HD-OCT Angiography and SD-OCT in Patients with Mild or No Clinically Apparent Diabetic Retinopathy
Abstract
1. Introduction
2. Patients and Methods
Statistics
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BCVA | best corrected visual acuity |
DME | diabetic macular edema |
DR | diabetic retinopathy |
FA | fluorescein angiography |
GCC | ganglion cell complex |
HD-OCT | high-definition optical coherence tomography |
OCTA | optical coherence tomography angiography |
VD | vascular density |
References
- Prokofyeva, E.; Zrenner, E. Epidemiology of major eye diseases leading to blindness in Europe: A literature review. Ophthalmic Res. 2012, 47, 171–188. [Google Scholar] [CrossRef] [PubMed]
- de Carlo, T.E.; Chin, A.T.; Bonini Filho, M.A.; Adhi, M.; Branchini, L.; Salz, D.A.; Baumal, C.R.; Crawford, C.; Reichel, E.; Witkin, A.J.; et al. Detection of Microvascular Changes in Eyes of Patients with Diabetes but not Clinical Diabetic Retinopathy Using Optical Coherence Tomography Angiography. Retina 2015, 35, 2364–2370. [Google Scholar] [CrossRef] [PubMed]
- Arend, O.; Wolf, S.; Jung, F.; Bertram, B.; Pöstgens, H.; Toonen, H.; Reim, M. Retinal microcirculation in patients with diabetes mellitus: Dynamic and morphological analysis of perifoveal capillary network. Br. J. Ophthalmol. 1991, 75, 514–518. [Google Scholar] [CrossRef]
- Hasegawa, N.; Nozaki, M.; Takase, N.; Yoshida, M.; Ogura, Y. New Insights Into Microaneurysms in the Deep Capillary Plexus Detected by Optical Coherence Tomography Angiography in Diabetic Macular Edema. Investig. Ophthalmol. Vis. Sci. 2016, 57, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Kaines, A.; Oliver, S.; Reddy, S.; Schwartz, S.D. Ultrawide angle angiography for the detection and management of diabetic retinopathy. Int. Ophthalmol. Clin. 2009, 49, 53–59. [Google Scholar] [CrossRef]
- Burgansky-Eliash, Z.; Barak, A.; Barash, H.; Nelson, D.A.; Pupko, O.; Lowenstein, A.; Grinvald, A.; Rubinstein, A. Increased retinal blood flow velocity in patients with early diabetes mellitus. Retina 2012, 32, 112–119. [Google Scholar] [CrossRef]
- Agemy, S.A.; Scripsema, N.K.; Shah, C.M.; Chui, T.; Garcia, P.M.; Lee, J.G.; Gentile, R.C.; Hsiao, Y.S.; Zhou, Q.; Ko, T.; et al. Retinal Vascular Perfusion Density Mapping Using Optical Coherence Tomography Angiography in Normals and Diabetic Retinopathy Patients. Retina 2015, 35, 2353–2363. [Google Scholar] [CrossRef]
- Abucham-Neto, J.Z.; Torricelli, A.A.M.; Lui, A.C.F.; Guimarães, S.N.; Nascimento, H.; Regatieri, C.V. Comparison between optical coherence tomography angiography and fluorescein angiography findings in retinal vasculitis. Int. J. Retin. Vitr. 2018, 4, 15. [Google Scholar] [CrossRef]
- Kashani, A.H.; Chen, C.L.; Gahm, J.K.; Zheng, F.; Richter, G.M.; Rosenfeld, P.J.; Shi, Y.; Wang, R.K. Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications. Prog. Retin. Eye Res. 2017, 60, 66–100. [Google Scholar] [CrossRef]
