid X receptor (FXR) are classical molecular integrators of gut–liver axis signaling. PPARα activation orchestrates fatty acid oxidation (FAO) to counteract lipid accumulation, while FXR coordinates bile acid (BA) homeostasis through enterohepatic circulation and suppresses inflammation via modulation of the intestinal barrier [10,11,12]. A systematic search of the PubMed/Scopus databases (2020–2025) was conducted using the keywords MAFLD, NAFLD, transcription factor, gut–liver axis, metabolism, lipogenesis, steatosis, inflammation, fibrosis, immune signaling, microbiota, therapeutics, some specific metabolites, and TFs (e.g., PPAR, FXR). The inclusion criteria prioritized experimental studies (in vitro, in vivo) and clinical trials directly linking TFs to MAFLD pathogenesis or therapy. This review systematically delineated the molecular mechanisms through which gut–liver-associated TFs mediate metabolic adaptation, inflammation, and the intestinal microenvironment of MAFLD. By elucidating their roles as molecular interpreters of interorgan crosstalk, this article provides a conceptual framework for the development of TF-targeted therapies to restore homeostasis in MAFLD.

2. Metabolism-Related TFs in MAFLD

MAFLD is characterized by multifaceted metabolic disturbances including dysregulated lipid accumulation and impaired glucose homeostasis [13,14]. Central to these processes are metabolism-associated TFs, which orchestrate gene networks governing lipogenesis, lipid oxidation, and BA synthesis. Understanding these TFs provides critical insights into therapeutic strategies targeting metabolic reprogramming in MAFLD (Figure 1).

2.1. PPARs

PPARs, including PPARα, PPARβ/δ, and PPARγ, bind to peroxisome proliferator response elements in the promoter regions of target genes and are activated by unsaturated fatty acids and derivatives from the diet, lipogenesis, or lipolysis. PPARα is expressed mainly in the liver and regulates FAO and lipoprotein metabolism. In MAFLD, PPARα suppresses hepatic steatosis by upregulating genes involved in β-oxidation (CPT1A, carnitine palmitoyltransferase 1A; ACOX1, acyl-CoA oxidase 1) and inhibiting de novo lipogenesis (DNL) (Table 1) [15]. PPARα activation also reduces lipid uptake and very low-density lipoprotein (VLDL) secretion via the transcriptional regulation of CD36 and microsomal triglyceride transfer protein (MTTP) [16]. Hepatic PPARα-deficient mice have aggravated liver steatosis and inflammation, with hyperlipidemia [17]. Similarly, the nuclear factor of activated T-cells c4 inhibition attenuated metabolic dysfunction-associated steatohepatitis (MASH) by relieving PPARα suppression, enhancing FAO [18].
Notably, PPARα interacts with other TFs, further influencing lipid metabolism. In methionine-choline-deficient (MCD) diet-induced MAFLD, PPARα activation reduced lipid accumulation and inflammation via the AMP-activated protein kinase (AMPK)-mediated inhibition of mechanistic target of rapamycin (mTOR)/sterol regulatory element binding protein-1c (SREBP1c) signaling. Meanwhile, Krüppel-like factor 10 (KLF10) activates PPARα, improving glucose tolerance and reducing liver triglycerides (TGs). KLF16 enhances FAO by directly binding to the PPARα promoter, and its overexpression activates PPARα-targeted genes, improving mitochondrial function and insulin sensitivity [49]. Transcription factor EB (TFEB) upregulates PPARα to promote FAO [50]. Activating transcription factor 3 (ATF3) promotes lipogenesis under metabolic stress and worsens lipid accumulation and fibrosis via PPARα inhibition [51].
PPARα agonists enhance fibroblast growth factor 21 (FGF21) secretion, which promotes adipose tissue browning and systemic lipid oxidation [52]. PPARα agonists (pemafibrate and elafibranor) also improve insulin sensitivity, lower TGs, and reduce hepatic inflammation and fibrosis in preclinical models [53,54]. However, clinical trials with PPARα agonists show mixed efficacy, necessitating selective modulators to optimize therapeutic outcomes [53].
PPARβ/δ is widely expressed in the body and enhances FAO and energy uncoupling. Its expression is reduced in the livers of MAFLD patients [55]. Studies in PPARβ/δ-deficient mice showed increased fat accumulation, while transgenic mice had enhanced FAO in adipose tissue [56]. PPARδ also lowers the apoC-III and VLDL receptors, and increases apoA-II [20]. Specific agonists such as GW501516 increased HDL-C and reduced LDL-C and TG in obese monkeys with insulin resistance, suggesting its potential for treating MAFLD [57]. Additionally, PPARβ/δ activation in the liver of mice also prevents the expression of SREBP1c [58].
PPARγ, highly expressed in adipose tissue, regulates adipocyte differentiation, lipid uptake, and energy storage. In preclinical models, PPARγ overexpression exhibits protective effects by reducing hepatic steatosis, inflammatory infiltration, and fibrotic remodeling [59]. PPARγ agonists promote lipid redistribution, facilitating TG mobilization from hepatocytes to adipocytes [21], and reduce blood fatty acids, TG, LDL, and cholesterol by promoting lipid metabolism in adipose tissue [60].
Paradoxically, clinical observations have revealed elevated hepatic PPARγ expression in MASH cases [61,62], and PPARγ-deficient murine models exhibit resistance to diet-induced MASH [22]. This contradiction requires a meticulous dissection of the effects on different cells (hepatocytes and Kupffer cells) and transcriptional crosstalk with parallel regulatory networks.
PPARα/γ agonists like saroglitazar improve insulin resistance, suppress SREBP1c-mediated lipogenesis, and attenuate oxidative stress via nuclear factor erythroid 2 like 2 (NRF2) activation, demonstrating efficacy in preclinical steatosis and fibrosis models [63]. The pan-PPAR agonist lanifibranor reduces hepatic inflammation and fibrosis and improves glucose tolerance, highlighting their therapeutic versatility [64].

2.2. SREBP1c

SREBP1c binds to sterol regulatory element 1 in the promoters of sterol biosynthesis-related genes such as low-density lipoprotein receptor (LDLR). Meanwhile, SREBP1c targets genes such as fatty acid synthase (FASN), ATP citrate lyase (ACLY) and elongation of very long-chain fatty acid-like 6 (ELOVL6), thereby transcriptionally activating fatty acid biosynthesis [65].
In MAFLD, insulin resistance and fructose intake activate SREBP1c, increasing the expression of lipogenic enzymes FASN and acetyl coenzyme A carboxylase (ACC). Overexpression of SREBP1c increases DNL, leading to hepatic steatosis [66]. AMPK activation suppresses SREBP1c, improving insulin sensitivity and lipid oxidation [24,67]. The pharmacological inhibition of SREBP1c (ugonin J or 25-hydroxylanosterol) ameliorates steatosis by suppressing lipid synthesis and enhancing FAO [68,69].
Post-translational modifications modulate SREBP1c activity. Phosphorylation of SREBP1c competes with its ubiquitination, exacerbating hepatic steatosis, whereas the pharmacological inhibition of phosphorylation significantly downregulates SREBP1c expression, ameliorating lipid deposition [70]. In MAFLD, hepatic snail family transcriptional repressor 2 (Snai2/Slug) epigenetically enhances SREBP1c transcription via histone demethylation, exacerbating lipid accumulation [25].
Notably, crosstalk exists between PPARα and SREBP1c. Under fasting conditions, PPARα promotes FAO to acetyl-CoA and ketone bodies, concomitant with reduced SREBP1c expression. The SREBP1c promoter contains a liver X receptor (LXR) binding site, and PPAR overexpression suppresses SREBP1c via LXR [71]. Conversely, during refed states, SREBP1c-driven lipogenesis is upregulated while PPARα activity declines [72]. In addition, transcription factor E3 (TFE3) antagonizes SREBP1c to reduce DNL by inhibiting its proteolytic activation and chromatin binding [73]. TFEB also suppresses SREBP1c to alleviate hepatic steatosis.

2.3. CHREBP

High-carbohydrate diets upregulate carbohydrate response element binding protein (CHREBP), promoting DNL and insulin resistance [74]. CHREBP mediates carbohydrate-induced lipogenesis by activating genes like FASN, stearoyl coenzyme A desaturase 1 (SCD-1), lipin 1 (LPIN1), and ACLY [75]. CHREBP activation in hepatocytes elevated serum S100A6, which suppressed mitochondrial respiration and insulin secretion. The pharmacological inhibition of CHREBP/S100A6 could mitigate β-cell dysfunction in MAFLD [76]. Knockdown of CHREBP normalizes DNL-related gene expression (FASN, ACC) and reduces 40% DNL [77].
Emerging evidence indicates that the hepatic overexpression of CHREBP directly induces hepatic steatosis, whereas the liver-specific suppression of CHREBP in obese murine models attenuates body weight gain, redirects glucose flux toward glycogen synthesis, and mitigates lipid accumulation in the liver [29,78].
CHREBP also interacts with PPARγ to amplify lipid storage, contributing to MAFLD progression [79]. Notably, other TFs have been shown to alter the transcriptional activity of CHREBP [80]. Transcription factor 7-like 2 (TCF7L2) suppresses CHREBP O-GlcNAcylation and liver-specific Tcf7l2 knockout mice exhibit exacerbated steatosis on high-carbohydrate diets due to unrestrained DNL [81].

2.4. CREBH

CAMP-responsive element-binding protein H (CREBH) exhibits highly tissue specificity, which is mainly expressed in the liver and is slightly expressed in the small intestine [82]. It binds to both cAMP response elements and box-B-like motifs within the promoter regions of target genes [83].
Under a high-fat diet (HFD), CREBH activation reduces hepatic lipid accumulation and ameliorates histopathological features of steatohepatitis [84]. Mechanistically, CREBH releases a C-terminal fragment that activates lipoprotein lipase. Elevated CREBH-C in obese individuals correlates with improved lipid homeostasis [31]. Furthermore, CREBH directly interacts with the promoter sequences of apoC2-5 and FGF21, enhancing their expression. ApoC2-5 facilitates TG catabolism and clearance [31], while FGF21 promotes FAO and brown adipose tissue thermogenesis [32].
Beyond hepatic functions, intestinal CREBH exerts cholesterol-lowering effects by targeting the promoter of Niemann–Pick C1-like 1 (NPC1L1), a key mediator of intestinal cholesterol absorption. CREBH-mediated suppression of NPC1L1 inhibits dietary cholesterol uptake, enhances intestinal cholesterol efflux, and consequently mitigates hypercholesterolemia [33].

2.5. FXR

FXR is highly expressed in both the liver and intestine. Upon binding to BAs such as endogenous chenodeoxycholic acid (CDCA) and cholic acid (CA), FXR stimulates FGF19/FGFR4 signaling to suppress key enzymes in BA biosynthesis including cytochrome P450 family 7 subfamily A member 1 (CYP7A1) and cytochrome P450 family 8 subfamily B member 1 (CYP8B1) [85]. FGF19, a hormone synthesized in ileal enterocytes under the dual activation of BAs and FXR, enters the liver via portal circulation. There, it binds to FGFR4 and other receptors to feedback-inhibit BA synthesis, reducing hepatic lipid overload [86]. FXR agonists such as obeticholic acid, tropifexor, and cilofexor elevate circulating FGF19 levels. Notably, non-steroidal agonists targeting intestinal FXR alter the BA composition (the ratio of CA to taurocholic acid) to inhibit the absorption of polyunsaturated fatty acids and subsequently reduce hepatic TG accumulation [34].
MAFLD patients exhibit gut dysbiosis with increased taurine/glycine-metabolizing bacteria, which elevates secondary BA production. Specifically, elevated levels of FXR-antagonistic DCA and reduced FXR-agonistic CDCA impair FXR signaling. Concomitantly, the serum FGF19 levels are diminished in these patients, while primary and secondary BA concentrations are elevated [87]. FXR knockout mice exhibit elevated serum and hepatic TG, cholesterol, and free FA.
Furthermore, hepatic FXR suppresses the generation of monounsaturated fatty acids [34] and enhances the activity of PPARα, collectively reducing TGs. Additionally, FXR suppresses the transcriptional regulation effects of CHREBP by competitively binding to the promoter region of the key glycolytic enzyme, pyruvate kinase 1 [88]. FXR also induces the small heterodimer partner pathway to inhibit SREBP1c, thus reducing hepatic TG synthesis [89].
Paradoxically, antagonizing intestinal FXR suppresses the ceramide-SREBP1c-mediated DNL, thereby mitigating hepatic lipid accumulation. Discrepancies across studies may arise from variations in experimental models, the impact of interventions on BA pools, and differences in intestinal FXR activity under distinct pathological conditions [90].

2.6. PXR

Pregnane X receptor (PXR) shows a crucial endobiotic function in the regulation of lipid metabolism. PXR induces S14, LPIN1, SLC13A5, etc. to promote lipogenesis [91], and targets CD36 and PPARγ to increase lipid accumulation [92]. Constitutively activated PXR mice have hepatic steatosis, and the activation of PXR in human hepatocytes has increased intracellular lipid accumulation [93]. Genetic ablation of PXR suppresses c-Jun and LPIN1, leading to enhanced mitochondrial β-oxidation and reduced hepatic lipogenesis [94].
Notably, its activity strongly correlates with the severity of MAFLD [95]. PXR activation by phosphatidylcholine exacerbates MAFLD by upregulating SLC27A4, which enhances fatty acid uptake and TG synthesis [36]. PXR knockout promotes metabolic reprogramming through the upregulation of PPARα and FGF15 signaling, augmenting energy expenditure while diminishing intestinal lipid absorption [96]. PXR also binds to forkhead box A2 (FOXA2), preventing the binding to its target genes CPT1a and 3-hydroxy-3-methylglutaryl-coa synthase 2 (HMGCS2), to reduce β-oxidation [97].

2.7. LXR

LXR is commonly expressed in various tissues. In hepatic metabolism, LXR has opposite pharmacodynamic effects, promoting lipid deposition and lowering cholesterol. Increased LXR expression promotes the deterioration of MASH by upregulating SREBP1c, FASN, SCD-1, and ACC [37]. The LXR inverse agonist SR9238 reduces hepatic steatosis in the MAFLD model [98].
However, LXR also increases the fecal excretion of BAs by targeting ATP binding cassette subfamily A member 1 (ABCA1) and ATP binding cassette subfamily G member 1 (ABCG1) [99]. The pharmacological activation of LXR regulates cholesterol homeostasis and increases insulin sensitivity via upregulating ABCG5/G8 [38].

2.8. AHR

Aryl hydrocarbon receptor (AHR) targets multiple key enzymes in lipid metabolism, exacerbating diet-induced obese (DIO) and fibrosis. For instance, AHR binds to dioxin-response elements within the promoter region of the gene Scd1, thereby enhancing monounsaturated fatty acid synthesis [100]. Additionally, AHR induces the expression of fatty acid transport-related genes including CD36, LDLR, VLDLR, and FABP4, facilitating hepatic fatty acid uptake to exacerbate hepatic lipid overload [101]. Mice with liver-specific Ahr overexpression develop spontaneous steatosis and exhibit increased fatty acid intake, CD36 expression, and decreased VLDL-TG secretion [102].
In MAFLD, the AHR inhibitor downregulates the downstream molecules CYP1a1 and TNF-α and reduces oxidative stress and insulin resistance [103]. Notably, whole-body or preadipocyte Ahr-deficient mice exhibit complete resistance to hepatic steatosis and DIO [39], whereas this protective effect is not observed in hepatocyte-specific Ahr knockout models [104]. These findings suggest that AHR has important cell type-specific functions.

2.9. THR-β

Thyroid hormone receptor β (THR-β) is mainly expressed in the liver and binds to thyroid hormone response elements. THR promotes mitochondrial fatty acid uptake and β-oxidation by upregulating CPT1A and medium-chain acyl-coenzyme A dehydrogenase. Notably, THR-β downregulates the expression of SCD-1 and glycerol-3-phosphate acyltransferase-3, which are involved in the hepatic synthesis of TG, while stimulating the expression of adipogenic genes (FA synthase, ACC-α, SREBP1c, and Carbohydrate-responsive element-binding protein). The available evidence supports that THR-β-induced hepatic lipolysis is greater than hepatic lipid synthesis. Therefore, FA production does not result in hepatic TG accumulation [105].
Furthermore, THR-β upregulates 3-hydroxy-3-methylglutaryl coenzyme A reductase, increasing hepatic cholesterol synthesis. However, at the same time, it directly recruits to the LDL-R promoter to increase LDL-R expression, clearing cholesterol from the circulation. Overall, THR-β decreases the circulating cholesterol concentrations.
The expression of THR-β in the liver of MASH patients and HFD-fed mice is reduced [106]. THR-β reduces hepatic steatosis and inflammation in both obesity and MASH models. The agonist resmetirom reduces liver weight, hepatic steatosis. and liver enzymes [40].

2.10. HNF4α

Hepatocyte nuclear factor 4 α (HNF4α) governs lipid transport by regulating apoB and MTTP, critical for VLDL secretion and HDL metabolism [107]. Meanwhile, HNF4α modulates insulin sensitivity via glucose-6-phosphatase catalytic and phosphoenolpyruvate carboxykinase.
HNF4α expression is reduced in both MAFLD patients and mice models [108]. Its ablation in mice leads to hepatic steatosis and reduced HDL levels [109], while its overexpression has the opposite effects [110]. Additionally, KLF10 enhances lipid oxidation and suppresses lipogenesis by stabilizing HNF4α [111].

2.11. FOX

Forkhead box O1 (FOXO1) drives gluconeogenesis and integrates insulin signaling and lipid metabolism. An increased hepatic expression of FOXO1 was found in insulin-resistant livers, accompanied by increased glucose production and fat deposition [112]. Furthermore, hepatic FOXO1 activation by insulin resistance promotes gluconeogenesis and lipogenesis, exacerbating MAFLD. Adipocyte-specific Foxo1 deletion in mice reduces 5-lipoxygenase expression and leukotriene B4 production, improving systemic insulin sensitivity and attenuating hepatic steatosis [43]. Moreover, increased PPARα expression interferes with the binding of FOXO1 to the target DNA promoter and reduces their expression [113].
FOXA2 regulates mitochondrial FAO by upregulating CPT2. In MAFLD, insulin signaling suppresses FOXA2 nuclear translocation, impairing lipid oxidation. The overexpression of family with sequence similarity 3 member A (FAM3A), which activates FOXA2 via CaM-dependent pathways, reduces hepatic TG and endoplasmic reticulum (ER) stress. Imipramine, an antidepressant, enhances FOXA2 activity, ameliorating steatosis in obese mice [44].

2.12. HIF2α

Hepatic hypoxia-inducible factor 2α (HIF2α) participates in lipid metabolism by upregulating the fatty acid synthesis genes sterol regulatory element binding transcription factor 1 and FASN as well as fatty acid uptake gene CD36 while downregulating β-oxidation genes PPARα and ACOX1 [46]. Under normoxic conditions, HIF2α undergoes rapid degradation mediated by prolyl hydroxylase domain enzymes (PHDs). However, under hypoxic conditions, PHD activity is suppressed, allowing for HIF2α stabilization. Hepatic-specific disruption of PHD2 and PHD3 triggers HIF2α overexpression and exacerbates hepatic steatosis [45].

2.13. MYC

Myelocytomatosis (MYC) promotes lipogenesis and suppresses FAO. MYC induces SREBP1, and their coordinated activation promotes fatty acid synthesis, driving fatty acid chain elongation from glucose and glutamine-derived carbon sources [114].
Elevated MYC expression is observed in ileal biopsies from individuals with obesity. Intestinal MYC deletion in mice ameliorates DIO, insulin resistance, and hepatic steatosis by enhancing glucagon like peptide 1 (GLP-1) secretion and reducing ceramide [47]. GLP-1, a gut-derived incretin hormone, potentiates glucose-stimulated insulin secretion while suppressing appetite and delaying gastric emptying [115]. Furthermore, MYC directly targets ceramide synthase 4, thereby activating de novo ceramide synthesis. Ceramide significantly upregulates fatty acid uptake and synthesis via the direct modulation of CD36 and SREBP1c [116]. Exogenous ceramide administration exacerbates metabolic dysfunction in murine models [117].
In addition to the TFs above-mentioned, there are also other TFs that have shown potential for targeting MAFLD, although they are currently understudied. For instance, zinc-finger protein regulator of apoptosis and cell-cycle arrest 1 (ZAC1), an imprinted gene network regulator, is upregulated in juvenile MAFLD models. Postnatal ZAC1 overexpression drives hepatic fibrosis via TGF-β1 and collagen type VI α2 activation [48]. Hepatocyte-specific Zac1 overexpression induces profibrogenic pathways, while its inhibition ameliorates steatosis. ZAC1 represents a potential target for early-life MAFLD prevention.
Collectively, PPARα, SREBP1c, FXR, LXR, etc. form an interdependent regulatory network coordinating hepatic lipid oxidation, bile acid flux, and lipogenesis. Dysregulation in any node disrupts metabolic homeostasis, as evidenced by PPARα downregulation exacerbating steatosis while FXR agonism ameliorates it. However, contradictory outcomes (e.g., LXR effects) highlight context-dependent TF functions. Critical knowledge gaps persist regarding: (1) Compensatory mechanisms among metabolic TFs during MAFLD progression and (2) Organ-specific crosstalk (e.g., adipose-liver PPARγ signaling). Future studies should employ tissue-specific knockout models to resolve these complexities.