- Shahlaee, A.; Samara, W.A.; Hsu, J.; Say, E.A.; Khan, M.A.; Sridhar, J.; Hong, B.K.; Shields, C.L.; Ho, A.C. In Vivo Assessment of Macular Vascular Density in Healthy Human Eyes Using Optical Coherence Tomography Angiography. Am. J. Ophthalmol. 2016, 165, 39–46. [Google Scholar] [CrossRef]
- Di, G.; Weihong, Y.; Xiao, Z.; Zhikun, Y.; Xuan, Z.; Yi, Q.; Fangtian, D. A morphological study of the foveal avascular zone in patients with diabetes mellitus using optical coherence tomography angiography. Graefes Arch. Clin. Exp. Ophthalmol. 2016, 254, 873–879. [Google Scholar] [CrossRef] [PubMed]
- Freiberg, F.J.; Pfau, M.; Wons, J.; Wirth, M.A.; Becker, M.D.; Michels, S. Optical coherence tomography angiography of the foveal avascular zone in diabetic retinopathy. Graefes Arch. Clin. Exp. Ophthalmol. 2016, 254, 1051–1058. [Google Scholar] [CrossRef]
- Villarroel, M.; Ciudin, A.; Hernández, C.; Simó, R. Neurodegeneration: An early event of diabetic retinopathy. World J. Diabetes 2010, 1, 57–64. [Google Scholar] [CrossRef]
- Takase, N.; Nozaki, M.; Kato, A.; Ozeki, H.; Yoshida, M.; Ogura, Y. Enlargement of Foveal Avascular Zone in Diabetic Eyes Evaluated by En Face Optical Coherence Tomography Angiography. Retina 2015, 35, 2377–2383. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.Y.; Chu, Z.; Shahidzadeh, A.; Wang, R.K.; Puliafito, C.A.; Kashani, A.H. Quantifying Microvascular Density and Morphology in Diabetic Retinopathy Using Spectral-Domain Optical Coherence Tomography Angiography. Investig. Ophthalmol. Vis. Sci. 2016, 57, 362–370. [Google Scholar] [CrossRef]
- Couturier, A.; Mané, V.; Bonnin, S.; Erginay, A.; Massin, P.; Gaudric, A.; Tadayoni, R. Capillary Plexus Anomalies in Diabetic Retinopathy on Optical Coherence Tomography Angiography. Retina 2015, 35, 2384–2391. [Google Scholar] [CrossRef]
- Yu, J.; Gu, R.; Zong, Y.; Xu, H.; Wang, X.; Sun, X.; Jiang, C.; Xie, B.; Jia, Y.; Huang, D. Relationship Between Retinal Perfusion and Retinal Thickness in Healthy Subjects: An Optical Coherence Tomography Angiography Study. Investig. Ophthalmol. Vis. Sci. 2016, 57, 204–210. [Google Scholar] [CrossRef]
- Lynch, G.; Romo, J.S.A.; Linderman, R.; Krawitz, B.D.; Mo, S.; Zakik, A.; Carroll, J.; Rosen, R.B.; Chui, T.Y.P. Within-subject assessment of foveal avascular zone enlargement in different stages of diabetic retinopathy using en face OCT reflectance and OCT angiography. Biomed. Opt. Express 2018, 9, 5982–5996. [Google Scholar] [CrossRef] [PubMed]
- You, Q.S.; Chan, J.C.H.; Ng, A.L.K.; Choy, B.K.N.; Shih, K.C.; Cheung, J.J.C.; Wong, J.K.W.; Shum, J.W.H.; Ni, M.Y.; Lai, J.S.M.; et al. Macular Vessel Density Measured with Optical Coherence Tomography Angiography and Its Associations in a Large Population-Based Study. Investig. Ophthalmol. Vis. Sci. 2019, 60, 4830–4837. [Google Scholar] [CrossRef]
- Dimitrova, G. Morphometric characteristics of central retinal artery and vein in the optic nerve head of patients with diabetes. Investig. Ophthalmol. Vis. Sci. 2012, 53, 1637. [Google Scholar] [CrossRef]