3. Inflammation and Immune-Related TFs in MAFLD

The immune system is pivotal in maintaining homeostasis and orchestrating regulatory mechanisms of the gut–liver axis. The hepatic microenvironment, where fat accumulates, leads to stress in hepatocytes, activating inflammatory signals and immune cells. In turn, inflammation exacerbates liver injury and metabolic disorders, accelerating MAFLD progression. Notably, in MAFLD, macrophage polarization (M1 pro-inflammatory vs. M2 anti-inflammatory phenotypes) also critically influences gut–liver crosstalk [118]. M1 macrophages exacerbate intestinal permeability via TNF-α, promoting hepatic inflammation, while M2 macrophages mitigate damage through IL-10. STAT3, for instance, regulates this balance by modulating cytokine signaling in Kupffer cells. TFs fulfill a pivotal function in these processes (Figure 2).

3.1. PPARs

In MAFLD, PPARα activation ameliorates inflammation in HFD-fed mice by reducing lipid accumulation and oxidative stress (Table 2) [119]. PPARδ enhances mitochondrial function and anti-inflammatory responses and reduces IL-1β, F4/80, and NLR family pyrin domain containing 3 (NLRP3) and enhances M2 macrophage polarization [120]. The PPARδ agonism GW0742 attenuates pro-inflammatory cytokine expression in HepG2 cells and elafibranor reduces fibrosis and inflammation in phase III trials for MASH [121]. Additionally, experimental evidence demonstrates that PPARγ attenuates inflammation through the transcriptional repression of the NF-κB and STAT signaling pathways [122], and its activation in hepatic stellate cells (HSCs) suppresses TGF-β1, with a 58% α-smooth muscle actin (α-SMA) reduction [123].

3.2. FXR

In MCD diet-induced MAFLD, FXR activation attenuates oxidative stress and HSC activation by regulating the BA synthesis pathways [126]. Similarly, DWN12088 ameliorated MASH by enhancing FXR-mediated suppression of TGF-β/SMAD family member (Smad)2/3 signaling, thereby reducing HSC activation [135], while hepatocyte-specific Fxr knockout exacerbated fibrosis by upregulating TGF-β/Smad3 signaling [136]. FXR also suppresses NLRP3 and NF-κB signaling, reducing pro-inflammatory cytokines (TNF-α, IL-6) and chemokines (monocyte chemoattractant protein-1, MCP-1) in hepatocytes and macrophages, and promotes macrophage polarization toward anti-inflammatory phenotypes [125]. Intestinal FXR activation prevents ileal CD8+ T cell infiltration and improves gut barrier function via G protein-coupled bile acid receptor 1 (GPBAR1)-dependent IL-10 production [137].

3.3. STAT3

STAT3 mediates pro-inflammatory and fibrogenic signaling in MAFLD. Transcriptomic analyses of human MAFLD biopsies and CCl4-induced fibrosis models have revealed that STAT3 correlates with fibrosis severity [138]. Once activated, STAT3 promotes the transcription of pro-inflammatory (IL-1β) and fibrotic genes (tissue inhibitor of metalloproteinases 1 (Timp-1), α-SMA, and zinc finger e-box binding homeobox 2 (Zeb2)) [6], while hepatocyte-specific STAT3 deletion ameliorates fibrosis by suppressing α-SMA and TIMP-1.
Meanwhile, spatial transcriptomic profiling in MASH models revealed activated STAT3 enrichment in hepatic progenitor cells (HPCs), where it sustains HPC expansion and fibrotic progression [138]. STAT3 in Kupffer cells drives IL-17 production, amplifying neutrophil infiltration and fibrosis [128]. IL-17 further upregulates STAT3 phosphorylation in hepatocytes, promoting TGF-β1 secretion and HSC activation [127]. Pharmacological STAT3 inhibitors (napabucasin) ameliorate MASH by suppressing pro-inflammatory macrophage polarization. Targeting STAT3 signaling may disrupt the crosstalk between HSCs and immune cells in MASH.
Notably, there is also evidence confirming that STAT3 acts as an anti-inflammatory signal in MAFLD. The protective effect of IL-22 against diet-induced MAFLD depends on the activation of STAT3 in the intestinal epithelial cells. The therapeutic activation of STAT3 via IL-22 administration improves insulin sensitivity and resolves steatosis and inflammation in diet-induced MAFLD models [129]. IL-6 ameliorates fatty liver in obese mice by promoting STAT3 phosphorylation [139]. Immunosuppressive function of the IL10/STAT3 axis promotes M2 polarization in the ileum [140] and reduces intestinal permeability and subsequent hepatic inflammation [129].
STAT3 also has anti-apoptotic effects. Janus kinase 2/STAT3 signaling in hepatocytes reduced apoptosis by enhancing anti-apoptotic effectors BCL2 like 1 (Bcl-xL) and myeloid cell leukemia 1 (Mcl-1) expression, while STAT3 deficiency exacerbated liver injury [141]. In summary, STAT3 displays complex biological effects in MAFLD. Whether STAT3 activation exacerbates or alleviates disease depends on the cell type in which STAT3 is activated and the model of liver injury.

3.4. NRF2

NRF2 mitigates oxidative stress by binding to antioxidant response elements to upregulate detoxifying and antioxidant genes (Superoxide dismutase 2 (SOD2), Heme oxygenase 1 (HO-1), and NAD(P)H quinone dehydrogenase 1 (NQO1)). NRF2 activation via puromycin-sensitive aminopeptidase (PSA) or dimethyl fumarate reduces reactive oxygen species (ROS), IL-6, and TNF-α, and suppresses lipogenic pathways in MAFLD models [130,142,143]. PSA deficiency exacerbates steatosis by impairing NRF2-mediated antioxidant responses, and high-fat diets suppress NRF2 via promoting autophagy impairment and ubiquitination [144].
NRF2 agonists also restore the glutathione levels, counteracting redox imbalance in diet-induced steatosis [145]. In addition, it inhibits gasdermin D expression, reducing hepatocyte pyroptosis and lipid peroxidation [146]. NRF2 enhancers like bardoxolone methyl are under clinical evaluation for MASH due to their anti-inflammatory and antifibrotic effects [147].

3.5. IRF1

Interferon regulatory factor 1 (IRF1) exacerbates MAFLD by promoting lipogenesis and oxidative stress. In hepatocytes, IRF1 directly upregulates Oxysterol binding protein like 3 (Osbpl3), DNA damage inducible transcript 4 (Ddit4), and C-C motif chemokine ligand 2 (Ccl2), driving lipid accumulation and inflammation [131]. IRF1 drives macrophage ferroptosis in MASH by binding to the SLC7A11 promoter, reducing glutathione synthesis by 68%. Meanwhile, IRF1 suppresses AMPK-TFEB-mediated autophagy, impairing lipid clearance and aggravating hepatic steatosis [132]. The inhibition of IRF1 reduces NLRP3 inflammasome activation, collagen deposition, and enhances FAO, suggesting its potential as a therapeutic target.

3.6. NR4A

Nuclear receptor subfamily 4 group A (NR4A) regulates intrahepatic T-cell responses and macrophage polarization. In MAFLD, Nr4a-deficient mice exhibit exacerbated liver fibrosis due to impaired Kupffer cell survival and enhanced monocyte-derived macrophage recruitment. NR4A deletion in T cells promotes the clonal expansion of pro-inflammatory Th1/Th17 cells but reduces regulatory T-cell activity, worsening hepatic inflammation [133]. NR4A agonists suppress NF-κB, TNF-α, and IL-6 in macrophages, highlighting their potential as anti-inflammatory targets in MASH.

3.7. TFEB

TFEB coordinates lysosomal biogenesis and autophagy by regulating genes such as Lysosomal associated membrane protein 1 (Lamp1), Cathepsin B (CTSB), and Microtubule associated protein 1 light chain 3 beta (Map1lc3b). Hepatic TFEB activation reduced hepatic TG and NLRP3 expression in CCl4-treated mice by promoting autophagic flux [148]. In macrophages, TFEB suppresses NLRP3 inflammasome activation by clearing damaged mitochondria and ROS [144]. TFEB overexpression in murine models restores Kupffer cell efferocytosis, decreasing necroinflammation and fibrosis [134]. Small-molecule TFEB activators, like trehalose, are under investigation for MAFLD therapy.
Collectively, immune-related TFs exhibit intricate cross-regulation in MAFLD inflammation. Unresolved questions include: (1) Temporal hierarchy of TF activation during MASH transition; and (2) Gut microbiome-TF crosstalk in extrahepatic immune priming. Single-cell transcriptomics across disease stages could delineate spatially-resolved inflammatory networks.

4. Microbiota and Metabolite-Related TFs in MAFLD

In healthy states, Firmicutes and Bacteroidetes dominate the gut microbiota, producing short-chain fatty acids (SCFAs) that activate anti-inflammatory TFs like AHR. Conversely, Proteobacteria and Fusobacteria are more abundant [118] and alpha diversity is reduced in MAFLD, with elevated ethanol-producing bacteria such as Klebsiella pneumoniae and Limosilactobacillus fermentum [149]. MAFLD-associated dysbiosis enriches Pseudomonadota and Enterobacteriaceae, generating lipopolysaccharides (LPSs) that activate pro-inflammatory NF-κB, exacerbating hepatic steatosis [150]. Meanwhile, studies in both patients and murine models have consistently demonstrated elevated intestinal permeability in MAFLD cohorts [151,152]. MAFLD patients exhibit a higher prevalence of intestinal bacterial overgrowth compared with healthy controls [153], with metagenomic sequencing revealing an increased abundance of Escherichia coli and Bacteroides vulgatus [154].
Beyond microbial composition, microbial-derived metabolites significantly influence the gut–liver axis. For example, SCFAs produced by microbiota maintain epithelial barrier integrity. Both human and animal studies have identified reduced intestinal choline bioavailability and the increased portal venous influx of trimethylamine as key features associated with hepatic steatosis (Figure 3).

4.1. PPARs

The PPARα/δ agonist restores the expression of tight junction proteins claudin-1 and occludin, thereby ameliorating intestinal integrity and attenuating MASH (Table 3) [140]. Concurrently, the gut microbiota modulates PPAR activity in MASH. Administration of Lactobacillus casei enhances hepatic PPARγ activity, which suppresses TLR4 signaling and reduces hepatic steatosis [155]. Similarly, Lactobacillus plantarum FRT10 alleviates HFD-induced obesity in mice by activating PPARα [156]. Polysaccharide intervention in MASH models increases the abundance of butyrate-producing bacteria, including Lachnospiraceae and Clostridium, while activating the intestinal PPARβ pathway [157].
SCFAs, predominantly acetate synthesized by Bifidobacterium and Lactobacillus, regulate intestinal pH, promote beneficial microbial growth, and inhibit pathogenic colonization. Reduced SCFAs are consistently observed in clinical MAFLD cohorts and experimental models. SCFAs activate PPARγ, which prevents hepatic lipid accumulation via the uncoupling protein 2-AMPK pathway [164]. Supplementation with α-cyclodextrin elevates SCFA-producing bacteria (Paenibacillus, Bifidobacterium, and Lactobacillus) and upregulates PPARβ/γ expression, modulating adipocyte differentiation and energy expenditure to improve MASH pathology [158].

4.2. FXR

Gut microbiota-derived BAs, such as CDCA, activate intestinal FXR, triggering FGF15/19 secretion, which suppresses hepatic BA synthesis via hepatic FGFR4 signaling [165].
In addition, intestinal FXR enhances the expression of intestinal tight junction proteins and regulates microbiota composition [166]. In MASH patients, upregulated markers of gut–vascular barrier (GVB) leakage are observed in the colon, where intestinal FXR ameliorates disrupted GVB through the activation of Wnt/β-catenin signaling [151]. Fxr-deficient mice exhibit exacerbated steatosis and fibrosis due to disrupted BA signaling and increased intestinal permeability [167].
Furthermore, intestinal FXR upregulates the expression of inducible nitric oxide synthase (iNOS), IL-18, and angiopoietin 1, which collectively strengthen antimicrobial defense and confer cytoprotective effects against damage [168,169]. Notably, FXR activation prevents chemically induced intestinal inflammation and significantly reduces goblet cell depletion [159].

4.3. PXR

Of particular clinical relevance, PXR exhibits anti-inflammatory effects under baseline conditions and pharmacological activation but paradoxically manifests pro-inflammatory characteristics in pathophysiological states such as MAFLD [160]. Emerging evidence revealed an 87% reduction in Cyp3a mRNA expression (target gene of PXR) within the livers of germ-free mice, underscoring the indispensable role of gut microbiota in modulating hepatic PXR signaling [170]. Intriguingly, microbial metabolites, including indole-3-propionic acid and lithocholic acid, serve as intestinal PXR agonists [171].
PXR also modulates the gut microbiota composition by downregulating BA-metabolizing bacterial species. PXR activator statins increase the body weight in mice and elevate the abundance of commensal bacteria from the S24-7 family and DCA [172]. Another PXR activator, polybrominated diphenyl ethers, enhances the populations of Akkermansia muciniphila and Allobaculum spp., alongside elevating unconjugated secondary BAs [173]. PXR-dependent mechanisms increase the Firmicutes/Bacteroidetes ratio (a hallmark of obesity) and specific pro-inflammatory Lactobacillus species while reducing anti-obesity Allobaculum and anti-inflammatory Bifidobacterium [160].

4.4. AHR

Many microbial metabolites are AHR ligands. For instance, indole propionic acid activates AHR to reduce TNF-α, IFN-γ, and IL-1β, relieving intestinal inflammation and preventing bacterial translocation [174]. The tryptophan-derived bacterial metabolite indole-3-acetate activates AHR in intestinal epithelial cells, thereby promoting mucin production [175]. Other AHR agonists, indole-3-aldehyde and 6-formylindole carbazole, protect the intestinal mucosa and inhibit inflammation in mice by promoting cytokines IL-22 and IL-10 [176].
In addition, gut microbes like Lactobacillus reuteri produce endogenous AHR ligands to suppress intestinal inflammation [177]. Noncaloric artificial sweeteners saccharin and sucralose decrease microbiota-derived AHR ligands and colonic AHR expression, causing MAFLD in mice [161].

4.5. HIF2α

Intestinal biopsies from obese individuals have revealed a positive correlation between HIF2α expression and both the body mass index and hepatic enzymes. Meanwhile hypoxia probes indicate reduced partial pressure of oxygen at intestinal villus tips [162]. Studies suggest that HFD promotes HIF2α activation. This may be attributed to gut bacteria-derived butyrate, which consumes oxygen, though the precise mechanism remains unclear [178].
Intestinal epithelium-specific Hif2α knockout significantly ameliorates HFD-induced hepatic steatosis and obesity in mice, accompanied by reduced intestinal and serum ceramide levels. Mechanistic studies have revealed that intestinal HIF2α primarily drives the pathogenesis of MAFLD by activating neuraminidase 3, a key enzyme in the ceramide salvage pathway, thereby increasing ceramide production. Notably, the selective HIF2α inhibitor PT2385 demonstrates both preventive and therapeutic potential against these metabolic dysregulations [179].
The role of HIF2α in intestinal barrier regulation exhibits a dual mechanism. The acute activation of HIF2α upregulates creatine kinase, which stabilizes intestinal tight junctions [180]. In contrast, chronic HIF2α activation induces caveolin-1 expression, leading to reduced occludin and the subsequent disruption of tight junctions [181]. Sustained HIF2α activation in intestinal epithelial cells triggers spontaneous inflammatory responses through the direct transcriptional upregulation of Tnf-α.

4.6. NR1D1

Nuclear receptor subfamily 1 group D member 1 (NR1D1), a core component of the circadian clock, exhibits reduced intestinal expression in murine MASH models, concomitant with heightened intestinal permeability. Chromatin immunoprecipitation revealed the direct binding of NR1D1 to promoters of tight junction Claudin 1, Claudin 3, and Zona occludens 3 in murine colonic tissue. Administration of the NR1D1 agonist SR9009 restored intestinal barrier integrity in both the LPS-treated Caco2 cells and MASH mice. Histopathological analysis demonstrated SR9009-mediated augmentation of goblet cell populations and mucin secretion in the colon. Furthermore, SR9009 ameliorated hepatic steatosis, insulin resistance, and inflammation in MASH mice, potentially due to enhanced intestinal barrier function [163].
In general, the gut–liver axis in MAFLD is characterized by a dynamic feedback loop, where hepatic dysfunction actively influences the gut microbiota composition, creating a reciprocal regulatory mechanism. For instance, MAFLD-associated perturbations in bile acid metabolism, such as increased levels of deoxycholic acid, can disrupt intestinal microbial equilibrium, promoting the expansion of pathobionts (e.g., Escherichia coli) and reducing commensal species. Concurrently, altered hepatic secretion of proinflammatory cytokines (e.g., TNF-α, IL-6) impairs intestinal epithelial tight junctions, enhancing gut permeability and facilitating bacterial translocation. This process reinforces liver injury through endotoxemia and secondary inflammation. Conversely, gut microbiota-derived metabolites (e.g., SCFAs) or outer-membrane vesicles can modulate hepatic lipid metabolism and inflammation, underscoring the critical role of this bidirectional axis in MAFLD progression [182].
In the gut–liver axis, the microbiota-sensing TFs described above translate microbial signals into hepatic responses. However, several key aspects remain unknown. These include the interactions between strain-specific microbiota and TFs, the plasticity of TFs when microbiota is manipulated, and the competition among microbial metabolites for TF binding. Integrated metagenomics-TF activity profiling in longitudinal cohorts could establish causal links between microbial shifts and TF reprogramming.
Inter-organ communication beyond the gut–liver axis also warrants significant attention [183]. In the liver–heart axis, myocardial hypertrophy triggers the activation of IRF3 and NF-κB in cardiomyocytes via the cyclic GMP-AMP synthase-stimulator of interferon gene (cGAS-STING) pathway, promoting type 1 IFN and the expression of other proinflammatory factors that exacerbate MASH [184]. Cardiac injury induced the cardiac fibroblasts to secrete periostin, which impaired hepatic lipid homeostasis by downregulating PPARα and enhancing triglyceride accumulation in the primary hepatocytes [185].
The gut–brain axis influences hepatic lipid metabolism via FXR-dependent signaling. Intestinal L-cell-derived glucagon-like peptide-1 and 2 (GLP-1/2) regulated insulin secretion and appetite, thus affecting energy intake and metabolism [186]. GLP1/2 dual agonists upregulate hepatic FXR expression, mimicking the FXR agonist effects to indirectly ameliorate hepatic fibrosis and metabolic dysfunction [187]. Notably, Akkermansia muciniphila restores brain metabolic homeostasis to reverse MASH-associated cognitive deficits including impaired spatial working memory and novel object recognition [188]. The autonomic nervous system further modulates gastrointestinal motility and microbial composition, with lateral hypothalamic appetite neurons activated by sweets. Aspartame exposure, for example, downregulates lipocalin and PPAR signaling, linking the gut–brain interactions to MAFLD pathogenesis [189].
The hormonal regulation of MAFLD through TFs is also critical. Thyroid hormone (TH) enhanced TFEB, a key TF for lysosomal biogenesis diminished in MASH mice, thereby restoring lysosomal function. TH also reduced SREBP1c to promote FAO [190]. Insulin upregulated a TF, Snail1, to repress fatty acid synthase promoter activity, inhibiting adipogenesis [191]. Additionally, cardiac-secreted atrial natriuretic peptide promotes lipolysis and energy expenditure, establishing cross-organ metabolic crosstalk [192]. Recent studies have highlighted a robust association between MAFLD and colorectal cancer (CRC) incidence, exemplified by a retrospective analysis of 1145 patients with metabolic syndrome [193]. Individuals who developed CRC exhibited significantly higher baseline levels of fasting plasma glucose and non-invasive liver fibrosis scores, with MAFLD diagnosed in 68% of CRC cases versus 43% in the non-CRC controls. The Fibrosis-4 index exhibited a high predictive value for CRC (AUC = 0.74, OR = 6.1). Notably, CRC is recognized as an obesity-related cancer and is driven by hyperinsulinemia and dyslipidemia [194,195]. These findings align with the proposed gut–liver axis mechanism, where MAFLD-driven hepatic inflammation and dysregulated metabolism promote intestinal epithelial dysfunction and microbial dysbiosis. Concurrently, hyperinsulinemia in MAFLD may exacerbate intestinal stem cell hyperproliferation and tumor microenvironment inflammation, creating a reciprocal loop between the metabolic and oncogenic pathways.

5. Targeted Therapy Strategies of TFs

Drugs for MAFLD are still limited today, but TF-related research is making increasing progress in elucidating pathogenesis and potential therapeutic targets.
PPAR agonists have demonstrated therapeutic efficacy in MAFLD, although they are accompanied by specific constraints such as variable response rates and tissue-specific effects (Table 4). The PPARα agonists fenofibrate and pemafibrate ameliorate dyslipidemia and reduce hepatic stiffness. While these agents have not demonstrated statistically significant improvements in histopathological features [196,197], the PPARγ agonist pioglitazone improves steatosis, inflammation, and ballooning of the liver. It is particularly effective in MASH and prediabetes patients [198], but the side effects limit its widespread use. To reduce the side effects, saroglitazar, a PPARα/γ agonist, was created and ameliorates liver enzymes, liver fat content, insulin resistance, and dyslipidemia in MASH patients [199]. Compared with single or dual PPAR agonists, the pan-PPAR agonist lanifibranor decreased at least 2 points in the activity part of steatosis, activity, and fibrosis scoring system in a phase 2b trial, but increased the risk of diarrhea, nausea, etc. [200].
Phase 2 study of the FXR agonist cilofexor demonstrated improvements in fat accumulation and fibrosis in MASH patients [210]. Phase 3 clinical trials demonstrated that obeticholic acid improves liver histology in MASH patients but faces challenges due to side effects [35]. Hybrid FXR/PPAR agonists are under exploration for enhanced efficacy [222].
The selective THR-β agonist resmetirom reduced the liver fat content, LDL, and apoB of MASH patients in a 36-week clinical phase 2 study. It also reduced markers of fibrosis formation and promoted cholesterol metabolism [218,219]. Another agonist, VK2809, underwent a phase 2 trial and showed beneficial effects on reducing hypercholesterolemia, LDL, and the hepatic lipid content in MASH patients, suggesting its potential for treatment [220].
The LXR agonists, GW3965 and SR9238, are currently not suitable for clinical treatment due to their pleiotropic effects on different tissues. However, the intestinal-specific LXR agonist GW6340 reduces the side effects, effectively inducing LXR target genes, promoting cholesterol efflux, and without increasing TG production [216].
In addition to the drugs that have entered the clinical research phase, there are also emerging therapeutic targets and regulatory mechanisms. Tribbles homologue 3 (TRIB3) is an ER stress sensor and directly interacts with HNF4α, mediating the ER stress-induced ubiquitination degradation of HNF4α. Cell-penetrating peptides (CPPs) are long peptides that have the ability to enter the cell and promote intracellular effects through self- or delivered bioactive cargoes. Designing CPPs targeting the binding sites of HNF4α and TRIB3 disrupt the interaction, thereby attenuating HNF4α degradation and improving metabolism in MAFLD mice [223]. Similarly, proteolysis-targeting chimeras (PROTACs), which are small molecules designed to degrade TFs, significantly reduce the off-target effects and toxicities.
Other emerging therapeutic strategies targeting the gut–liver axis include prebiotics, probiotics, and fecal microbiota transplantation (FMT). Prebiotics—non-digestible food ingredients fermented by gut microbiota to confer host benefits—primarily encompass fructo-oligosaccharides (FOSs), galacto-oligosaccharides, β-glucans, and inulin [118]. Polyphenol extracts or dietary fibers as inulin counteract lipid metabolism dysregulation and liver inflammation in preclinical models [224,225], while the clinical evidence in MAFLD patients remains limited, though FOS supplementation reduced the AST levels in patients [226] and improved the NAS score while increasing Bifidobacterium and reducing Clostridium clusters [227]. Notably, 2′-fucosyllactose attenuated HFD-induced obesity and glucose intolerance, potentially via upregulation of the transcription factor Hes1, which maintains intestinal stem cell stemness and mucin production [228].
Probiotics, defined as live microorganisms conferring health benefits, show preclinical promise. Bacteroides thetaiotaomicron reduced adiposity in HFD-fed mice by modulating the Firmicutes/Bacteroidetes ratio, elevating hepatic folate, and polyunsaturated fatty acids [229]. Meta-analyses indicate that Lactobacillus + Bifidobacterium + Streptococcus combinations may optimally improve liver enzymes, total cholesterol, and TNFα [230]. Nevertheless, some clinical trials have reported negligible effects in MASH patients [231], suggesting that outcomes depend on the probiotic strain, treatment duration, and patient heterogeneity.
FMT—transferring processed stool from healthy donors to restore microbial balance—represents another therapeutic avenue. In HFD-fed mice, FMT elevated beneficial bacteria, enhanced intestinal tight junction protein ZO1 expression, reduced hepatic lipid accumulation, and lowered the NAS scores [232]. Conversely, mice receiving microbiota from MAFLD patients exhibited increased weight, LDL, and liver lipids, alongside elevated hepatic PPARγ and reduced LXR expression [233]. Emerging small-scale clinical trials have demonstrated FMT’s potential to improve lipid metabolism and the gut microbiota composition in MAFLD [234,235], though larger longitudinal studies are warranted to validate efficacy.
A multi-target combinatorial approach based on microbes and metabolites to modulate the activity of TFs may improve the intervention efficacy. For instance, a symbiotic composed of Lactobacillus acidophilus, Bifidobacterium infantis, and konjac glucomannan oligosaccharides attenuated hepatic steatosis and gut microbiota dysbiosis in HFD-fed mice. It reduces LPS, which penetrates the intestinal barrier and enters the circulation, thereby inhibiting the TLR4/NF-κB pathway to alleviate MAFLD [236].

6. Challenges and Future Directions

Challenges persist in MAFLD therapeutics, with current research predominantly relying on animal models and lacking clinical validation. Interspecies metabolic disparities necessitate a rigorous evaluation of therapeutic candidates. Developing human organoid systems to replicate MAFLD microenvironments enables a better assessment of drug efficacy.
Current single-target strategies remain inadequate due to TF network redundancies and shared pathways. Better elucidation and utilization of gut–liver TF crosstalk requires multi-omics integration (metagenomics, metabolomics, single-cell RNA-Seq, etc.) to map the dynamic interorgan regulatory networks, thus enabling coordinated multi-cellular therapeutic approaches.
Finally, future studies should prioritize drug repositioning strategies combined with in silico approaches to accelerate therapeutic discovery. Given the substantial time and resources required for novel drug development, computational methods, including molecular docking, machine learning, and network pharmacology, can efficiently identify existing drugs with potential efficacy against MAFLD. By targeting key regulators of the gut–liver axis (e.g., PPARs, LXRs), this approach may rapidly yield repurposable candidates.
In summary, MAFLD pathogenesis, involving metabolic dysregulation, inflammation, and microbiota-metabolite alterations, are all linked to TFs. Targeting TF modulation enables the precise correction of pathophysiological abnormalities of MAFLD and better treatments for patients.

Author Contributions

Conceptualization, A.L. and X.D.; Formal analysis, Y.X.; Writing—original draft preparation, A.L.; Writing—review and editing, M.H.; Visualization, M.H.; Supervision, Y.X.; Project administration, X.D.; Funding acquisition, X.D. and K.X. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the National Natural Science Foundation of China (grant number 82270609) and the Natural Science Foundation of Hubei Province (grant number 2024AFD090).

Data Availability Statement

No new data were created or analyzed in this study. Data sharing was not applicable to this article.

Conflicts of Interest

The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:
α-SMAα-Smooth muscle actin
ABCA1ATP binding cassette subfamily A member 1
ABCG1ATP binding cassette subfamily G member 1
ACCAcetyl coenzyme A carboxylase
ACLYATP citrate lyase
ACOX1Acyl-CoA oxidase 1
AHRAryl hydrocarbon receptor
AMPKAMP-activated protein kinase
ApoCApolipoprotein C
ATF3Activating transcription factor 3
BABile acid
Bcl-xLBCL2 like 1
BMIBody mass index
CACholic acid
Ccl2C-C motif chemokine ligand 2
CDCAChenodeoxycholic acid
cGAS-STINGCyclic GMP-AMP synthase-stimulator of interferon genes
CHREBPCarbohydrate response element binding protein
CPPCell-penetrating peptides
CPT1ACarnitine palmitoyltransferase 1A
CRCColorectal cancer
CREBHcAMP-responsive element-binding protein H
CTSBCathepsin B
CYP7A1Cytochrome P450 family 7 subfamily A member 1
CYP8B1Cytochrome P450 family 8 subfamily B member 1
Ddit4DNA damage inducible transcript 4
DIODiet-induced obese
DNLDe novo lipogenesis
ELOVL6Elongation of very long-chain fatty acids-like 6
EREndoplasmic reticulum
FABP4Fatty acid binding protein 4
FAM3AFamily with sequence similarity 3 member A
FAOFatty acid oxidation
FASNFatty acid synthase
FGFR4Fibroblast growth factor receptor 4
FGF19Fibroblast growth factor 19
FGF21Fibroblast growth factor 21
FMTFecal microbiota transplantation
FOSFructo-oligosaccharides
FOXA2Forkhead box a2
FOXO1Forkhead box o1
FXRFarnesoid X receptor
GLP-1Glucagon like peptide 1
GPBAR1G protein-coupled bile acid receptor 1
GVBGut-vascular barrier
HFDHigh-fat diet
HIF2αHypoxia-inducible factor 2α
HMGCS23-Hydroxy-3-methylglutaryl-coa synthase 2
HNF4αHepatocyte nuclear factor 4α
HO-1Heme oxygenase 1
HPCHepatic progenitor cells
HSCHepatic stellate cells
iNOSinducible nitric oxide synthase
IRF1Interferon regulatory factor 1
KLF10Krüppel-like factor 10
LAMP1Lysosomal associated membrane protein 1
LDLRLow-density lipoprotein receptor
LPIN1Lipin 1
LPSLipopolysaccharide
LXRLiver X receptor
MAFLDMetabolic dysfunction-associated fatty liver disease
MAP1LC3BMicrotubule associated protein 1 light chain 3 beta
MASHMetabolic dysfunction-associated steatohepatitis
MCDMethionine-choline-deficient
Mcl-1Myeloid cell leukemia 1
MCP-1Monocyte chemoattractant protein-1
MREMagnetic resonance elastography
mTORMechanistic target of rapamycin
MTTPMicrosomal triglyceride transfer protein
MYCMyelocytomatosis
NASNAFLD activity score
NLRP3NLR family pyrin domain containing 3
NPC1L1Niemann–Pick c1-like 1
NQO1NAD(P)H quinone dehydrogenase 1
NR1D1Nuclear receptor subfamily 1 group d member 1
NR4ANuclear receptor subfamily 4 group A
NRF2Nuclear factor erythroid 2 like 2
Osbpl3Oxysterol binding protein like 3
PHDProlyl hydroxylase domain enzymes
PPARPeroxisome proliferator-activated receptor
PROTACProteolysis-targeting chimeras
PSAPuromycin-sensitive aminopeptidase
PXRPregnane X receptor
ROSReactive oxygen species
SCD-1Stearoyl coenzyme A desaturase 1
SCFAsShort-chain fatty acids
SLC13A5Solute carrier family 13 member 5
SLC27A4Solute carrier family 27 member 4
SLUG/SNAI2Snail family transcriptional repressor 2
SMAD2SMAD family member 2
SOD2Superoxide dismutase 2
SREBP1cSterol regulatory element binding protein-1c
STAT3Signal transducer and activator of transcription 3
TCF7L2Transcription factor 7-like 2
TFTranscription factor
TFE3Transcription factor E3
TFEBTranscription factor EB
TGTriglyceride
TGF-β1Transforming growth factor β1
THThyroid hormone
THR-βThyroid hormone receptor β
Th17T helper 17 cells
TIMP-1Tissue inhibitor of metalloproteinases 1
TregRegulatory T cells
TRIB3Tribbles homologue 3
VLDLVery low-density lipoprotein
ZAC1Zinc-finger protein regulator of apoptosis and cell-cycle arrest 1
ZEB2Zinc finger e-box binding homeobox 2