- Dimitrova, G.; Kato, S.; Tamaki, Y.; Yamashita, H.; Nagahara, M.; Sakurai, M.; Kitano, S.; Fukushima, H. Choroidal circulation in diabetic patients. Eye 2001, 15 Pt 5, 602–607. [Google Scholar] [CrossRef] [PubMed]
- Ong, J.X.; Konopek, N.; Fukuyama, H.; Fawzi, A.A. Deep Capillary Nonperfusion on OCT Angiography Predicts Complications in Eyes with Referable Nonproliferative Diabetic Retinopathy. Ophthalmol. Retin. 2023, 7, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Nesper, P.L.; Ong, J.X.; Fawzi, A.A. Deep Capillary Geometric Perfusion Deficits on OCT Angiography Detect Clinically Referable Eyes with Diabetic Retinopathy. Ophthalmol. Retin. 2022, 6, 1194–1205. [Google Scholar] [CrossRef]
- Tsai, A.S.H.; Jordan-Yu, J.M.; Gan, A.T.L.; Teo, K.Y.C.; Tan, G.S.W.; Lee, S.Y.; Chong, V.; Cheung, C.M.G. Diabetic Macular Ischemia: Influence of Optical Coherence Tomography Angiography Parameters on Changes in Functional Outcomes Over One Year. Investig. Ophthalmol. Vis. Sci. 2021, 62, 9. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yu, Y.; Liu, X.; Shi, Y.; Jin, X.; Zhang, Y.; Xu, S.; Zhang, N.; Dong, L.; Zhou, S.; et al. Quantitative analysis of retinal vessel density and thickness changes in diabetes mellitus evaluated using optical coherence tomography angiography: A cross-sectional study. BMC Ophthalmol. 2021, 21, 259. [Google Scholar] [CrossRef]
- Vujosevic, S.; Midena, E. Retinal layers changes in human preclinical and early clinical diabetic retinopathy support early retinal neuronal and Müller cells alterations. J. Diabetes Res. 2013, 2013, 905058. [Google Scholar] [CrossRef]
- Oshitari, T.; Hanawa, K.; Adachi-Usami, E. Changes of macular and RNFL thicknesses measured by Stratus OCT in patients with early stage diabetes. Eye 2009, 23, 884–889. [Google Scholar] [CrossRef]
- Srinivasan, S.; Pritchard, N.; Sampson, G.P.; Edwards, K.; Vagenas, D.; Russell, A.W.; Malik, R.A.; Efron, N. Focal loss volume of ganglion cell complex in diabetic neuropathy. Clin. Exp. Optom. 2016, 99, 526–534. [Google Scholar] [CrossRef] [PubMed]
- Hegazy, A.I.; Zedan, R.H.; Macky, T.A.; Esmat, S.M. Retinal ganglion cell complex changes using spectral domain optical coherence tomography in diabetic patients without retinopathy. Int. J. Ophthalmol. 2017, 10, 427–433. [Google Scholar]
- Miwa, Y.; Murakami, T.; Suzuma, K.; Uji, A.; Yoshitake, S.; Fujimoto, M.; Yoshitake, T.; Tamura, Y.; Yoshimura, N. Relationship between Functional and Structural Changes in Diabetic Vessels in Optical Coherence Tomography Angiography. Sci. Rep. 2016, 6, 29064. [Google Scholar] [CrossRef]
- van Dijk, H.W.; Verbraak, F.D.; Kok, P.H.; Stehouwer, M.; Garvin, M.K.; Sonka, M.; De Vries, J.H.; Schlingemann, R.O.; Abràmoff, M.D. Early neurodegeneration in the retina of type 2 diabetic patients. Investig. Ophthalmol. Vis. Sci. 2012, 53, 2715–2719. [Google Scholar] [CrossRef] [PubMed]
- Pauk-Domańska, M.; Walasik-Szemplińska, D. Color Doppler imaging of the retrobulbar vessels in diabetic retinopathy. J. Ultrason. 2014, 14, 28–35. [Google Scholar] [CrossRef] [PubMed]