References

  1. Le, M.H.; Yeo, Y.H.; Li, X.; Li, J.; Zou, B.; Wu, Y.; Ye, Q.; Huang, D.Q.; Zhao, C.; Zhang, J.; et al. 2019 Global NAFLD Prevalence: A Systematic Review and Meta-analysis. Clin. Gastroenterol. Hepatol. 2022, 20, 2809–2817.e28. [Google Scholar] [CrossRef]
  2. Zhou, J.; Zhou, F.; Wang, W.; Zhang, X.J.; Ji, Y.X.; Zhang, P.; She, Z.G.; Zhu, L.; Cai, J.; Li, H. Epidemiological Features of NAFLD From 1999 to 2018 in China. Hepatology 2020, 71, 1851–1864. [Google Scholar] [CrossRef]
  3. Sheka, A.C.; Adeyi, O.; Thompson, J.; Hameed, B.; Crawford, P.A.; Ikramuddin, S. Nonalcoholic Steatohepatitis: A Review. JAMA 2020, 323, 1175–1183. [Google Scholar] [CrossRef]
  4. Younossi, Z.M.; Golabi, P.; Paik, J.M.; Henry, A.; Van Dongen, C.; Henry, L. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): A systematic review. Hepatology 2023, 77, 1335–1347. [Google Scholar] [CrossRef]
  5. Lei, Y.; Tang, L.; Chen, Q.; Wu, L.; He, W.; Tu, D.; Wang, S.; Chen, Y.; Liu, S.; Xie, Z.; et al. Disulfiram ameliorates nonalcoholic steatohepatitis by modulating the gut microbiota and bile acid metabolism. Nat. Commun. 2022, 13, 6862. [Google Scholar] [CrossRef]
  6. Song, Q.; Zhang, X.; Liu, W.; Wei, H.; Liang, W.; Zhou, Y.; Ding, Y.; Ji, F.; Ho-Kwan Cheung, A.; Wong, N.; et al. Bifidobacterium pseudolongum-generated acetate suppresses non-alcoholic fatty liver disease-associated hepatocellular carcinoma. J. Hepatol. 2023, 79, 1352–1365. [Google Scholar] [CrossRef] [PubMed]
  7. Kuang, J.; Wang, J.; Li, Y.; Li, M.; Zhao, M.; Ge, K.; Zheng, D.; Cheung, K.C.P.; Liao, B.; Wang, S.; et al. Hyodeoxycholic acid alleviates non-alcoholic fatty liver disease through modulating the gut-liver axis. Cell Metab. 2023, 35, 1752–1766.e8. [Google Scholar] [CrossRef] [PubMed]
  8. Li, X.Y.; Thomas, S.; Sabo, P.J.; Eisen, M.B.; Stamatoyannopoulos, J.A.; Biggin, M.D. The role of chromatin accessibility in directing the widespread, overlapping patterns of Drosophila transcription factor binding. Genome Biol. 2011, 12, R34. [Google Scholar] [CrossRef] [PubMed]
  9. Hu, S.; Ai, Y.; Hu, C.; Cassim Bawa, F.N.; Xu, Y. Transcription factors, metabolic dysfunction-associated fatty liver disease, and therapeutic implications. Genes Dis. 2025, 12, 101372. [Google Scholar] [CrossRef]
  10. Gallage, S.; Ali, A.; Barragan Avila, J.E.; Seymen, N.; Ramadori, P.; Joerke, V.; Zizmare, L.; Aicher, D.; Gopalsamy, I.K.; Fong, W.; et al. A 5:2 intermittent fasting regimen ameliorates NASH and fibrosis and blunts HCC development via hepatic PPARα and PCK1. Cell Metab. 2024, 36, 1371–1393.e7. [Google Scholar] [CrossRef]
  11. Adorini, L.; Trauner, M. FXR agonists in NASH treatment. J. Hepatol. 2023, 79, 1317–1331. [Google Scholar] [CrossRef] [PubMed]
  12. Horn, P.; Tacke, F. Metabolic reprogramming in liver fibrosis. Cell Metab. 2024, 36, 1439–1455. [Google Scholar] [CrossRef]
  13. Ludwig, J.; Viggiano, T.R.; McGill, D.B.; Oh, B.J. Nonalcoholic steatohepatitis: Mayo Clinic experiences with a hitherto unnamed disease. Mayo Clin. Proc. 1980, 55, 434–438. [Google Scholar] [CrossRef]
  14. Habibullah, M.; Jemmieh, K.; Ouda, A.; Haider, M.Z.; Malki, M.I.; Elzouki, A.N. Metabolic-associated fatty liver disease: A selective review of pathogenesis, diagnostic approaches, and therapeutic strategies. Front. Med. 2024, 11, 1291501. [Google Scholar] [CrossRef] [PubMed]
  15. Silva, A.K.S.; Peixoto, C.A. Role of peroxisome proliferator-activated receptors in non-alcoholic fatty liver disease inflammation. Cell. Mol. Life Sci. 2018, 75, 2951–2961. [Google Scholar] [CrossRef] [PubMed]
  16. Liu, T.; Chen, X.; Sun, Q.; Li, J.; Wang, Q.; Wei, P.; Wang, W.; Li, C.; Wang, Y. Valerenic acid attenuates pathological myocardial hypertrophy by promoting the utilization of multiple substrates in the mitochondrial energy metabolism. J. Adv. Res. 2025, 68, 241–256. [Google Scholar] [CrossRef]
  17. Montagner, A.; Polizzi, A.; Fouche, E.; Ducheix, S.; Lippi, Y.; Lasserre, F.; Barquissau, V.; Regnier, M.; Lukowicz, C.; Benhamed, F.; et al. Liver PPARalpha is crucial for whole-body fatty acid homeostasis and is protective against NAFLD. Gut 2016, 65, 1202–1214. [Google Scholar] [CrossRef]
  18. Du, M.; Wang, X.; Yuan, L.; Liu, B.; Mao, X.; Huang, D.; Yang, L.; Huang, K.; Zhang, F.; Wang, Y.; et al. Targeting NFATc4 attenuates non-alcoholic steatohepatitis in mice. J. Hepatol. 2020, 73, 1333–1346. [Google Scholar] [CrossRef]
  19. Azar, S.; Udi, S.; Drori, A.; Hadar, R.; Nemirovski, A.; Vemuri, K.V.; Miller, M.; Sherill-Rofe, D.; Arad, Y.; Gur-Wahnon, D.; et al. Reversal of diet-induced hepatic steatosis by peripheral CB1 receptor blockade in mice is p53/miRNA-22/SIRT1/PPARα dependent. Mol. Metab. 2020, 42, 101087. [Google Scholar] [CrossRef]
  20. Dubois, V.; Eeckhoute, J.; Lefebvre, P.; Staels, B. Distinct but complementary contributions of PPAR isotypes to energy homeostasis. J. Clin. Investig. 2017, 127, 1202–1214. [Google Scholar] [CrossRef]
  21. Yki-Jarvinen, H. Thiazolidinediones. N. Engl. J. Med. 2004, 351, 1106–1118. [Google Scholar] [CrossRef] [PubMed]
  22. Hall, A.M.; Soufi, N.; Chambers, K.T.; Chen, Z.; Schweitzer, G.G.; McCommis, K.S.; Erion, D.M.; Graham, M.J.; Su, X.; Finck, B.N. Abrogating monoacylglycerol acyltransferase activity in liver improves glucose tolerance and hepatic insulin signaling in obese mice. Diabetes 2014, 63, 2284–2296. [Google Scholar] [CrossRef] [PubMed]
  23. Ni, W.; Lin, S.; Bian, S.; Zheng, W.; Qu, L.; Fan, Y.; Lu, C.; Xiao, M.; Zhou, P. USP7 mediates pathological hepatic de novo lipogenesis through promoting stabilization and transcription of ZNF638. Cell Death Dis. 2020, 11, 843. [Google Scholar] [CrossRef]
  24. Xiao, Z.; Chu, Y.; Qin, W. IGFBP5 modulates lipid metabolism and insulin sensitivity through activating AMPK pathway in non-alcoholic fatty liver disease. Life Sci. 2020, 256, 117997. [Google Scholar] [CrossRef]
  25. Liu, Y.; Lin, H.; Jiang, L.; Shang, Q.; Yin, L.; Lin, J.D.; Wu, W.S.; Rui, L. Hepatic Slug epigenetically promotes liver lipogenesis, fatty liver disease, and type 2 diabetes. J. Clin. Investig. 2020, 130, 2992–3004. [Google Scholar] [CrossRef]
  26. Zhao, Q.; Liu, J.; Deng, H.; Ma, R.; Liao, J.Y.; Liang, H.; Hu, J.; Li, J.; Guo, Z.; Cai, J.; et al. Targeting Mitochondria-Located circRNA SCAR Alleviates NASH via Reducing mROS Output. Cell 2020, 183, 76–93.e22. [Google Scholar] [CrossRef]
  27. Zhang, S.; Guo, F.; Yu, M.; Yang, X.; Yao, Z.; Li, Q.; Wei, Z.; Feng, K.; Zeng, P.; Zhao, D.; et al. Reduced Nogo expression inhibits diet-induced metabolic disorders by regulating ChREBP and insulin activity. J. Hepatol. 2020, 73, 1482–1495. [Google Scholar] [CrossRef]
  28. Lei, Y.; Hoogerland, J.A.; Bloks, V.W.; Bos, T.; Bleeker, A.; Wolters, H.; Wolters, J.C.; Hijmans, B.S.; van Dijk, T.H.; Thomas, R.; et al. Hepatic Carbohydrate Response Element Binding Protein Activation Limits Nonalcoholic Fatty Liver Disease Development in a Mouse Model for Glycogen Storage Disease Type 1a. Hepatology 2020, 72, 1638–1653. [Google Scholar] [CrossRef] [PubMed]
  29. Iizuka, K.; Takao, K.; Kato, T.; Horikawa, Y.; Takeda, J. ChREBP Reciprocally Regulates Liver and Plasma Triacylglycerol Levels in Different Manners. Nutrients 2018, 10, 1699. [Google Scholar] [CrossRef]
  30. Benhamed, F.; Denechaud, P.D.; Lemoine, M.; Robichon, C.; Moldes, M.; Bertrand-Michel, J.; Ratziu, V.; Serfaty, L.; Housset, C.; Capeau, J.; et al. The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans. J. Clin. Investig. 2012, 122, 2176–2194. [Google Scholar] [CrossRef]
  31. Kim, H.; Song, Z.; Zhang, R.; Davies, B.S.J.; Zhang, K. A hepatokine derived from the ER protein CREBH promotes triglyceride metabolism by stimulating lipoprotein lipase activity. Sci. Signal. 2023, 16, eadd6702. [Google Scholar] [CrossRef] [PubMed]
  32. Cao, Y.; Araki, M.; Nakagawa, Y.; Deisen, L.; Lundsgaard, A.; Kanta, J.M.; Holm, S.; Johann, K.; Brings Jacobsen, J.C.; Jähnert, M.; et al. Dietary medium-chain fatty acids reduce hepatic fat accumulation via activation of a CREBH-FGF21 axis. Mol. Metab. 2024, 87, 101991. [Google Scholar] [CrossRef] [PubMed]
  33. Kikuchi, T.; Orihara, K.; Oikawa, F.; Han, S.I.; Kuba, M.; Okuda, K.; Satoh, A.; Osaki, Y.; Takeuchi, Y.; Aita, Y.; et al. Intestinal CREBH overexpression prevents high-cholesterol diet-induced hypercholesterolemia by reducing Npc1l1 expression. Mol. Metab. 2016, 5, 1092–1102. [Google Scholar] [CrossRef] [PubMed]
  34. Clifford, B.L.; Sedgeman, L.R.; Williams, K.J.; Morand, P.; Cheng, A.; Jarrett, K.E.; Chan, A.P.; Brearley-Sholto, M.C.; Wahlstrom, A.; Ashby, J.W.; et al. FXR activation protects against NAFLD via bile-acid-dependent reductions in lipid absorption. Cell Metab. 2021, 33, 1671–1684. [Google Scholar] [CrossRef]
  35. Neuschwander-Tetri, B.A.; Loomba, R.; Sanyal, A.J.; Lavine, J.E.; Van Natta, M.L.; Abdelmalek, M.F.; Chalasani, N.; Dasarathy, S.; Diehl, A.M.; Hameed, B.; et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): A multicentre, randomised, placebo-controlled trial. Lancet 2015, 385, 956–965. [Google Scholar] [CrossRef]
  36. Shen, C.; Pan, Z.; Xie, W.; Zhao, J.; Miao, D.; Zhao, L.; Liu, M.; Zhong, Y.; Zhong, C.; Gonzalez, F.J.; et al. Hepatocyte-specific SLC27A4 deletion ameliorates nonalcoholic fatty liver disease in mice via suppression of phosphatidylcholine-mediated PXR activation. Metabolism 2025, 162, 156054. [Google Scholar] [CrossRef]
  37. Ni, M.; Zhang, B.; Zhao, J.; Feng, Q.; Peng, J.; Hu, Y.; Zhao, Y. Biological mechanisms and related natural modulators of liver X receptor in nonalcoholic fatty liver disease. Biomed. Pharmacother. 2019, 113, 108778. [Google Scholar] [CrossRef]
  38. Wang, J.Q.; Li, L.L.; Hu, A.; Deng, G.; Wei, J.; Li, Y.F.; Liu, Y.B.; Lu, X.Y.; Qiu, Z.P.; Shi, X.J.; et al. Inhibition of ASGR1 decreases lipid levels by promoting cholesterol excretion. Nature 2022, 608, 413–420. [Google Scholar] [CrossRef]
  39. Xu, C.X.; Wang, C.; Zhang, Z.M.; Jaeger, C.D.; Krager, S.L.; Bottum, K.M.; Liu, J.; Liao, D.F.; Tischkau, S.A. Aryl hydrocarbon receptor deficiency protects mice from diet-induced adiposity and metabolic disorders through increased energy expenditure. Int. J. Obes. 2015, 39, 1300–1309. [Google Scholar] [CrossRef]
  40. Kannt, A.; Wohlfart, P.; Madsen, A.N.; Veidal, S.S.; Feigh, M.; Schmoll, D. Activation of thyroid hormone receptor-beta improved disease activity and metabolism independent of body weight in a mouse model of non-alcoholic steatohepatitis and fibrosis. Br. J. Pharmacol. 2021, 178, 2412–2423. [Google Scholar] [CrossRef]
  41. Thymiakou, E.; Othman, A.; Hornemann, T.; Kardassis, D. Defects in High Density Lipoprotein Metabolism and Hepatic Steatosis In Mice with Liver-Specific Ablation of Hepatocyte Nuclear Factor 4A. Metabolism 2020, 110, 154307. [Google Scholar] [CrossRef] [PubMed]
  42. Yang, M.; Zhang, M.; Liu, Q.; Xu, T.; Huang, T.; Yao, D.; Wong, C.W.; Liu, J.; Guan, M. 18β-Glycyrrhetinic acid acts through hepatocyte nuclear factor 4 alpha to modulate lipid and carbohydrate metabolism. Pharmacol. Res. 2020, 157, 104840. [Google Scholar] [CrossRef] [PubMed]
  43. Hosooka, T.; Hosokawa, Y.; Matsugi, K.; Shinohara, M.; Senga, Y.; Tamori, Y.; Aoki, C.; Matsui, S.; Sasaki, T.; Kitamura, T.; et al. The PDK1-FoxO1 signaling in adipocytes controls systemic insulin sensitivity through the 5-lipoxygenase-leukotriene B4 axis. Proc. Natl. Acad. Sci. USA 2020, 117, 11674–11684. [Google Scholar] [CrossRef] [PubMed]
  44. Liu, X.; Hou, S.; Xiang, R.; Hu, C.; Chen, Z.; Li, N.; Yan, H.; Yu, X.; Li, X.; Chi, Y.; et al. Imipramine activates FAM3A-FOXA2-CPT2 pathway to ameliorate hepatic steatosis. Metabolism 2022, 136, 155292. [Google Scholar] [CrossRef]
  45. Minamishima, Y.A.; Moslehi, J.; Padera, R.F.; Bronson, R.T.; Liao, R.; Kaelin, W.G., Jr. A feedback loop involving the Phd3 prolyl hydroxylase tunes the mammalian hypoxic response in vivo. Mol. Cell. Biol. 2009, 29, 5729–5741. [Google Scholar] [CrossRef]
  46. Qu, A.; Taylor, M.; Xue, X.; Matsubara, T.; Metzger, D.; Chambon, P.; Gonzalez, F.J.; Shah, Y.M. Hypoxia-inducible transcription factor 2alpha promotes steatohepatitis through augmenting lipid accumulation, inflammation, and fibrosis. Hepatology 2011, 54, 472–483. [Google Scholar] [CrossRef]
  47. Luo, Y.; Yang, S.; Wu, X.; Takahashi, S.; Sun, L.; Cai, J.; Krausz, K.W.; Guo, X.; Dias, H.B.; Gavrilova, O.; et al. Intestinal MYC modulates obesity-related metabolic dysfunction. Nat. Metab. 2021, 3, 923–939. [Google Scholar] [CrossRef]
  48. Baptissart, M.; Bradish, C.M.; Jones, B.S.; Walsh, E.; Tehrani, J.; Marrero-Colon, V.; Mehta, S.; Jima, D.D.; Oh, S.H.; Diehl, A.M.; et al. Zac1 and the Imprinted Gene Network program juvenile NAFLD in response to maternal metabolic syndrome. Hepatology 2022, 76, 1090–1104. [Google Scholar] [CrossRef]
  49. Sun, N.; Shen, C.; Zhang, L.; Wu, X.; Yu, Y.; Yang, X.; Yang, C.; Zhong, C.; Gao, Z.; Miao, W.; et al. Hepatic Krüppel-like factor 16 (KLF16) targets PPARα to improve steatohepatitis and insulin resistance. Gut 2021, 70, 2183–2195. [Google Scholar] [CrossRef]
  50. Li, L.; Lin, J.; Huang, C.; Liu, J.; Yuan, Y.; Liu, Z.; Li, Y.; Li, W.; Diao, A. The TFEB activator clomiphene citrate ameliorates lipid metabolic syndrome pathology by activating lipophagy and lipolysis. Biochem. Pharmacol. 2025, 232, 116694. [Google Scholar] [CrossRef]
  51. Tu, C.; Xiong, H.; Hu, Y.; Wang, W.; Mei, G.; Wang, H.; Li, Y.; Zhou, Z.; Meng, F.; Zhang, P.; et al. Cardiolipin Synthase 1 Ameliorates NASH Through Activating Transcription Factor 3 Transcriptional Inactivation. Hepatology 2020, 72, 1949–1967. [Google Scholar] [CrossRef] [PubMed]
  52. Cooreman, M.P.; Vonghia, L.; Francque, S.M. MASLD/MASH and type 2 diabetes: Two sides of the same coin? From single PPAR to pan-PPAR agonists. Diabetes Res. Clin. Pract. 2024, 212, 111688. [Google Scholar] [CrossRef] [PubMed]
  53. Fruchart, J.C.; Hermans, M.P.; Fruchart-Najib, J.; Kodama, T. Selective Peroxisome Proliferator-Activated Receptor Alpha Modulators (SPPARMα) in the Metabolic Syndrome: Is Pemafibrate Light at the End of the Tunnel? Curr. Atheroscler. Rep. 2021, 23, 3. [Google Scholar] [CrossRef]
  54. Boeckmans, J.; Natale, A.; Rombaut, M.; Buyl, K.; Cami, B.; De Boe, V.; Heymans, A.; Rogiers, V.; De Kock, J.; Vanhaecke, T.; et al. Human hepatic in vitro models reveal distinct anti-NASH potencies of PPAR agonists. Cell Biol. Toxicol. 2021, 37, 293–311. [Google Scholar] [CrossRef]
  55. Zarei, M.; Barroso, E.; Palomer, X.; Dai, J.; Rada, P.; Quesada-Lopez, T.; Escola-Gil, J.C.; Cedo, L.; Zali, M.R.; Molaei, M.; et al. Hepatic regulation of VLDL receptor by PPARbeta/delta and FGF21 modulates non-alcoholic fatty liver disease. Mol. Metab. 2018, 8, 117–131. [Google Scholar] [CrossRef]
  56. Lee, C.H.; Chawla, A.; Urbiztondo, N.; Liao, D.; Boisvert, W.A.; Evans, R.M.; Curtiss, L.K. Transcriptional repression of atherogenic inflammation: Modulation by PPARdelta. Science 2003, 302, 453–457. [Google Scholar] [CrossRef]
  57. Oliver, W.R., Jr.; Shenk, J.L.; Snaith, M.R.; Russell, C.S.; Plunket, K.D.; Bodkin, N.L.; Lewis, M.C.; Winegar, D.A.; Sznaidman, M.L.; Lambert, M.H.; et al. A selective peroxisome proliferator-activated receptor delta agonist promotes reverse cholesterol transport. Proc. Natl. Acad. Sci. USA 2001, 98, 5306–5311. [Google Scholar] [CrossRef] [PubMed]
  58. Flowers, M.T.; Ntambi, J.M. Role of stearoyl-coenzyme A desaturase in regulating lipid metabolism. Curr. Opin. Lipidol. 2008, 19, 248–256. [Google Scholar] [CrossRef]
  59. Esposito, K.; Ciotola, M.; Carleo, D.; Schisano, B.; Saccomanno, F.; Sasso, F.C.; Cozzolino, D.; Assaloni, R.; Merante, D.; Ceriello, A.; et al. Effect of rosiglitazone on endothelial function and inflammatory markers in patients with the metabolic syndrome. Diabetes Care 2006, 29, 1071–1076. [Google Scholar] [CrossRef]
  60. Qiu, Y.Y.; Zhang, J.; Zeng, F.Y.; Zhu, Y.Z. Roles of the peroxisome proliferator-activated receptors (PPARs) in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Pharmacol. Res. 2023, 192, 106786. [Google Scholar] [CrossRef]
  61. Pettinelli, P.; Videla, L.A. Up-regulation of PPAR-gamma mRNA expression in the liver of obese patients: An additional reinforcing lipogenic mechanism to SREBP-1c induction. J. Clin. Endocrinol. Metab. 2011, 96, 1424–1430. [Google Scholar] [CrossRef] [PubMed]
  62. Nakamuta, M.; Kohjima, M.; Morizono, S.; Kotoh, K.; Yoshimoto, T.; Miyagi, I.; Enjoji, M. Evaluation of fatty acid metabolism-related gene expression in nonalcoholic fatty liver disease. Int. J. Mol. Med. 2005, 16, 631–635. [Google Scholar] [PubMed]
  63. Ezhilarasan, D. Deciphering the molecular pathways of saroglitazar: A dual PPAR α/γ agonist for managing metabolic NAFLD. Metabolism 2024, 155, 155912. [Google Scholar] [CrossRef]
  64. Cooreman, M.P.; Butler, J.; Giugliano, R.P.; Zannad, F.; Dzen, L.; Huot-Marchand, P.; Baudin, M.; Beard, D.R.; Junien, J.L.; Broqua, P.; et al. The pan-PPAR agonist lanifibranor improves cardiometabolic health in patients with metabolic dysfunction-associated steatohepatitis. Nat. Commun. 2024, 15, 3962. [Google Scholar] [CrossRef]
  65. Chandrasekaran, P.; Weiskirchen, R. The Role of SCAP/SREBP as Central Regulators of Lipid Metabolism in Hepatic Steatosis. Int. J. Mol. Sci. 2024, 25, 1109. [Google Scholar] [CrossRef]
  66. Ke, C.; Xiao, C.; Li, J.; Wu, X.; Zhang, Y.; Chen, Y.; Sheng, S.; Fu, Z.; Wang, L.; Ni, C.; et al. FMO2 ameliorates nonalcoholic fatty liver disease by suppressing ER-to-Golgi transport of SREBP1. Hepatology 2025, 81, 181–197. [Google Scholar] [CrossRef]
  67. Song, K.; Zhang, Y.; Ga, Q.; Bai, Z.; Ge, R.L. High-altitude chronic hypoxia ameliorates obesity-induced non-alcoholic fatty liver disease in mice by regulating mitochondrial and AMPK signaling. Life Sci. 2020, 252, 117633. [Google Scholar] [CrossRef]
  68. Chang, T.C.; Chiou, W.C.; Lai, W.H.; Huang, H.C.; Huang, Y.L.; Liu, H.K.; Liang, Y.C.; Huang, C. Ugonin J improves metabolic disorder and ameliorates nonalcoholic fatty liver disease by regulating the AMPK/AKT signaling pathway. Pharmacol. Res. 2021, 163, 105298. [Google Scholar] [CrossRef] [PubMed]
  69. Jiang, S.Y.; Yang, X.; Yang, Z.; Li, J.W.; Xu, M.Q.; Qu, Y.X.; Tang, J.J.; Li, Y.F.; Wang, L.; Shao, Y.W.; et al. Discovery of an insulin-induced gene binding compound that ameliorates nonalcoholic steatohepatitis by inhibiting sterol regulatory element-binding protein-mediated lipogenesis. Hepatology 2022, 76, 1466–1481. [Google Scholar] [CrossRef]
  70. Ju, U.I.; Jeong, D.W.; Seo, J.; Park, J.B.; Park, J.W.; Suh, K.S.; Kim, J.B.; Chun, Y.S. Neddylation of sterol regulatory element-binding protein 1c is a potential therapeutic target for nonalcoholic fatty liver treatment. Cell Death Dis. 2020, 11, 283. [Google Scholar] [CrossRef]
  71. Yoshikawa, T.; Ide, T.; Shimano, H.; Yahagi, N.; Amemiya-Kudo, M.; Matsuzaka, T.; Yatoh, S.; Kitamine, T.; Okazaki, H.; Tamura, Y.; et al. Cross-talk between peroxisome proliferator-activated receptor (PPAR) alpha and liver X receptor (LXR) in nutritional regulation of fatty acid metabolism. I. PPARs suppress sterol regulatory element binding protein-1c promoter through inhibition of LXR signaling. Mol. Endocrinol. 2003, 17, 1240–1254. [Google Scholar] [CrossRef] [PubMed]
  72. Matsuzaka, T.; Shimano, H.; Yahagi, N.; Amemiya-Kudo, M.; Yoshikawa, T.; Hasty, A.H.; Tamura, Y.; Osuga, J.; Okazaki, H.; Iizuka, Y.; et al. Dual regulation of mouse Delta(5)- and Delta(6)-desaturase gene expression by SREBP-1 and PPARalpha. J. Lipid Res. 2002, 43, 107–114. [Google Scholar] [CrossRef]
  73. Gosis, B.S.; Wada, S.; Thorsheim, C.; Li, K.; Jung, S.; Rhoades, J.H.; Yang, Y.; Brandimarto, J.; Li, L.; Uehara, K.; et al. Inhibition of nonalcoholic fatty liver disease in mice by selective inhibition of mTORC1. Science 2022, 376, eabf8271. [Google Scholar] [CrossRef] [PubMed]
  74. Jensen, T.; Abdelmalek, M.F.; Sullivan, S.; Nadeau, K.J.; Green, M.; Roncal, C.; Nakagawa, T.; Kuwabara, M.; Sato, Y.; Kang, D.H.; et al. Fructose and sugar: A major mediator of non-alcoholic fatty liver disease. J. Hepatol. 2018, 68, 1063–1075. [Google Scholar] [CrossRef]
  75. Herman, M.A.; Birnbaum, M.J. Molecular aspects of fructose metabolism and metabolic disease. Cell Metab. 2021, 33, 2329–2354. [Google Scholar] [CrossRef] [PubMed]
  76. Dogra, S.; Das, D.; Maity, S.K.; Paul, A.; Rawat, P.; Daniel, P.V.; Das, K.; Mitra, S.; Chakrabarti, P.; Mondal, P. Liver-Derived S100A6 Propels β-Cell Dysfunction in NAFLD. Diabetes 2022, 71, 2284–2296. [Google Scholar] [CrossRef]
  77. Buziau, A.M.; Oosterveer, M.H.; Wouters, K.; Bos, T.; Tolan, D.R.; Agius, L.; Ford, B.E.; Cassiman, D.; Stehouwer, C.D.A.; Schalkwijk, C.G.; et al. Hepatic glucokinase regulatory protein and carbohydrate response element binding protein attenuation reduce de novo lipogenesis but do not mitigate intrahepatic triglyceride accumulation in Aldob deficiency. Mol. Metab. 2024, 87, 101984. [Google Scholar] [CrossRef]
  78. Rajas, F.; Dentin, R.; Cannella Miliano, A.; Silva, M.; Raffin, M.; Levavasseur, F.; Gautier-Stein, A.; Postic, C.; Mithieux, G. The absence of hepatic glucose-6 phosphatase/ChREBP couple is incompatible with survival in mice. Mol. Metab. 2021, 43, 101108. [Google Scholar] [CrossRef]
  79. Scagliola, A.; Miluzio, A.; Ventura, G.; Oliveto, S.; Cordiglieri, C.; Manfrini, N.; Cirino, D.; Ricciardi, S.; Valenti, L.; Baselli, G.; et al. Targeting of eIF6-driven translation induces a metabolic rewiring that reduces NAFLD and the consequent evolution to hepatocellular carcinoma. Nat. Commun. 2021, 12, 4878. [Google Scholar] [CrossRef]
  80. Meng, J.; Feng, M.; Dong, W.; Zhu, Y.; Li, Y.; Zhang, P.; Wu, L.; Li, M.; Lu, Y.; Chen, H.; et al. Identification of HNF-4alpha as a key transcription factor to promote ChREBP expression in response to glucose. Sci. Rep. 2016, 6, 23944. [Google Scholar] [CrossRef]
  81. Lee, D.S.; An, T.H.; Kim, H.; Jung, E.; Kim, G.; Oh, S.Y.; Kim, J.S.; Chun, H.J.; Jung, J.; Lee, E.W.; et al. Tcf7l2 in hepatocytes regulates de novo lipogenesis in diet-induced non-alcoholic fatty liver disease in mice. Diabetologia 2023, 66, 931–954. [Google Scholar] [CrossRef] [PubMed]
  82. Omori, Y.; Imai, J.; Watanabe, M.; Komatsu, T.; Suzuki, Y.; Kataoka, K.; Watanabe, S.; Tanigami, A.; Sugano, S. CREB-H: A novel mammalian transcription factor belonging to the CREB/ATF family and functioning via the box-B element with a liver-specific expression. Nucleic Acids Res. 2001, 29, 2154–2162. [Google Scholar] [CrossRef]
  83. Zhang, K.; Shen, X.; Wu, J.; Sakaki, K.; Saunders, T.; Rutkowski, D.T.; Back, S.H.; Kaufman, R.J. Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response. Cell 2006, 124, 587–599. [Google Scholar] [CrossRef]
  84. Zhang, C.; Wang, G.; Zheng, Z.; Maddipati, K.R.; Zhang, X.; Dyson, G.; Williams, P.; Duncan, S.A.; Kaufman, R.J.; Zhang, K. Endoplasmic reticulum-tethered transcription factor cAMP responsive element-binding protein, hepatocyte specific, regulates hepatic lipogenesis, fatty acid oxidation, and lipolysis upon metabolic stress in mice. Hepatology 2012, 55, 1070–1082. [Google Scholar] [CrossRef] [PubMed]
  85. Song, K.H.; Li, T.; Owsley, E.; Strom, S.; Chiang, J.Y. Bile acids activate fibroblast growth factor 19 signaling in human hepatocytes to inhibit cholesterol 7alpha-hydroxylase gene expression. Hepatology 2009, 49, 297–305. [Google Scholar] [CrossRef]
  86. Xiao, J.; Hou, Y.; Luo, X.; Zhu, Y.; Li, W.; Li, B.; Zhou, L.; Chen, X.; Guo, Y.; Zhang, X.; et al. Clostridium Scindens Protects Against Vancomycin-Induced Cholestasis and Liver Fibrosis by Activating Intestinal FXR-FGF15/19 Signaling. Adv. Sci. 2025, 12, e2406445. [Google Scholar] [CrossRef] [PubMed]
  87. Jiao, N.; Baker, S.S.; Chapa-Rodriguez, A.; Liu, W.; Nugent, C.A.; Tsompana, M.; Mastrandrea, L.; Buck, M.J.; Baker, R.D.; Genco, R.J.; et al. Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD. Gut 2018, 67, 1881–1891. [Google Scholar] [CrossRef]
  88. Caron, S.; Huaman Samanez, C.; Dehondt, H.; Ploton, M.; Briand, O.; Lien, F.; Dorchies, E.; Dumont, J.; Postic, C.; Cariou, B.; et al. Farnesoid X receptor inhibits the transcriptional activity of carbohydrate response element binding protein in human hepatocytes. Mol. Cell. Biol. 2013, 33, 2202–2211. [Google Scholar] [CrossRef]
  89. Watanabe, M.; Houten, S.M.; Wang, L.; Moschetta, A.; Mangelsdorf, D.J.; Heyman, R.A.; Moore, D.D.; Auwerx, J. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J. Clin. Investig. 2004, 113, 1408–1418. [Google Scholar] [CrossRef]
  90. Tang, Y.; Fan, Y.; Wang, Y.; Wang, D.; Huang, Q.; Chen, T.; Cao, X.; Wen, C.; Shen, X.; Li, J.; et al. A Current Understanding of FXR in NAFLD: The Multifaceted Regulatory Role of FXR and Novel Lead Discovery for Drug Development. Biomed. Pharmacother. 2024, 175, 116658. [Google Scholar] [CrossRef]
  91. Li, L.; Li, H.; Garzel, B.; Yang, H.; Sueyoshi, T.; Li, Q.; Shu, Y.; Zhang, J.; Hu, B.; Heyward, S.; et al. SLC13A5 is a novel transcriptional target of the pregnane X receptor and sensitizes drug-induced steatosis in human liver. Mol. Pharmacol. 2015, 87, 674–682. [Google Scholar] [CrossRef] [PubMed]
  92. Zhou, J.; Febbraio, M.; Wada, T.; Zhai, Y.; Kuruba, R.; He, J.; Lee, J.H.; Khadem, S.; Ren, S.; Li, S.; et al. Hepatic fatty acid transporter Cd36 is a common target of LXR, PXR, and PPARgamma in promoting steatosis. Gastroenterology 2008, 134, 556–567. [Google Scholar] [CrossRef] [PubMed]
  93. Zhou, J.; Zhai, Y.; Mu, Y.; Gong, H.; Uppal, H.; Toma, D.; Ren, S.; Evans, R.M.; Xie, W. A novel pregnane X receptor-mediated and sterol regulatory element-binding protein-independent lipogenic pathway. J. Biol. Chem. 2006, 281, 15013–15020. [Google Scholar] [CrossRef]
  94. He, J.; Gao, J.; Xu, M.; Ren, S.; Stefanovic-Racic, M.; O’Doherty, R.M.; Xie, W. PXR ablation alleviates diet-induced and genetic obesity and insulin resistance in mice. Diabetes 2013, 62, 1876–1887. [Google Scholar] [CrossRef] [PubMed]
  95. Merrell, M.D.; Cherrington, N.J. Drug metabolism alterations in nonalcoholic fatty liver disease. Drug Metab. Rev. 2011, 43, 317–334. [Google Scholar] [CrossRef]
  96. Zhao, L.Y.; Xu, J.Y.; Shi, Z.; Englert, N.A.; Zhang, S.Y. Pregnane X receptor (PXR) deficiency improves high fat diet-induced obesity via induction of fibroblast growth factor 15 (FGF15) expression. Biochem. Pharmacol. 2017, 142, 194–203. [Google Scholar] [CrossRef]
  97. Nakamura, K.; Moore, R.; Negishi, M.; Sueyoshi, T. Nuclear pregnane X receptor cross-talk with FoxA2 to mediate drug-induced regulation of lipid metabolism in fasting mouse liver. J. Biol. Chem. 2007, 282, 9768–9776. [Google Scholar] [CrossRef]
  98. Griffett, K.; Burris, T.P. Development of LXR inverse agonists to treat MAFLD, NASH, and other metabolic diseases. Front. Med. 2023, 10, 1102469. [Google Scholar] [CrossRef] [PubMed]
  99. Schulman, I.G. Liver X receptors link lipid metabolism and inflammation. FEBS Lett. 2017, 591, 2978–2991. [Google Scholar] [CrossRef]
  100. Graelmann, F.J.; Gondorf, F.; Majlesain, Y.; Niemann, B.; Klepac, K.; Gosejacob, D.; Gottschalk, M.; Mayer, M.; Iriady, I.; Hatzfeld, P.; et al. Differential cell type-specific function of the aryl hydrocarbon receptor and its repressor in diet-induced obesity and fibrosis. Mol. Metab. 2024, 85, 101963. [Google Scholar] [CrossRef]
  101. Angrish, M.M.; Jones, A.D.; Harkema, J.R.; Zacharewski, T.R. Aryl hydrocarbon receptor-mediated induction of Stearoyl-CoA desaturase 1 alters hepatic fatty acid composition in TCDD-elicited steatosis. Toxicol. Sci. 2011, 124, 299–310. [Google Scholar] [CrossRef] [PubMed]
  102. Lee, J.H.; Wada, T.; Febbraio, M.; He, J.; Matsubara, T.; Lee, M.J.; Gonzalez, F.J.; Xie, W. A novel role for the dioxin receptor in fatty acid metabolism and hepatic steatosis. Gastroenterology 2010, 139, 653–663. [Google Scholar] [CrossRef]
  103. Xia, H.; Zhu, X.; Zhang, X.; Jiang, H.; Li, B.; Wang, Z.; Li, D.; Jin, Y. Alpha-naphthoflavone attenuates non-alcoholic fatty liver disease in oleic acid-treated HepG2 hepatocytes and in high fat diet-fed mice. Biomed. Pharmacother. 2019, 118, 109287. [Google Scholar] [CrossRef]
  104. Girer, N.G.; Carter, D.; Bhattarai, N.; Mustafa, M.; Denner, L.; Porter, C.; Elferink, C.J. Inducible Loss of the Aryl Hydrocarbon Receptor Activates Perigonadal White Fat Respiration and Brown Fat Thermogenesis via Fibroblast Growth Factor 21. Int. J. Mol. Sci. 2019, 20, 950. [Google Scholar] [CrossRef] [PubMed]
  105. Polyzos, S.A.; Targher, G. Hepatic thyroid hormone receptor-beta signalling: Mechanisms and recent advancements in the treatment of metabolic dysfunction-associated steatohepatitis. Diabetes Obes. Metab. 2025, 27, 1635–1647. [Google Scholar] [CrossRef]
  106. Krause, C.; Grohs, M.; El Gammal, A.T.; Wolter, S.; Lehnert, H.; Mann, O.; Mittag, J.; Kirchner, H. Reduced expression of thyroid hormone receptor beta in human nonalcoholic steatohepatitis. Endocr. Connect. 2018, 7, 1448–1456. [Google Scholar] [CrossRef]
  107. Xu, Y.; Zhu, Y.; Hu, S.; Xu, Y.; Stroup, D.; Pan, X.; Bawa, F.C.; Chen, S.; Gopoju, R.; Yin, L.; et al. Hepatocyte Nuclear Factor 4α Prevents the Steatosis-to-NASH Progression by Regulating p53 and Bile Acid Signaling (In Mice). Hepatology 2021, 73, 2251–2265. [Google Scholar] [CrossRef]
  108. Xu, Y.; Zalzala, M.; Xu, J.; Li, Y.; Yin, L.; Zhang, Y. A metabolic stress-inducible miR-34a-HNF4alpha pathway regulates lipid and lipoprotein metabolism. Nat. Commun. 2015, 6, 7466. [Google Scholar] [CrossRef] [PubMed]
  109. Thymiakou, E.; Tzardi, M.; Kardassis, D. Impaired hepatic glucose metabolism and liver-alpha-cell axis in mice with liver-specific ablation of the Hepatocyte Nuclear Factor 4alpha (Hnf4a) gene. Metabolism 2023, 139, 155371. [Google Scholar] [CrossRef]
  110. Yu, D.; Chen, G.; Pan, M.; Zhang, J.; He, W.; Liu, Y.; Nian, X.; Sheng, L.; Xu, B. High fat diet-induced oxidative stress blocks hepatocyte nuclear factor 4alpha and leads to hepatic steatosis in mice. J. Cell. Physiol. 2018, 233, 4770–4782. [Google Scholar] [CrossRef]
  111. Pan, X.; Hu, S.; Xu, Y.; Gopoju, R.; Zhu, Y.; Cassim Bawa, F.N.; Wang, H.; Wang, J.; Batayneh, Z.; Clark, A.; et al. Krüppel-like factor 10 protects against metabolic dysfunction-associated steatohepatitis by regulating HNF4α-mediated metabolic pathways. Metabolism 2024, 155, 155909. [Google Scholar] [CrossRef] [PubMed]
  112. Qu, S.; Altomonte, J.; Perdomo, G.; He, J.; Fan, Y.; Kamagate, A.; Meseck, M.; Dong, H.H. Aberrant Forkhead box O1 function is associated with impaired hepatic metabolism. Endocrinology 2006, 147, 5641–5652. [Google Scholar] [CrossRef] [PubMed]
  113. Qu, S.; Su, D.; Altomonte, J.; Kamagate, A.; He, J.; Perdomo, G.; Tse, T.; Jiang, Y.; Dong, H.H. PPARalpha mediates the hypolipidemic action of fibrates by antagonizing FoxO1. Am. J. Physiol. Endocrinol. Metab. 2007, 292, E421–E434. [Google Scholar] [CrossRef]
  114. Gouw, A.M.; Margulis, K.; Liu, N.S.; Raman, S.J.; Mancuso, A.; Toal, G.G.; Tong, L.; Mosley, A.; Hsieh, A.L.; Sullivan, D.K.; et al. The MYC Oncogene Cooperates with Sterol-Regulated Element-Binding Protein to Regulate Lipogenesis Essential for Neoplastic Growth. Cell Metab. 2019, 30, 556–572.e5. [Google Scholar] [CrossRef]
  115. Andersen, A.; Lund, A.; Knop, F.K.; Vilsboll, T. Glucagon-like peptide 1 in health and disease. Nat. Rev. Endocrinol. 2018, 14, 390–403. [Google Scholar] [CrossRef]
  116. Turpin, S.M.; Nicholls, H.T.; Willmes, D.M.; Mourier, A.; Brodesser, S.; Wunderlich, C.M.; Mauer, J.; Xu, E.; Hammerschmidt, P.; Bronneke, H.S.; et al. Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance. Cell Metab. 2014, 20, 678–686. [Google Scholar] [CrossRef]
  117. Xie, C.; Jiang, C.; Shi, J.; Gao, X.; Sun, D.; Sun, L.; Wang, T.; Takahashi, S.; Anitha, M.; Krausz, K.W.; et al. An Intestinal Farnesoid X Receptor-Ceramide Signaling Axis Modulates Hepatic Gluconeogenesis in Mice. Diabetes 2017, 66, 613–626. [Google Scholar] [CrossRef] [PubMed]
  118. Martin-Mateos, R.; Albillos, A. The Role of the Gut-Liver Axis in Metabolic Dysfunction-Associated Fatty Liver Disease. Front. Immunol. 2021, 12, 660179. [Google Scholar] [CrossRef]
  119. Jiang, S.; Uddin, M.J.; Yu, X.; Piao, L.; Dorotea, D.; Oh, G.T.; Ha, H. Peroxisomal Fitness: A Potential Protective Mechanism of Fenofibrate Against High Fat Diet-Induced Non-Alcoholic Fatty Liver Disease In Mice. Diabetes Metab. J. 2022, 46, 829–842. [Google Scholar] [CrossRef]
  120. Fuchs, C.D.; Radun, R.; Dixon, E.D.; Mlitz, V.; Timelthaler, G.; Halilbasic, E.; Herac, M.; Jonker, J.W.; Ronda, O.; Tardelli, M.; et al. Hepatocyte-specific deletion of adipose triglyceride lipase (adipose triglyceride lipase/patatin-like phospholipase domain containing 2) ameliorates dietary induced steatohepatitis in mice. Hepatology 2022, 75, 125–139. [Google Scholar] [CrossRef]
  121. Zhang, M.; Barroso, E.; Ruart, M.; Peña, L.; Peyman, M.; Aguilar-Recarte, D.; Montori-Grau, M.; Rada, P.; Cugat, C.; Montironi, C.; et al. Elafibranor upregulates the EMT-inducer S100A4 via PPARβ/δ. Biomed. Pharmacother. 2023, 167, 115623. [Google Scholar] [CrossRef]
  122. Konstantinopoulos, P.A.; Vandoros, G.P.; Sotiropoulou-Bonikou, G.; Kominea, A.; Papavassiliou, A.G. NF-kappaB/PPAR gamma and/or AP-1/PPAR gamma ‘on/off’ switches and induction of CBP in colon adenocarcinomas: Correlation with COX-2 expression. Int. J. Color. Dis. 2007, 22, 57–68. [Google Scholar] [CrossRef] [PubMed]