Diabetic Patients | Control | |
---|---|---|
Patients (N) | 27 | 29 |
Eyes (N) | 54 | 58 |
Gender (N) | M = 15; F = 12 | M = 12; F = 17 |
Age (years) * | 52.3 ± 10.8 | 49.0 ± 10.3 |
Duration of DM (months) * | 83.4 ± 24.3 | - |
HBA1c (%) * | 7.3 ± 1.2 | - |
Group | Mean | Standard Deviation | Difference | t | p * | |
---|---|---|---|---|---|---|
Flow Outer Retinal (mm2) | Diabetic patients (N = 49) | 1.19 | 0.17 | −0.11 | −2.914 | 0.004 |
Control (N = 48) | 1.08 | 0.20 | ||||
Flow Choroid Capillaris (mm2) | Diabetic patients (N = 48) | 1.87 | 0.082 | 0.028 | 1.807 | 0.07 |
Control (N = 48) | 1.9 | 0.07 | ||||
VD SCP—whole image (%) | Diabetic patients (N = 51) | 45 | 4.53 | 3.31 | 3.702 | <0.001 |
Control (N = 47) | 48.31 | 4.29 | ||||
VD DCP—whole image (%) | Diabetic patients (N = 50) | 45 | 6.06 | 3.11 | 2.56 | 0.012 |
Control (N = 47) | 48.11 | 5.92 | ||||
VD SCP—fovea (%) | Diabetic patients (N = 51) | 18.89 | 7.53 | 0.12 | 0.0823 | 0.963 |
Control (N = 47) | 19.02 | 7.23 | ||||
VD DCP—fovea (%) | Diabetic patients (N = 50) | 34.04 | 8.82 | 1.74 | 1.006 | 0.317 |
Control (N = 47) | 35.78 | 8.13 | ||||
VD SCP—parafovea (%) | Diabetic patients (N = 51) | 45.10 | 6.89 | 4.45 | 3.61 | <0.001 |
Control (N = 47) | 49.55 | 5.03 | ||||
VD DCP—parafovea (%) | Diabetic patients (N = 50) | 50.84 | 4.77 | 3.39 | 3.57 | <0.001 |
Control (N = 47) | 54.23 | 4.56 | ||||
VD SCP—perifovea (%) | Diabetic patients (N = 51) | 46.13 | 4.25 | 3.34 | 3.75 | <0.001 |
Control (N = 46) | 49.47 | 4.52 | ||||
VD DCP—perifovea (%) | Diabetic patients (N = 50) | 45.96 | 6.67 | 3.07 | 2.253 | 0.027 |
Control (N = 46) | 49.03 | 6.67 |
MODEL | F, p * | Gender | Age | Interaction Age × Group | |||
---|---|---|---|---|---|---|---|
Unstandardized B | p * | Standardized B | p * | Standardized B | p * | ||
VD SCP—whole image (%)—initial | 13.906; <0.001 | 2.85 | 0.003 | −0.295 | 0.002 | ||
VD SCP—whole image (%)—interaction | 9.539; <0.001 | 2.643 | 0.007 | −0.207 | 0.13 | −0.128 | 0.359 |
VD SCP—fovea (%)—initial | 0.415; 0.661 | −0.905 | 0.582 | −0.093 | 0.391 | ||
VD SCP—fovea (%)—interaction | 0.328; 0.805 | −0.746 | 0.661 | −0.136 | 0.377 | 0.063 | 0.690 |
VD SCP parafovea (%)—initial | 7.895; <0.001 | 2.95 | 0.03 | −0.246 | 0.016 | ||
VD SCP parafovea (%)—interaction | 5.977; <0.001 | 2.496 | 0.072 | −0.104 | 0.464 | −0.205 | 0.163 |
VD SCP perifovea (%)—initial | 16.147; <0.001 | 3.103 | <0.001 | −0.205 | 0.002 | ||
VD SCP perifovea (%)—interaction | 10.914; <0.001 | 2.936 | 0.002 | −0.233 | 0.083 | −0.105 | 0.445 |
VD DCP whole image (%)—initial | 8.860; <0.001 | 2.210 | 0.086 | −0.307 | 0.003 | ||
VD DCP whole image (%)—interaction | 5.845; <0.001 | 2.229 | 0.095 | −0.313 | 0.03 | 0.009 | 0.953 |
VD DCP fovea (%)- initial | 1.323; 0.271 | 0.720 | 0.704 | −0.148 | 0.172 | ||
VD DCP fovea (%)—interaction | 0.874; 0.458 | 0.694 | 0.724 | −0.142 | 0.355 | −0.009 | 0.956 |
VD DCP parafovea (%)—initial | 8.767; <0.001 | 1.808 | 0.081 | −0.303 | 0.003 | ||