  123. Yang, Z.; Danzeng, A.; Liu, Q.; Zeng, C.; Xu, L.; Mo, J.; Pingcuo, C.; Wang, X.; Wang, C.; Zhang, B.; et al. The Role of Nuclear Receptors in the Pathogenesis and Treatment of Non-alcoholic Fatty Liver Disease. Int. J. Biol. Sci. 2024, 20, 113–126. [Google Scholar] [CrossRef]
  124. Zhou, L.; Qiu, X.; Meng, Z.; Liu, T.; Chen, Z.; Zhang, P.; Kuang, H.; Pan, T.; Lu, Y.; Qi, L.; et al. Hepatic danger signaling triggers TREM2+ macrophage induction and drives steatohepatitis via MS4A7-dependent inflammasome activation. Sci. Transl. Med. 2024, 16, eadk1866. [Google Scholar] [CrossRef]
  125. Zhang, L.; Chen, J.; Yang, X.; Shen, C.; Huang, J.; Zhang, D.; Liu, N.; Liu, C.; Zhong, Y.; Chen, Y.; et al. Hepatic Zbtb18 (Zinc Finger and BTB Domain Containing 18) Alleviates Hepatic Steatohepatitis via FXR (Farnesoid X Receptor). Signal Transduct. Target Ther. 2024, 9, 20. [Google Scholar] [CrossRef]
  126. Qin, D.; Pan, P.; Lyu, B.; Chen, W.; Gao, Y. Lupeol improves bile acid metabolism and metabolic dysfunction-associated steatotic liver disease in mice via FXR signaling pathway and gut-liver axis. Biomed. Pharmacother. 2024, 177, 116942. [Google Scholar] [CrossRef] [PubMed]
  127. Sun, D.; Li, W.; Ding, D.; Tan, K.; Ding, W.; Wang, Z.; Fu, S.; Hou, G.; Zhou, W.P.; Gu, F. IL-17a promotes hepatocellular carcinoma by increasing FAP expression in hepatic stellate cells via activation of the STAT3 signaling pathway. Cell Death Discov. 2024, 10, 230. [Google Scholar] [CrossRef]
  128. Kui, L.; Kim, A.D.; Onyuru, J.; Hoffman, H.M.; Feldstein, A.E. BRP39 Regulates Neutrophil Recruitment in NLRP3 Inflammasome-Induced Liver Inflammation. Cell. Mol. Gastroenterol. Hepatol. 2024, 17, 481–497. [Google Scholar] [CrossRef] [PubMed]
  129. Zhang, P.; Liu, J.; Lee, A.; Tsaur, I.; Ohira, M.; Duong, V.; Vo, N.; Watari, K.; Su, H.; Kim, J.Y.; et al. IL-22 resolves MASLD via enterocyte STAT3 restoration of diet-perturbed intestinal homeostasis. Cell Metab. 2024, 36, 2341–2354.e6. [Google Scholar] [CrossRef]
  130. Huang, B.; Xiong, X.; Zhang, L.; Liu, X.; Wang, Y.; Gong, X.; Sang, Q.; Lu, Y.; Qu, H.; Zheng, H.; et al. PSA controls hepatic lipid metabolism by regulating the NRF2 signaling pathway. J. Mol. Cell Biol. 2021, 13, 527–539. [Google Scholar] [CrossRef]
  131. Sun, X.; Yang, Z.; Min, L.; Gong, S.; Miao, X.; Wang, B.; Kong, X.; Zhu, Q. Interferon regulatory factor 1 contributes to metabolic dysfunction associated steatotic liver disease. Life Sci. 2025, 370, 123575. [Google Scholar] [CrossRef] [PubMed]
  132. Chen, M.; Liu, G.; Fang, Z.; Gao, W.; Song, Y.; Lei, L.; Du, X.; Li, X. Buddleoside alleviates nonalcoholic steatohepatitis by targeting the AMPK-TFEB signaling pathway. Autophagy 2025, 21, 1316–1334. [Google Scholar] [CrossRef]
  133. Aki, D.; Hayakawa, T.; Srirat, T.; Shichino, S.; Ito, M.; Saitoh, S.I.; Mise-Omata, S.; Yoshimura, A. The Nr4a family regulates intrahepatic Treg proliferation and liver fibrosis in MASLD models. J. Clin. Investig. 2024, 134, e175305. [Google Scholar] [CrossRef] [PubMed]
  134. Jeelani, I.; Moon, J.S.; da Cunha, F.F.; Nasamran, C.A.; Jeon, S.; Zhang, X.; Bandyopadhyay, G.K.; Dobaczewska, K.; Mikulski, Z.; Hosseini, M.; et al. HIF-2α drives hepatic Kupffer cell death and proinflammatory recruited macrophage activation in nonalcoholic steatohepatitis. Sci. Transl. Med. 2024, 16, eadi0284. [Google Scholar] [CrossRef] [PubMed]
  135. Lee, D.K.; Jo, S.H.; Lee, E.S.; Ha, K.B.; Park, N.W.; Kong, D.H.; Park, S.I.; Park, J.S.; Chung, C.H. DWN12088, A Prolyl-tRNA Synthetase Inhibitor, Alleviates Hepatic Injury in Nonalcoholic Steatohepatitis. Diabetes Metab. J. 2024, 48, 97–111. [Google Scholar] [CrossRef]
  136. Tian, S.Y.; Chen, S.M.; Pan, C.X.; Li, Y. FXR: Structures, biology, and drug development for NASH and fibrosis diseases. Acta Pharmacol. Sin. 2022, 43, 1120–1132. [Google Scholar] [CrossRef]
  137. Zheng, C.; Wang, L.; Zou, T.; Lian, S.; Luo, J.; Lu, Y.; Hao, H.; Xu, Y.; Xiang, Y.; Zhang, X.; et al. Ileitis promotes MASLD progression via bile acid modulation and enhanced TGR5 signaling in ileal CD8+ T cells. J. Hepatol. 2024, 80, 764–777. [Google Scholar] [CrossRef]
  138. Jiao, J.; Sanchez, J.I.; Saldarriaga, O.A.; Solis, L.M.; Tweardy, D.J.; Maru, D.M.; Stevenson, H.L.; Beretta, L. Spatial molecular and cellular determinants of STAT3 activation in liver fibrosis progression in non-alcoholic fatty liver disease. JHEP Rep. Innov. Hepatol. 2023, 5, 100628. [Google Scholar] [CrossRef]
  139. Inoue, H.; Ogawa, W.; Ozaki, M.; Haga, S.; Matsumoto, M.; Furukawa, K.; Hashimoto, N.; Kido, Y.; Mori, T.; Sakaue, H.; et al. Role of STAT-3 in regulation of hepatic gluconeogenic genes and carbohydrate metabolism in vivo. Nat. Med. 2004, 10, 168–174. [Google Scholar] [CrossRef]
  140. Hakeem, A.N.; Kamal, M.M.; Tawfiq, R.A.; Abdelrahman, B.A.; Hammam, O.A.; Elmazar, M.M.; El-Khatib, A.S.; Attia, Y.M. Elafibranor modulates ileal macrophage polarization to restore intestinal integrity in NASH: Potential crosstalk between ileal IL-10/STAT3 and hepatic TLR4/NF-kappaB axes. Biomed. Pharmacother. 2023, 157, 114050. [Google Scholar] [CrossRef]
  141. Lei, Z.; Yu, J.; Wu, Y.; Shen, J.; Lin, S.; Xue, W.; Mao, C.; Tang, R.; Sun, H.; Qi, X.; et al. CD1d protects against hepatocyte apoptosis in non-alcoholic steatohepatitis. J. Hepatol. 2024, 80, 194–208. [Google Scholar] [CrossRef] [PubMed]
  142. Liu, P.; Anandhan, A.; Chen, J.; Shakya, A.; Dodson, M.; Ooi, A.; Chapman, E.; White, E.; Garcia, J.G.; Zhang, D.D. Decreased autophagosome biogenesis, reduced NRF2, and enhanced ferroptotic cell death are underlying molecular mechanisms of non-alcoholic fatty liver disease. Redox Biol. 2023, 59, 102570. [Google Scholar] [CrossRef]
  143. Vanani, A.R.; Kalantari, H.; Mahdavinia, M.; Rashno, M.; Khorsandi, L.; Khodayar, M.J. Dimethyl fumarate reduces oxidative stress, inflammation and fat deposition by modulation of Nrf2, SREBP-1c and NF-κB signaling in HFD fed mice. Life Sci. 2021, 283, 119852. [Google Scholar] [CrossRef]
  144. Fernández-Ginés, R.; Encinar, J.A.; Escoll, M.; Carnicero-Senabre, D.; Jiménez-Villegas, J.; García-Yagüe, Á.J.; González-Rodríguez, Á.; Garcia-Martinez, I.; Valverde, Á.M.; Rojo, A.I.; et al. Specific targeting of the NRF2/β-TrCP axis promotes beneficial effects in NASH. Redox Biol. 2024, 69, 103027. [Google Scholar] [CrossRef] [PubMed]
  145. Wu, C.Y.; Chen, Y.; Chen, M.T.; Fu, T.T.; Liu, J.; Liu, F.F.; Xu, C.J.; Li, W.S.; Li, B.L.; Jiang, Z.P.; et al. Natural linoleic acid from marine fungus Eutypella sp. F0219 blocks KEAP1/NRF2 interaction and ameliorates MASLD by targeting FABP4. Free. Radic. Biol. Med. 2024, 224, 630–643. [Google Scholar] [CrossRef]
  146. Xia, X.; Zhang, Q.; Fang, X.; Li, L.; Yang, G.; Xu, X.; Yang, M. Nuclear factor erythroid 2-related factor 2 ameliorates disordered glucose and lipid metabolism in liver: Involvement of gasdermin D in regulating pyroptosis. Clin. Transl. Med. 2025, 15, e70233. [Google Scholar] [CrossRef] [PubMed]
  147. Wang, W.; Cao, Z.; Yang, Z.; Chen, Y.; Yao, H.; Zhou, D.; Ou, P.; Huang, W.; Jiao, S.; Chen, S.; et al. Design, synthesis, and biological studies of novel sulfonamide derivatives as farnesoid X receptor agonists. Eur. J. Med. Chem. 2023, 258, 115614. [Google Scholar] [CrossRef]
  148. Zhang, H.; Lu, J.; Liu, H.; Guan, L.; Xu, S.; Wang, Z.; Qiu, Y.; Liu, H.; Peng, L.; Men, X. Ajugol enhances TFEB-mediated lysosome biogenesis and lipophagy to alleviate non-alcoholic fatty liver disease. Pharmacol. Res. 2021, 174, 105964. [Google Scholar] [CrossRef]
  149. Cai, W.; Qiu, T.; Hu, W.; Fang, T. Changes in the intestinal microbiota of individuals with non-alcoholic fatty liver disease based on sequencing: An updated systematic review and meta-analysis. PLoS ONE 2024, 19, e0299946. [Google Scholar] [CrossRef]
  150. Saeed, H.; Diaz, L.A.; Gil-Gomez, A.; Burton, J.; Bajaj, J.S.; Romero-Gomez, M.; Arrese, M.; Arab, J.P.; Khan, M.Q. Microbiome-centered therapies for the management of metabolic dysfunction-associated steatotic liver disease. Clin. Mol. Hepatol. 2025, 31, S94–S111. [Google Scholar] [CrossRef]
  151. Mouries, J.; Brescia, P.; Silvestri, A.; Spadoni, I.; Sorribas, M.; Wiest, R.; Mileti, E.; Galbiati, M.; Invernizzi, P.; Adorini, L.; et al. Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development. J. Hepatol. 2019, 71, 1216–1228. [Google Scholar] [CrossRef] [PubMed]
  152. Schroeder, B.O.; Birchenough, G.M.H.; Stahlman, M.; Arike, L.; Johansson, M.E.V.; Hansson, G.C.; Backhed, F. Bifidobacteria or Fiber Protects against Diet-Induced Microbiota-Mediated Colonic Mucus Deterioration. Cell Host Microbe 2018, 23, 27–40.e7. [Google Scholar] [CrossRef] [PubMed]
  153. Kapil, S.; Duseja, A.; Sharma, B.K.; Singla, B.; Chakraborti, A.; Das, A.; Ray, P.; Dhiman, R.K.; Chawla, Y. Small intestinal bacterial overgrowth and toll-like receptor signaling in patients with non-alcoholic fatty liver disease. J. Gastroenterol. Hepatol. 2016, 31, 213–221. [Google Scholar] [CrossRef] [PubMed]
  154. Loomba, R.; Seguritan, V.; Li, W.; Long, T.; Klitgord, N.; Bhatt, A.; Dulai, P.S.; Caussy, C.; Bettencourt, R.; Highlander, S.K.; et al. Gut Microbiome-Based Metagenomic Signature for Non-Invasive Detection of Advanced Fibrosis in Human Nonalcoholic Fatty Liver Disease. Cell Metab. 2017, 25, 1054–1062. [Google Scholar] [CrossRef]
  155. Wagnerberger, S.; Spruss, A.; Kanuri, G.; Stahl, C.; Schroder, M.; Vetter, W.; Bischoff, S.C.; Bergheim, I. Lactobacillus casei Shirota protects from fructose-induced liver steatosis: A mouse model. J. Nutr. Biochem. 2013, 24, 531–538. [Google Scholar] [CrossRef]
  156. Cai, H.; Wen, Z.; Li, X.; Meng, K.; Yang, P. Lactobacillus plantarum FRT10 alleviated high-fat diet-induced obesity in mice through regulating the PPARalpha signal pathway and gut microbiota. Appl. Microbiol. Biotechnol. 2020, 104, 5959–5972. [Google Scholar] [CrossRef]
  157. Sun, S.S.; Wang, K.; Ma, K.; Bao, L.; Liu, H.W. An insoluble polysaccharide from the sclerotium of Poria cocos improves hyperglycemia, hyperlipidemia and hepatic steatosis in ob/ob mice via modulation of gut microbiota. Chin. J. Nat. Med. 2019, 17, 3–14. [Google Scholar] [CrossRef] [PubMed]
  158. Nihei, N.; Okamoto, H.; Furune, T.; Ikuta, N.; Sasaki, K.; Rimbach, G.; Yoshikawa, Y.; Terao, K. Dietary alpha-cyclodextrin modifies gut microbiota and reduces fat accumulation in high-fat-diet-fed obese mice. Biofactors 2018, 44, 336–347. [Google Scholar] [CrossRef]
  159. Gadaleta, R.M.; van Erpecum, K.J.; Oldenburg, B.; Willemsen, E.C.; Renooij, W.; Murzilli, S.; Klomp, L.W.; Siersema, P.D.; Schipper, M.E.; Danese, S.; et al. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease. Gut 2011, 60, 463–472. [Google Scholar] [CrossRef]
  160. Kim, S.; Choi, S.; Dutta, M.; Asubonteng, J.O.; Polunas, M.; Goedken, M.; Gonzalez, F.J.; Cui, J.Y.; Gyamfi, M.A. Pregnane X receptor exacerbates nonalcoholic fatty liver disease accompanied by obesity- and inflammation-prone gut microbiome signature. Biochem. Pharmacol. 2021, 193, 114698. [Google Scholar] [CrossRef]
  161. Shi, Z.; Lei, H.; Chen, G.; Yuan, P.; Cao, Z.; Ser, H.L.; Zhu, X.; Wu, F.; Liu, C.; Dong, M.; et al. Impaired Intestinal Akkermansia muciniphila and Aryl Hydrocarbon Receptor Ligands Contribute to Nonalcoholic Fatty Liver Disease in Mice. mSystems 2021, 6, e00985-20. [Google Scholar] [CrossRef] [PubMed]
  162. Triner, D.; Shah, Y.M. Hypoxia-inducible factors: A central link between inflammation and cancer. J. Clin. Investig. 2016, 126, 3689–3698. [Google Scholar] [CrossRef] [PubMed]
  163. Ni, Y.; Zhao, Y.; Ma, L.; Wang, Z.; Ni, L.; Hu, L.; Fu, Z. Pharmacological activation of REV-ERBalpha improves nonalcoholic steatohepatitis by regulating intestinal permeability. Metabolism 2021, 114, 154409. [Google Scholar] [CrossRef]
  164. Kondo, T.; Kishi, M.; Fushimi, T.; Kaga, T. Acetic acid upregulates the expression of genes for fatty acid oxidation enzymes in liver to suppress body fat accumulation. J. Agric. Food Chem. 2009, 57, 5982–5986. [Google Scholar] [CrossRef]
  165. Moreau, F.; Brunao, B.B.; Liu, X.Y.; Tremblay, F.; Fitzgerald, K.; Avila-Pacheco, J.; Clish, C.; Kahn, R.C.; Softic, S. Liver-specific FGFR4 knockdown in mice on an HFD increases bile acid synthesis and improves hepatic steatosis. J. Lipid Res. 2023, 64, 100324. [Google Scholar] [CrossRef]
  166. Verbeke, L.; Farre, R.; Verbinnen, B.; Covens, K.; Vanuytsel, T.; Verhaegen, J.; Komuta, M.; Roskams, T.; Chatterjee, S.; Annaert, P.; et al. The FXR agonist obeticholic acid prevents gut barrier dysfunction and bacterial translocation in cholestatic rats. Am. J. Pathol. 2015, 185, 409–419. [Google Scholar] [CrossRef] [PubMed]
  167. Henry, Z.; Meadows, V.; Guo, G.L. FXR and NASH: An avenue for tissue-specific regulation. Hepatol. Commun. 2023, 7, e0127. [Google Scholar] [CrossRef]
  168. Jarret, A.; Jackson, R.; Duizer, C.; Healy, M.E.; Zhao, J.; Rone, J.M.; Bielecki, P.; Sefik, E.; Roulis, M.; Rice, T.; et al. Enteric Nervous System-Derived IL-18 Orchestrates Mucosal Barrier Immunity. Cell 2020, 180, 50–63.e12. [Google Scholar] [CrossRef]
  169. Sun, D.; Bai, R.; Zhou, W.; Yao, Z.; Liu, Y.; Tang, S.; Ge, X.; Luo, L.; Luo, C.; Hu, G.F.; et al. Angiogenin maintains gut microbe homeostasis by balancing alpha-Proteobacteria and Lachnospiraceae. Gut 2021, 70, 666–676. [Google Scholar] [CrossRef]
  170. Klaassen, C.D.; Cui, J.Y. Review: Mechanisms of How the Intestinal Microbiota Alters the Effects of Drugs and Bile Acids. Drug Metab. Dispos. 2015, 43, 1505–1521. [Google Scholar] [CrossRef]
  171. Venkatesh, M.; Mukherjee, S.; Wang, H.; Li, H.; Sun, K.; Benechet, A.P.; Qiu, Z.; Maher, L.; Redinbo, M.R.; Phillips, R.S.; et al. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity 2014, 41, 296–310. [Google Scholar] [CrossRef]
  172. Dempsey, J.L.; Wang, D.; Siginir, G.; Fei, Q.; Raftery, D.; Gu, H.; Yue Cui, J. Pharmacological Activation of PXR and CAR Downregulates Distinct Bile Acid-Metabolizing Intestinal Bacteria and Alters Bile Acid Homeostasis. Toxicol. Sci. 2019, 168, 40–60. [Google Scholar] [CrossRef]
  173. Li, C.Y.; Dempsey, J.L.; Wang, D.; Lee, S.; Weigel, K.M.; Fei, Q.; Bhatt, D.K.; Prasad, B.; Raftery, D.; Gu, H.; et al. PBDEs Altered Gut Microbiome and Bile Acid Homeostasis in Male C57BL/6 Mice. Drug Metab. Dispos. 2018, 46, 1226–1240. [Google Scholar] [CrossRef]
  174. Niu, B.; Pan, T.; Xiao, Y.; Wang, H.; Zhu, J.; Tian, F.; Lu, W.; Chen, W. The therapeutic potential of dietary intervention: Based on the mechanism of a tryptophan derivative-indole propionic acid on metabolic disorders. Crit. Rev. Food Sci. Nutr. 2025, 65, 1729–1748. [Google Scholar] [CrossRef] [PubMed]
  175. Jin, U.H.; Lee, S.O.; Sridharan, G.; Lee, K.; Davidson, L.A.; Jayaraman, A.; Chapkin, R.S.; Alaniz, R.; Safe, S. Microbiome-derived tryptophan metabolites and their aryl hydrocarbon receptor-dependent agonist and antagonist activities. Mol. Pharmacol. 2014, 85, 777–788. [Google Scholar] [CrossRef] [PubMed]
  176. Zelante, T.; Iannitti, R.G.; Cunha, C.; De Luca, A.; Giovannini, G.; Pieraccini, G.; Zecchi, R.; D’Angelo, C.; Massi-Benedetti, C.; Fallarino, F.; et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 2013, 39, 372–385. [Google Scholar] [CrossRef]
  177. Cella, M.; Colonna, M. Aryl hydrocarbon receptor: Linking environment to immunity. Semin. Immunol. 2015, 27, 310–314. [Google Scholar] [CrossRef] [PubMed]
  178. Kelly, C.J.; Zheng, L.; Campbell, E.L.; Saeedi, B.; Scholz, C.C.; Bayless, A.J.; Wilson, K.E.; Glover, L.E.; Kominsky, D.J.; Magnuson, A.; et al. Crosstalk Between Microbiota-Derived Short-Chain Fatty Acids and Intestinal Epithelial HIF Augments Tissue Barrier Function. Cell Host Microbe 2015, 17, 662–671. [Google Scholar] [CrossRef]
  179. Xie, C.; Yagai, T.; Luo, Y.; Liang, X.; Chen, T.; Wang, Q.; Sun, D.; Zhao, J.; Ramakrishnan, S.K.; Sun, L.; et al. Activation of intestinal hypoxia-inducible factor 2alpha during obesity contributes to hepatic steatosis. Nat. Med. 2017, 23, 1298–1308. [Google Scholar] [CrossRef]
  180. Glover, L.E.; Bowers, B.E.; Saeedi, B.; Ehrentraut, S.F.; Campbell, E.L.; Bayless, A.J.; Dobrinskikh, E.; Kendrick, A.A.; Kelly, C.J.; Burgess, A.; et al. Control of creatine metabolism by HIF is an endogenous mechanism of barrier regulation in colitis. Proc. Natl. Acad. Sci. USA 2013, 110, 19820–19825. [Google Scholar] [CrossRef]
  181. Xie, L.; Xue, X.; Taylor, M.; Ramakrishnan, S.K.; Nagaoka, K.; Hao, C.; Gonzalez, F.J.; Shah, Y.M. Hypoxia-inducible factor/MAZ-dependent induction of caveolin-1 regulates colon permeability through suppression of occludin, leading to hypoxia-induced inflammation. Mol. Cell. Biol. 2014, 34, 3013–3023. [Google Scholar] [CrossRef] [PubMed]
  182. Neurath, M.F.; Artis, D.; Becker, C. The intestinal barrier: A pivotal role in health, inflammation, and cancer. Lancet Gastroenterol. Hepatol. 2025, 10, 573–592. [Google Scholar] [CrossRef]
  183. Yang, K.; Song, M. New Insights into the Pathogenesis of Metabolic-Associated Fatty Liver Disease (MAFLD): Gut-Liver-Heart Crosstalk. Nutrients 2023, 15, 3970. [Google Scholar] [CrossRef] [PubMed]
  184. Oduro, P.K.; Zheng, X.; Wei, J.; Yang, Y.; Wang, Y.; Zhang, H.; Liu, E.; Gao, X.; Du, M.; Wang, Q. The cGAS-STING signaling in cardiovascular and metabolic diseases: Future novel target option for pharmacotherapy. Acta Pharm. Sin. B 2022, 12, 50–75. [Google Scholar] [CrossRef]
  185. Xie, W.; Gan, J.; Zhou, X.; Tian, H.; Pan, X.; Liu, W.; Li, X.; Du, J.; Xu, A.; Zheng, M.; et al. Myocardial infarction accelerates the progression of MASH by triggering immunoinflammatory response and induction of periosti. Cell Metab. 2024, 36, 1269–1286.e9. [Google Scholar] [CrossRef]
  186. Meier, J.J. GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat. Rev. Endocrinol. 2012, 8, 728–742. [Google Scholar] [CrossRef]
  187. Kim, E.R.; Park, J.S.; Kim, J.H.; Oh, J.Y.; Oh, I.J.; Choi, D.H.; Lee, Y.S.; Park, I.S.; Kim, S.; Lee, D.H.; et al. A GLP-1/GLP-2 receptor dual agonist to treat NASH: Targeting the gut-liver axis and microbiome. Hepatology 2022, 75, 1523–1538. [Google Scholar] [CrossRef]
  188. Higarza, S.G.; Arboleya, S.; Arias, J.L.; Gueimonde, M.; Arias, N. Akkermansia muciniphila and environmental enrichment reverse cognitive impairment associated with high-fat high-cholesterol consumption in rats. Gut Microbes 2021, 13, 1–20. [Google Scholar] [CrossRef] [PubMed]
  189. Li, X.; Wang, H. Multiple organs involved in the pathogenesis of non-alcoholic fatty liver disease. Cell Biosci. 2020, 10, 140. [Google Scholar] [CrossRef]
  190. Zhou, J.; Tripathi, M.; Ho, J.P.; Widjaja, A.A.; Shekeran, S.G.; Camat, M.D.; James, A.; Wu, Y.; Ching, J.; Kovalik, J.P.; et al. Thyroid Hormone Decreases Hepatic Steatosis, Inflammation, and Fibrosis in a Dietary Mouse Model of Nonalcoholic Steatohepatitis. Thyroid 2022, 32, 725–738. [Google Scholar] [CrossRef]
  191. Liu, Y.; Jiang, L.; Sun, C.; Ireland, N.; Shah, Y.M.; Liu, Y.; Rui, L. Insulin/Snail1 axis ameliorates fatty liver disease by epigenetically suppressing lipogenesis. Nat. Commun. 2018, 9, 2751. [Google Scholar] [CrossRef] [PubMed]
  192. Collins, S. A heart-adipose tissue connection in the regulation of energy metabolism. Nat. Rev. Endocrinol. 2014, 10, 157–163. [Google Scholar] [CrossRef] [PubMed]
  193. Crudele, L.; De Matteis, C.; Novielli, F.; Petruzzelli, S.; Di Buduo, E.; Graziano, G.; Cariello, M.; Piccinin, E.; Gadaleta, R.M.; Moschetta, A. Fasting hyperglycaemia and fatty liver drive colorectal cancer: A retrospective analysis in 1145 patients. Intern. Emerg. Med. 2024, 19, 1267–1277. [Google Scholar] [CrossRef]
  194. Crudele, L.; Piccinin, E.; Moschetta, A. Visceral Adiposity and Cancer: Role in Pathogenesis and Prognosis. Nutrients 2021, 13, 2101. [Google Scholar] [CrossRef]
  195. Lee, H.; Lee, H.W.; Kim, S.U.; Chang Kim, H. Metabolic Dysfunction-Associated Fatty Liver Disease Increases Colon Cancer Risk: A Nationwide Cohort Study. Clin. Transl. Gastroenterol. 2022, 13, e00435. [Google Scholar] [CrossRef] [PubMed]
  196. Yoo, J.; Jeong, I.K.; Ahn, K.J.; Chung, H.Y.; Hwang, Y.C. Fenofibrate, a PPARalpha agonist, reduces hepatic fat accumulation through the upregulation of TFEB-mediated lipophagy. Metabolism 2021, 120, 154798. [Google Scholar] [CrossRef]
  197. Nakajima, A.; Eguchi, Y.; Yoneda, M.; Imajo, K.; Tamaki, N.; Suganami, H.; Nojima, T.; Tanigawa, R.; Iizuka, M.; Iida, Y.; et al. Randomised clinical trial: Pemafibrate, a novel selective peroxisome proliferator-activated receptor alpha modulator (SPPARMalpha), versus placebo in patients with non-alcoholic fatty liver disease. Aliment. Pharmacol. Ther. 2021, 54, 1263–1277. [Google Scholar] [CrossRef]
  198. Cusi, K.; Orsak, B.; Bril, F.; Lomonaco, R.; Hecht, J.; Ortiz-Lopez, C.; Tio, F.; Hardies, J.; Darland, C.; Musi, N.; et al. Long-Term Pioglitazone Treatment for Patients with Nonalcoholic Steatohepatitis and Prediabetes or Type 2 Diabetes Mellitus: A Randomized Trial. Ann. Intern. Med. 2016, 165, 305–315. [Google Scholar] [CrossRef]
  199. Gawrieh, S.; Noureddin, M.; Loo, N.; Mohseni, R.; Awasty, V.; Cusi, K.; Kowdley, K.V.; Lai, M.; Schiff, E.; Parmar, D.; et al. Saroglitazar, a PPAR-Alpha/Gamma Agonist, for Treatment of NAFLD: A Randomized Controlled Double-Blind Phase 2 Trial. Hepatology 2021, 74, 1809–1824. [Google Scholar] [CrossRef]
  200. Francque, S.M.; Bedossa, P.; Ratziu, V.; Anstee, Q.M.; Bugianesi, E.; Sanyal, A.J.; Loomba, R.; Harrison, S.A.; Balabanska, R.; Mateva, L.; et al. A Randomized, Controlled Trial of the Pan-PPAR Agonist Lanifibranor in NASH. N. Engl. J. Med. 2021, 385, 1547–1558. [Google Scholar] [CrossRef]
  201. Lawitz, E.J.; Bhandari, B.R.; Ruane, P.J.; Kohli, A.; Harting, E.; Ding, D.; Chuang, J.C.; Huss, R.S.; Chung, C.; Myers, R.P.; et al. Fenofibrate Mitigates Hypertriglyceridemia in Nonalcoholic Steatohepatitis Patients Treated with Cilofexor/Firsocostat. Clin. Gastroenterol. Hepatol. 2023, 21, 143–152.e3. [Google Scholar] [CrossRef] [PubMed]
  202. Palmer, M.; Kleiner, D.E.; Goodman, Z.; Brunt, E.; Avigan, M.I.; Regev, A.; Hayashi, P.H.; Lewis, J.H.; Mehta, R.; Harrison, S.A.; et al. Liver biopsy for assessment of suspected drug-induced liver injury in metabolic dysfunction-associated steatohepatitis clinical trials: Expert consensus from the Liver Forum. Aliment. Pharmacol. Ther. 2024, 59, 201–216. [Google Scholar] [CrossRef] [PubMed]
  203. Soccio, R.E.; Chen, E.R.; Lazar, M.A. Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes. Cell Metab. 2014, 20, 573–591. [Google Scholar] [CrossRef]
  204. Chalasani, N.; Younossi, Z.; Lavine, J.E.; Charlton, M.; Cusi, K.; Rinella, M.; Harrison, S.A.; Brunt, E.M.; Sanyal, A.J. The Diagnosis and Management of Nonalcoholic Fatty Liver Disease: Practice Guidance from the American Association for the Study of Liver Diseases. Hepatology 2018, 67, 328–357. [Google Scholar] [CrossRef]
  205. Rastogi, A.; Dunbar, R.L.; Thacker, H.P.; Bhatt, J.; Parmar, K.; Parmar, D.V. Abrogation of postprandial triglyceridemia with dual PPAR alpha/gamma agonist in type 2 diabetes mellitus: A randomized, placebo-controlled study. Acta Diabetol. 2020, 57, 809–818. [Google Scholar] [CrossRef]
  206. Siddiqui, M.S.; Idowu, M.O.; Parmar, D.; Borg, B.B.; Denham, D.; Loo, N.M.; Lazas, D.; Younes, Z.; Sanyal, A.J. A Phase 2 Double Blinded, Randomized Controlled Trial of Saroglitazar in Patients with Nonalcoholic Steatohepatitis. Clin. Gastroenterol. Hepatol. 2021, 19, 2670–2672. [Google Scholar] [CrossRef] [PubMed]
  207. Ratziu, V.; Harrison, S.A.; Francque, S.; Bedossa, P.; Lehert, P.; Serfaty, L.; Romero-Gomez, M.; Boursier, J.; Abdelmalek, M.; Caldwell, S.; et al. Elafibranor, an Agonist of the Peroxisome Proliferator-Activated Receptor-Alpha and -Delta, Induces Resolution of Nonalcoholic Steatohepatitis Without Fibrosis Worsening. Gastroenterology 2016, 150, 1147–1159.e5. [Google Scholar] [CrossRef]
  208. Lefere, S.; Puengel, T.; Hundertmark, J.; Penners, C.; Frank, A.K.; Guillot, A.; de Muynck, K.; Heymann, F.; Adarbes, V.; Defrene, E.; et al. Differential effects of selective- and pan-PPAR agonists on experimental steatohepatitis and hepatic macrophages. J. Hepatol. 2020, 73, 757–770. [Google Scholar] [CrossRef]
  209. Kim, W.; Kim, B.G.; Lee, J.S.; Lee, C.K.; Yeon, J.E.; Chang, M.S.; Kim, J.H.; Kim, H.; Yi, S.; Lee, J.; et al. Randomised clinical trial: The efficacy and safety of oltipraz, a liver X receptor alpha-inhibitory dithiolethione in patients with non-alcoholic fatty liver disease. Aliment. Pharmacol. Ther. 2017, 45, 1073–1083. [Google Scholar] [CrossRef]
  210. Alkhouri, N.; Herring, R.; Kabler, H.; Kayali, Z.; Hassanein, T.; Kohli, A.; Huss, R.S.; Zhu, Y.; Billin, A.N.; Damgaard, L.H.; et al. Safety and efficacy of combination therapy with semaglutide, cilofexor and firsocostat in patients with non-alcoholic steatohepatitis: A randomised, open-label phase II trial. J. Hepatol. 2022, 77, 607–618. [Google Scholar] [CrossRef]
  211. Younossi, Z.M.; Ratziu, V.; Loomba, R.; Rinella, M.; Anstee, Q.M.; Goodman, Z.; Bedossa, P.; Geier, A.; Beckebaum, S.; Newsome, P.N.; et al. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: Interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial. Lancet 2019, 394, 2184–2196. [Google Scholar] [CrossRef] [PubMed]
  212. Tully, D.C.; Rucker, P.V.; Chianelli, D.; Williams, J.; Vidal, A.; Alper, P.B.; Mutnick, D.; Bursulaya, B.; Schmeits, J.; Wu, X.; et al. Discovery of Tropifexor (LJN452), a Highly Potent Non-bile Acid FXR Agonist for the Treatment of Cholestatic Liver Diseases and Nonalcoholic Steatohepatitis (NASH). J. Med. Chem. 2017, 60, 9960–9973. [Google Scholar] [CrossRef] [PubMed]
  213. Xiao, Y.; Wang, Y.; Liu, Y.; Wang, W.; Tian, X.; Chen, S.; Lu, Y.; Du, J.; Cai, W. A nonbile acid farnesoid X receptor agonist tropifexor potently inhibits cholestatic liver injury and fibrosis by modulating the gut-liver axis. Liver Int. 2021, 41, 2117–2131. [Google Scholar] [CrossRef] [PubMed]
  214. Joseph, S.B.; McKilligin, E.; Pei, L.; Watson, M.A.; Collins, A.R.; Laffitte, B.A.; Chen, M.; Noh, G.; Goodman, J.; Hagger, G.N.; et al. Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc. Natl. Acad. Sci. USA 2002, 99, 7604–7609. [Google Scholar] [CrossRef]
  215. Griffett, K.; Solt, L.A.; El-Gendy Bel, D.; Kamenecka, T.M.; Burris, T.P. A liver-selective LXR inverse agonist that suppresses hepatic steatosis. ACS Chem. Biol. 2013, 8, 559–567. [Google Scholar] [CrossRef]
  216. Yasuda, T.; Grillot, D.; Billheimer, J.T.; Briand, F.; Delerive, P.; Huet, S.; Rader, D.J. Tissue-specific liver X receptor activation promotes macrophage reverse cholesterol transport in vivo. Arter. Thromb. Vasc. Biol. 2010, 30, 781–786. [Google Scholar] [CrossRef]
  217. Katz, A.; Udata, C.; Ott, E.; Hickey, L.; Burczynski, M.E.; Burghart, P.; Vesterqvist, O.; Meng, X. Safety, pharmacokinetics, and pharmacodynamics of single doses of LXR-623, a novel liver X-receptor agonist, in healthy participants. J. Clin. Pharmacol. 2009, 49, 643–649. [Google Scholar] [CrossRef]
  218. Harrison, S.A.; Bashir, M.; Moussa, S.E.; McCarty, K.; Pablo Frias, J.; Taub, R.; Alkhouri, N. Effects of Resmetirom on Noninvasive Endpoints in a 36-Week Phase 2 Active Treatment Extension Study in Patients with NASH. Hepatol. Commun. 2021, 5, 573–588. [Google Scholar] [CrossRef]
  219. Harrison, S.A.; Bashir, M.R.; Guy, C.D.; Zhou, R.; Moylan, C.A.; Frias, J.P.; Alkhouri, N.; Bansal, M.B.; Baum, S.; Neuschwander-Tetri, B.A.; et al. Resmetirom (MGL-3196) for the treatment of non-alcoholic steatohepatitis: A multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 2019, 394, 2012–2024. [Google Scholar] [CrossRef]
  220. Zucchi, R. Thyroid Hormone Analogues: An Update. Thyroid 2020, 30, 1099–1105. [Google Scholar] [CrossRef]
  221. Zhou, J.; Waskowicz, L.R.; Lim, A.; Liao, X.H.; Lian, B.; Masamune, H.; Refetoff, S.; Tran, B.; Koeberl, D.D.; Yen, P.M. A Liver-Specific Thyromimetic, VK2809, Decreases Hepatosteatosis in Glycogen Storage Disease Type Ia. Thyroid 2019, 29, 1158–1167. [Google Scholar] [CrossRef] [PubMed]
  222. Fiorucci, S.; Sepe, V.; Biagioli, M.; Fiorillo, B.; Rapacciuolo, P.; Distrutti, E.; Zampella, A. Development of bile acid activated receptors hybrid molecules for the treatment of inflammatory and metabolic disorders. Biochem. Pharmacol. 2023, 216, 115776. [Google Scholar] [CrossRef] [PubMed]
  223. Xiao, M.C.; Jiang, N.; Chen, L.L.; Liu, F.; Liu, S.Q.; Ding, C.H.; Wu, S.H.; Wang, K.Q.; Luo, Y.Y.; Peng, Y.; et al. TRIB3-TRIM8 complex drives NAFLD progression by regulating HNF4alpha stability. J. Hepatol. 2024, 80, 778–791. [Google Scholar] [CrossRef]
  224. Yang, Z.; Liu, G.; Wang, Y.; Yin, J.; Wang, J.; Xia, B.; Li, T.; Yang, X.; Hou, P.; Hu, S.; et al. Fucoidan A2 from the Brown Seaweed Ascophyllum nodosum Lowers Lipid by Improving Reverse Cholesterol Transport in C57BL/6J Mice Fed a High-Fat Diet. J. Agric. Food Chem. 2019, 67, 5782–5791. [Google Scholar] [CrossRef]
  225. Bao, T.; He, F.; Zhang, X.; Zhu, L.; Wang, Z.; Lu, H.; Wang, T.; Li, Y.; Yang, S.; Wang, H. Inulin Exerts Beneficial Effects on Non-Alcoholic Fatty Liver Disease via Modulating gut Microbiome and Suppressing the Lipopolysaccharide-Toll-Like Receptor 4-Mpsi-Nuclear Factor-kappaB-Nod-Like Receptor Protein 3 Pathway via Gut-Liver Axis In Mice. Front. Pharmacol. 2020, 11, 558525. [Google Scholar] [CrossRef]
  226. Daubioul, C.A.; Horsmans, Y.; Lambert, P.; Danse, E.; Delzenne, N.M. Effects of oligofructose on glucose and lipid metabolism in patients with nonalcoholic steatohepatitis: Results of a pilot study. Eur. J. Clin. Nutr. 2005, 59, 723–726. [Google Scholar] [CrossRef]
  227. Bomhof, M.R.; Parnell, J.A.; Ramay, H.R.; Crotty, P.; Rioux, K.P.; Probert, C.S.; Jayakumar, S.; Raman, M.; Reimer, R.A. Histological improvement of non-alcoholic steatohepatitis with a prebiotic: A pilot clinical trial. Eur. J. Nutr. 2019, 58, 1735–1745. [Google Scholar] [CrossRef] [PubMed]
  228. Paone, P.; Latousakis, D.; Terrasi, R.; Vertommen, D.; Jian, C.; Borlandelli, V.; Suriano, F.; Johansson, M.E.V.; Puel, A.; Bouzin, C.; et al. Human milk oligosaccharide 2′-fucosyllactose protects against high-fat diet-induced obesity by changing intestinal mucus production, composition and degradation linked to changes in gut microbiota and faecal proteome profiles in mice. Gut 2024, 73, 1632–1649. [Google Scholar] [CrossRef]
  229. Li, H.; Wang, X.K.; Tang, M.; Lei, L.; Li, J.R.; Sun, H.; Jiang, J.; Dong, B.; Li, H.Y.; Jiang, J.D.; et al. Bacteroides thetaiotaomicron ameliorates mouse hepatic steatosis through regulating gut microbial composition, gut-liver folate and unsaturated fatty acids metabolism. Gut Microbes 2024, 16, 2304159. [Google Scholar] [CrossRef]
  230. Yang, Y.; Yang, L.; Wu, J.; Hu, J.; Wan, M.; Bie, J.; Li, J.; Pan, D.; Sun, G.; Yang, C. Optimal probiotic combinations for treating nonalcoholic fatty liver disease: A systematic review and network meta-analysis. Clin. Nutr. 2024, 43, 1224–1239. [Google Scholar] [CrossRef]
  231. Silva-Sperb, A.S.; Moraes, H.A.; Barcelos, S.T.A.; de Moura, B.C.; Longo, L.; Michalczuk, M.T.; Cerski, C.T.S.; Uribe-Cruz, C.; da Silveira, T.R.; Alvares-da-Silva, M.R.; et al. Probiotic supplementation for 24 weeks in patients with non-alcoholic steatohepatitis: The PROBILIVER randomized clinical trial. Front. Nutr. 2024, 11, 1362694. [Google Scholar] [CrossRef] [PubMed]
  232. Zhou, D.; Pan, Q.; Shen, F.; Cao, H.X.; Ding, W.J.; Chen, Y.W.; Fan, J.G. Total fecal microbiota transplantation alleviates high-fat diet-induced steatohepatitis in mice via beneficial regulation of gut microbiota. Sci. Rep. 2017, 7, 1529. [Google Scholar] [CrossRef] [PubMed]
  233. Burz, S.D.; Monnoye, M.; Philippe, C.; Farin, W.; Ratziu, V.; Strozzi, F.; Paillarse, J.M.; Chene, L.; Blottiere, H.M.; Gerard, P. Fecal Microbiota Transplant from Human to Mice Gives Insights into the Role of the Gut Microbiota in Non-Alcoholic Fatty Liver Disease (NAFLD). Microorganisms 2021, 9, 199. [Google Scholar] [CrossRef] [PubMed]
  234. Witjes, J.J.; Smits, L.P.; Pekmez, C.T.; Prodan, A.; Meijnikman, A.S.; Troelstra, M.A.; Bouter, K.E.C.; Herrema, H.; Levin, E.; Holleboom, A.G.; et al. Donor Fecal Microbiota Transplantation Alters Gut Microbiota and Metabolites in Obese Individuals with Steatohepatitis. Hepatol. Commun. 2020, 4, 1578–1590. [Google Scholar] [CrossRef]
  235. Xue, L.; Deng, Z.; Luo, W.; He, X.; Chen, Y. Effect of Fecal Microbiota Transplantation on Non-Alcoholic Fatty Liver Disease: A Randomized Clinical Trial. Front. Cell. Infect. Microbiol. 2022, 12, 759306. [Google Scholar] [CrossRef]
  236. Kang, Y.; Ren, P.; Shen, X.; Kuang, X.; Yang, X.; Liu, H.; Yan, H.; Yang, H.; Kang, X.; Ding, Z.; et al. A Newly Synbiotic Combination Alleviates Obesity by Modulating the Gut Microbiota-Fat Axis and Inhibiting the Hepatic TLR4/NF-KappaB Signaling Pathway. Mol. Nutr. Food Res. 2023, 67, e2300141. [Google Scholar] [CrossRef]
Figure 1. Metabolism-related TFs in MAFLD. Green text suggests beneficial effects on MAFLD, while red text suggests harmful effects on MAFLD.
Figure 1. Metabolism-related TFs in MAFLD. Green text suggests beneficial effects on MAFLD, while red text suggests harmful effects on MAFLD.
Biomedicines 13 01422 g001
Figure 2. Inflammation and immune-related TFs in MAFLD. Green text suggests beneficial effects on MAFLD, while red text suggests harmful effects on MAFLD.
Figure 2. Inflammation and immune-related TFs in MAFLD. Green text suggests beneficial effects on MAFLD, while red text suggests harmful effects on MAFLD.