VD DCP parafovea (%)—interaction | 6.393; <0.001 | 1.49 | 0.16 | −0.179 | 0.207 | −0.18 | 0.217 |
VD DCP perifovea (%)—initial | 6.743; 0.002 | 1.927 | 0.183 | −0.288 | 0.006 | ||
VD DCP perifovea (%)—interaction | 4.451; 0.006 | 1.693 | 0.190 | −0.298 | 0.042 | 0.015 | 0.921 |
Model | Unstandardized B | Standard Error | Standardized B | p | 95% CI Lower | 95% CI Upper | |
---|---|---|---|---|---|---|---|
M₁ | age | −0.095 | 0.058 | −0.226 | 0.108 | −0.212 | 0.022 |
gender | 1.719 | 1.240 | 0.172 | −0.775 | 4.213 | ||
M₂ | age | −0.090 | 0.057 | −0.213 | 0.118 | −0.204 | 0.024 |
gender | 0.979 | 1.260 | 0.441 | −1.556 | 3.514 | ||
HBA1c value | −1.223 | 0.615 | −0.278 | 0.053 | −2.460 | 0.015 | |
M₃ | age | −0.132 | 0.055 | −0.313 | 0.020 | −0.243 | −0.022 |
HBA1c | −1.048 | 0.578 | −0.238 | 0.076 | −2.211 | 0.115 | |
duration | −0.022 | 0.008 | −0.387 | 0.007 | −0.038 | −0.006 | |
gender | 2.151 | 1.248 | 0.092 | −0.362 | 4.664 | ||
Model | R2 | df1 | df2 | p | |||
M₁ | 0.096 | 2 | 48 | 0.089 | |||
M₂ | 0.166 | 1 | 47 | 0.053 | |||
M₃ | 0.288 | 1 | 46 | 0.007 |
Parameter | Group | Arithmetic Mean | Standard Deviation | Difference | t | p * |
---|---|---|---|---|---|---|
GCC total | Diabetic patients | 98.55 | 8.53 | −1.88 | −0.979 | 0.298 |
Control | 100.43 | 8.31 | ||||
GCC superior | Diabetic patients | 97.94 | 9.26 | −1.55 | −0.756 | 0.452 |
Control | 99.50 | 8.80 | ||||
GCC inferior | Diabetic patients | 99.17 | 8.31 | −2.22 | −1.184 | 0.240 |
Control | 101.38 | 8.10 | ||||
GCC FLV | Diabetic patients | 1.06 | 1.17 | 0.13 | 0.334 | 0.051 |
Control | 0.93 | 2.05 | ||||
GCC GLV | Diabetic patients | 2.84 | 3.76 | 1.04 | 1.404 | 0.164 |
Control | 1.80 | 2.79 |
Parameter | Duration of Diabetes |
---|---|
Non-Flow FAZ (mm2) | ρ = 0.249 (p = 0.289) |
Vascular Density—Whole Image | ρ = −0.134 (p = 0.573) |
GCC TOTAL | ρ = −0.001 (p = 0.970) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vinković, M.; Kopić, A.; Benašić, T.; Biuk, D.; Maduna, I.; Vujosevic, S. HD-OCT Angiography and SD-OCT in Patients with Mild or No Clinically Apparent Diabetic Retinopathy. Biomedicines 2025, 13, 1251. https://doi.org/10.3390/biomedicines13051251
Vinković M, Kopić A, Benašić T, Biuk D, Maduna I, Vujosevic S. HD-OCT Angiography and SD-OCT in Patients with Mild or No Clinically Apparent Diabetic Retinopathy. Biomedicines. 2025; 13(5):1251. https://doi.org/10.3390/biomedicines13051251
Chicago/Turabian StyleVinković, Maja, Andrijana Kopić, Tvrtka Benašić, Dubravka Biuk, Ivanka Maduna, and Stela Vujosevic. 2025. "HD-OCT Angiography and SD-OCT in Patients with Mild or No Clinically Apparent Diabetic Retinopathy" Biomedicines 13, no. 5: 1251. https://doi.org/10.3390/biomedicines13051251
APA StyleVinković, M., Kopić, A., Benašić, T., Biuk, D., Maduna, I., & Vujosevic, S. (2025). HD-OCT Angiography and SD-OCT in Patients with Mild or No Clinically Apparent Diabetic Retinopathy. Biomedicines, 13(5), 1251. https://doi.org/10.3390/biomedicines13051251