Biomedicines 13 01422 g002
Figure 3. Microbiota and metabolite-related TFs in MAFLD. Green text suggests beneficial effects on MAFLD, while red text suggests harmful effects on MAFLD.
Figure 3. Microbiota and metabolite-related TFs in MAFLD. Green text suggests beneficial effects on MAFLD, while red text suggests harmful effects on MAFLD.
Biomedicines 13 01422 g003
Table 1. Characteristics and associations of metabolism-related TFs in MAFLD.
Table 1. Characteristics and associations of metabolism-related TFs in MAFLD.
Transcription FactorMechanismCore FunctionsRole in MAFLD
PPARαActivates β-oxidation genes (CPT1A, ACOX1);
inhibits de novo lipogenesis; reduces lipid uptake and VLDL secretion via transcriptional regulation of CD36 and MTTP; antagonizes SREBP1c transcription
Liver: Lipid oxidation
Gut: Modulates intestinal lipid absorption
Attenuates MAFLD: Attenuates steatosis via enhanced fatty acid utilization [18,19]
PPARβ/δLowers apoC-III and VLDL receptor and increases apoA-IILiver: Enhances fatty acid oxidation and energy uncouplingAttenuates MAFLD: Ameliorates hepatic steatosis [20]
PPARγRegulates adipocyte differentiation, lipid uptake and energy storageLiver: Promote lipid redistributionAttenuates MAFLD: Improves lipid disorders [21]
Exacerbates MAFLD: PPARγ-deficient exhibits resistance to diet-induced MASH [22]
SREBP1cDrives ACLY, FASN, and ELOVL6 expression;
phosphorylation of SREBP1c increases its expression
Liver: Lipogenesis and cholesterol biosynthesisExacerbates MAFLD: Exacerbates hepatic lipid accumulation [23,24,25]
CHREBPUpregulates lipogenic genes (FASN, SCD-1, LPIN1 and ACLY); interacts with PPARγ to amplify lipid storageLiver: Carbohydrate-to-lipid conversion
Gut: Regulates dietary sugar metabolism
Exacerbates MAFLD: Promotes DNL under high-carbohydrate diets [26,27,28]; Induces hepatic steatosis [29,30]
CREBHCleaved C-terminal fragment activates lipoprotein lipase; induces apoC2-5 and FGF21; suppresses Niemann-Pick C1-like 1Liver: Promotes fatty acid oxidation
Gut: Inhibits dietary cholesterol uptake; enhances intestinal cholesterol efflux
Attenuates MAFLD: Reduces HFD-induced steatosis [31,32]; mitigates hypercholesterolemia [33]
FXRStimulates FGF19/FGFR4 signaling to inhibit bile acid synthase CYP7A1 and CYP8B1; alters the ratio of cholic acid to taurocholic acidLiver: Inhibits bile acid production; suppresses the generation of monounsaturated fatty acids;
Gut: Inhibits the absorption of polyunsaturated fatty acids
Attenuates MAFLD: Reduces hepatic TG accumulation [34]; improves fibrosis in MASH patients [35]
PXRTargets CD36 and PPARγ;
Induces S14, LPIN1 and SLC13A5 to promote lipogenesis; upregulates SLC27A4 to increase fatty acid uptake; activates c-Jun and LPIN1 to decrease mitochondrial β-oxidation; downregulates PPARα, FGF15, and FOXA2 signaling pathways
Liver: Lipid uptake and synthesisExacerbates MAFLD: Exacerbates steatosis [36]
LXRIncreases SREBP1c, FASN, SCD-1, and ACC;
Targets ABCA1 and ABCG1;
Liver: Promotes lipid deposition;
Gut: Increases fecal excretion of bile acids
Exacerbates MAFLD: Promotes the deterioration of MASH [37]
Attenuates MAFLD: Increases insulin sensitivity [38]
AHRPromotes SCD-1 expression to enhance monounsaturated fatty acid synthesis; promotes the expression of fatty acid transport-related genes CD36, LDLR, VLDLR, and FABP4; Liver: Facilitates hepatic fatty acid uptake and accumulationExacerbates MAFLD: Promotes hepatic steatosis [39]
THR-βUpregulates CPT1A, medium-chain acyl-coenzyme A dehydrogenase and LDL-R; downregulates SCD-1 and glycerol-3-phosphate acyltransferase-3; stimulates FASN, ACC-α, SREBP1c, and carbohydrate-responsive element-binding protein;Liver: Promotes mitochondrial fatty acid uptake and β-oxidation; decreases circulating cholesterolAttenuates MAFLD: Reduces hepatic steatosis and inflammation [40]
HNF4αRegulates lipid transport genes apoB and MTTP, and gluconeogenic genes glucose-6-phosphatase catalytic and phosphoenolpyruvate carboxykinaseLiver: VLDL and HDL secretion; glucose homeostasisAttenuates MAFLD: Loss promotes steatosis; antagonism reduces VLDL output [41,42]
FOXO1Induces insulin resistance and gluconeogenesis;
regulates autophagy and glycophagy
Liver: Glucose production Exacerbates MAFLD: Exacerbates MAFLD progression; links adipocyte dysfunction to hepatic insulin resistance [43]
FOXA2Upregulates CPT2; regulated by insulin and CaM signalingLiver: Enhances mitochondrial oxidationAttenuates MAFLD: Restores lipid catabolism [44]
HIF2αUpregulates sterol regulatory element binding transcription factor 1, FASN, and CD36; downregulates PPARα and ACOX1Liver: Promotes fatty acid synthesis and uptake; downregulates fatty acid β-oxidationExacerbates MAFLD: Exacerbates hepatic steatosis [45,46]
MYCInduces SREBP1; reduces GLP-1 secretion; activates de novo ceramide synthesisLiver: Drives DNL;
Gut: Reduces GLP-1 secretion
Exacerbates MAFLD: Aggravates hepatic ceramide accumulation and hepatic steatosis [47]
ZAC1Regulates imprinted genes; activates TGF-β1/Collagen Type VI α2Liver: Drives hepatic fibrosisExacerbates MAFLD: Drives juvenile MAFLD fibrosis [48]
PPAR, peroxisome proliferator-activated receptor; CPT1A, carnitine palmitoyltransferase 1A; ACOX1, acetyl coenzyme A carboxylase; VLDL, very low-density lipoprotein; MTTP, microsomal triglyceride transfer protein; SREBP1c, sterol regulatory element binding protein-1c; ACLY, ATP citrate lyase; FASN, fatty acid synthase; ELOVL6, elongation of very long-chain fatty acids-like 6; CHREBP, carbohydrate response element binding protein; SCD-1, stearoyl coenzyme A desaturase 1; LPIN1, lipin 1; DNL, de novo lipogenesis; CREBH, cAMP-responsive element-binding protein H; apoC, apolipoprotein C; FGF21, fibroblast growth factor 21; HFD, high-fat diet; FXR, farnesoid X receptor; FGF19, fibroblast growth factor 19; FGFR4, fibroblast growth factor receptor 4; CYP7A1, cytochrome P450 family 7 subfamily A member 1; CYP8B1, cytochrome P450 family 8 subfamily B member 1; TG, triglyceride; MASH, metabolic dysfunction-associated steatohepatitis; PXR, pregnane X receptor; SLC13A5, solute carrier family 13 member 5; SLC27A4, solute carrier family 27 member 4; FOXA2, forkhead box a2; LXR, liver X receptor; ACC, acetyl coenzyme A carboxylase; ABCA1, ATP binding cassette subfamily A member 1; ABCG1, ATP binding cassette subfamily g member 1; AHR, aryl hydrocarbon receptor; FABP4, fatty acid binding protein 4; THR-β, thyroid hormone receptor β; HNF4α, hepatocyte nuclear factor 4α; FOXO1, forkhead box o1; HIF2α, hypoxia-inducible factor 2α; MYC, myelocytomatosis; GLP-1, glucagon like peptide 1; ZAC1, zinc-finger protein regulator of apoptosis and cell-cycle arrest 1; MAFLD, metabolic dysfunction-associated fatty liver disease; TGF-β1, transforming growth factor β1.
Table 2. Characteristics and associations of inflammation and immune-related TFs in MAFLD.
Table 2. Characteristics and associations of inflammation and immune-related TFs in MAFLD.
Transcription FactorMain MechanismsCore FunctionsAssociation with MAFLD
PPARsPPARα: reduces lipid accumulation and oxidative stress;
PPARδ: reduces IL-1β, F4/80, and NLRP3 inflammasome activity; macrophage polarization to M2 phenotype;
PPARγ: Transcriptional repression of NF-κB and STAT; suppresses TGF-β1
Liver: Inhibits inflammation;Attenuates MAFLD: Improves NAFLD activity score (NAS) [124]; suppresses inflammation and fibrosis [120]
FXRInhibits NLRP3 and NF-κB signaling, reducing pro-inflammatory cytokines (TNF-α, IL-6) and chemokines (MCP-1); promotes macrophage M2 polarization; suppresses TGF-β/SMAD2/3 signaling, and reduces HSC activation; prevents ileal CD8+ T cell infiltration; improves gut barrier function via GPBAR1-dependent IL-10 productionLiver: Suppresses inflammation;
Gut: Enhances barrier function
Attenuates MAFLD: Attenuates steatohepatitis and fibrosis [86,125,126]
STAT3Promotes IL-1β, fibrotic genes (Timp-1, α-SMA and Zeb2), TGF-β1, IL-17 secretion, HPC expansion, and HSC activation; improves insulin sensitivity and resolves steatosis and inflammation; promotes M2 polarization; activates anti-apoptotic pathways in hepatocytes Liver: Promotes pro-inflammatory and fibrogenic signaling; suppresses apoptosis;
Gut: Improves insulin sensitivity and intestinal permeability; resolves inflammation
Exacerbates MAFLD: Promotes inflammation, HSC activation and fibrosis [127,128];
Attenuates MAFLD: Reduces hepatocyte and enterocytes death [129]
NRF2Induces antioxidant genes (SOD2, HO-1 and NQO1);
restores glutathione levels; inhibits gasdermin D expression
Liver: Reduces ROS and suppresses lipogenic pathwaysAttenuates MAFLD: Attenuates oxidative stress and fibrosis [130]
IRF1Upregulates Osbpl3, Ddit4, and Ccl2; inhibits AMPK-TFEB autophagy; drives macrophage ferroptosis;Liver: Promotes lipogenesis and oxidative stress;Exacerbates MAFLD: Aggravates steatosis and inflammation [131,132]
NR4AModulates Treg/Th17 balance; inhibits NF-κB, TNF-α and IL-6 in macrophagesLiver: Suppresses Kupffer cell apoptosisAttenuates MAFLD: Deficiency exacerbates fibrosis and inflammation; agonists reduce inflammation [133]
TFEBInduces lysosomal/autophagy genes; clears lipid droplets, damaged mitochondria, and ROSLiver: Enhances lipid degradation and autophagyAttenuates MAFLD: Restores hepatocyte function; reduces hepatic TG and fibrosis [134]
NLRP3, NLR family pyrin domain containing 3; NAS, NAFLD activity score; STAT, signal transducer and activator of transcription; MCP-1, monocyte chemoattractant protein-1; SMAD2, SMAD family member 2; HSC, hepatic stellate cells; GPBAR1, G protein-coupled bile acid receptor 1; Timp-1, tissue inhibitor of metalloproteinases 1; α-SMA, α-smooth muscle actin; Zeb2, zinc finger e-box binding homeobox 2; HPC, hepatic progenitor cells; NRF2, nuclear factor erythroid 2 like 2; SOD2, superoxide dismutase 2; HO-1, heme oxygenase 1; NQO1, NAD(P)H quinone dehydrogenase 1; ROS, reactive oxygen species; IRF1, interferon regulatory factor 1; Osbpl3, oxysterol binding protein like 3; Ddit4, DNA damage inducible transcript 4; Ccl2, C-C motif chemokine ligand 2; AMPK, AMP-activated protein kinase; TFEB, transcription factor EB; NR4A, nuclear receptor subfamily 4 group A; Treg, regulatory T cells; Th17, T helper 17 cells.
Table 3. Characteristics and associations of microbiota and metabolite-related TFs in MAFLD.
Table 3. Characteristics and associations of microbiota and metabolite-related TFs in MAFLD.
Transcription FactorMain MechanismsCore FunctionsAssociation with MAFLD
PPARsRestores the expression of tight junction proteins;
Lactobacillus casei, Lactobacillus plantarum FRT10, Lachnospiraceae, Clostridium, and SCFAs enhance PPARs activity
Liver: Reduces hepatic steatosis;
Gut: Activated by bacteria; improves intestinal barrier
Attenuates MAFLD: Prevents hepatic steatosis and flora disturbance [158]
FXRSuppresses hepatic bile acid synthesis; enhances intestinal tight junction; activates Wnt/β-catenin signaling to ameliorate disrupted GVB; upregulates the expression of iNOS, IL-18, and angiopoietin 1Gut: Improves intestinal barrier; strengthens antimicrobial defenseAttenuates MAFLD: Ameliorates steatosis and fibrosis [159]
PXRDecreases bile acid-metabolizing bacteria, Allobaculum, Bifidobacterium; increases Akkermansia muciniphila, Allobaculum spp., specific pro-inflammatory Lactobacillus, and Firmicutes/Bacteroidetes ratio; elevates deoxycholic acidGut: Drives microbial dysbiosis and inflammationExacerbates MAFLD: Promotes hepatic injury and lipid metabolism disorders in MAFLD [160]
AHRActivated by indole propionic acid to reduce TNF-α, IFN-γ, IL-1β; promotes mucin production and intestinal homeostasisGut: Protects the intestinal mucosa and intestinal homeostasis; inhibits inflammationAttenuates MAFLD: Decreased AHR ligands and colonic AHR expression is related to MAFLD [161]; suppresses the intestinal inflammation and prevents bacterial translocation
HIF2αButyrate consumes oxygen to activate HIF signaling;
activates neuraminidase 3 to increase ceramide;
acute activation preserves barrier integrity while chronic activation disrupts tight junctions
Gut: Increases intestinal and serum ceramideExacerbates MAFLD: Positively correlates with body mass index and hepatic enzymes; HFD promotes HIF2α activation; promotes hepatic steatosis and obesity [162]
NR1D1Binds to promoters of Claudin 1, Claudin 3, and Zona occludens 3; agonist SR9009 promotes goblet cell populations and mucin secretionGut: Restores intestinal barrier integrityAttenuates MAFLD: Ameliorates hepatic steatosis, insulin resistance, and inflammation in MASH mice [163]
SCFAs, short-chain fatty acids; GVB, gut–vascular barrier; iNOS, inducible nitric oxide synthase; AHR, aryl hydrocarbon receptor; NR1D1, nuclear receptor subfamily 1 group d member 1.
Table 4. Targeted therapy strategies of TFs.
Table 4. Targeted therapy strategies of TFs.
Transcription FactorDrugProgressChallenges
PPARαFenofibrateImproved dyslipidemia and inflammation [201]Minimal effect on insulin sensitivity or liver histology [196]
PemafibrateDecreased MRE-based liver stiffnessDid not decrease liver fat [197]
PPARβ/δSeladelparImprovement in insulin sensitivity, liver enzymes, and hepatic steatosisTermination due to worrisome histology results [202]
Endurobol/GW501516Increases HDL-C and reduces LDL-C and TG in obese monkeys with insulin resistance [57]
PPARγPioglitazoneReduced histological liver fat, inflammation, and fibrosis [203]Increased risk of fluid retention, edema, congestive heart failure, and bladder cancer [203,204]
RosiglitazoneImprove insulin sensitivity [203]Does not appear to be as effective as pioglitazone in ameliorating MAFLD, and might cause pro-inflammatory changes [203]
PPARα and γSaroglitazar Improved postprandial triglycerides in people with diabetic dyslipidemia [205]; improved ALT and hepatic fat [199]No improvement in delta change of NAS from baseline to week 24 biopsy [206]
PPARα and δElafibranorResolved NASH without fibrosis worsening in patients [207]Not met the primary endpoint (NASH resolution) in the large phase 3 trial [207]
PPARα, δ and γLanifibranor Decreased at least 2 points in the activity part of steatosis, activity, fibrosis scoring system of MASH patients [200]; decreased MAFLD in rodents [208]Increased the risk of diarrhea, nausea, peripheral edema, anemia, and weight gain [200]
SREBP1cOltiprazDecreased liver fat and BMI [209]No difference in insulin resistance, liver enzymes, lipids, and cytokines
FXRCilofexorDecreased fat accumulation, serum bile acids, and fibrosis in MASH patients [210]
Obeticholic acidDecreased liver enzymes; improved liver histology in MASH patients [35]No statistically significant effect [211]; side effect: Pruritus [35]
TropifexorDecreased liver fat [212]; ameliorates liver injury, fibrosis, intestinal barrier injury in piglets [213]
LXRGW3965Alters the VLDL-C and LDL-C levels in hamsters and cynomolgus monkeys; inhibits atherosclerosis in mice [214]Unsuitable for clinical development due to their pleotropic effects
SR9238Inhibition of LXR-driven lipogenesis [215]Decreased liver lipid content and inflammation in mice [215]
GW6340Promotes excretion of (3)H-sterol in feces [216]
LXR-623Regulates lipid levels in monkeys [217]Termination due to unexpected adverse neurological events
THR-βResmetiromReduced liver fat content, LDL, and apoB of MASH patients [218]Higher incidence of transient mild diarrhea and nausea [219]
VK2809Reduced liver fat content [220]; decreased hepatic mass and TG in mice [221]
MRE, magnetic resonance elastography; BMI, body mass index.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Liu, A.; Huang, M.; Xi, Y.; Deng, X.; Xu, K. Orchestration of Gut–Liver-Associated Transcription Factors in MAFLD: From Cross-Organ Interactions to Therapeutic Innovation. Biomedicines 2025, 13, 1422. https://doi.org/10.3390/biomedicines13061422

AMA Style

Liu A, Huang M, Xi Y, Deng X, Xu K. Orchestration of Gut–Liver-Associated Transcription Factors in MAFLD: From Cross-Organ Interactions to Therapeutic Innovation. Biomedicines. 2025; 13(6):1422. https://doi.org/10.3390/biomedicines13061422

Chicago/Turabian Style

Liu, Ao, Mengting Huang, Yuwen Xi, Xiaoling Deng, and Keshu Xu. 2025. "Orchestration of Gut–Liver-Associated Transcription Factors in MAFLD: From Cross-Organ Interactions to Therapeutic Innovation" Biomedicines 13, no. 6: 1422. https://doi.org/10.3390/biomedicines13061422

APA Style

Liu, A., Huang, M., Xi, Y., Deng, X., & Xu, K. (2025). Orchestration of Gut–Liver-Associated Transcription Factors in MAFLD: From Cross-Organ Interactions to Therapeutic Innovation. Biomedicines, 13(6), 1422. https://doi.org/10.3390/biomedicines13061422

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop