HD-OCT Angiography and SD-OCT in Patients with Mild or No Clinically Apparent Diabetic Retinopathy
Abstract
:1. Introduction
2. Patients and Methods
Statistics
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BCVA | best corrected visual acuity |
DME | diabetic macular edema |
DR | diabetic retinopathy |
FA | fluorescein angiography |
GCC | ganglion cell complex |
HD-OCT | high-definition optical coherence tomography |
OCTA | optical coherence tomography angiography |
VD | vascular density |
References
- Prokofyeva, E.; Zrenner, E. Epidemiology of major eye diseases leading to blindness in Europe: A literature review. Ophthalmic Res. 2012, 47, 171–188. [Google Scholar] [CrossRef] [PubMed]
- de Carlo, T.E.; Chin, A.T.; Bonini Filho, M.A.; Adhi, M.; Branchini, L.; Salz, D.A.; Baumal, C.R.; Crawford, C.; Reichel, E.; Witkin, A.J.; et al. Detection of Microvascular Changes in Eyes of Patients with Diabetes but not Clinical Diabetic Retinopathy Using Optical Coherence Tomography Angiography. Retina 2015, 35, 2364–2370. [Google Scholar] [CrossRef] [PubMed]
- Arend, O.; Wolf, S.; Jung, F.; Bertram, B.; Pöstgens, H.; Toonen, H.; Reim, M. Retinal microcirculation in patients with diabetes mellitus: Dynamic and morphological analysis of perifoveal capillary network. Br. J. Ophthalmol. 1991, 75, 514–518. [Google Scholar] [CrossRef]
- Hasegawa, N.; Nozaki, M.; Takase, N.; Yoshida, M.; Ogura, Y. New Insights Into Microaneurysms in the Deep Capillary Plexus Detected by Optical Coherence Tomography Angiography in Diabetic Macular Edema. Investig. Ophthalmol. Vis. Sci. 2016, 57, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Kaines, A.; Oliver, S.; Reddy, S.; Schwartz, S.D. Ultrawide angle angiography for the detection and management of diabetic retinopathy. Int. Ophthalmol. Clin. 2009, 49, 53–59. [Google Scholar] [CrossRef]
- Burgansky-Eliash, Z.; Barak, A.; Barash, H.; Nelson, D.A.; Pupko, O.; Lowenstein, A.; Grinvald, A.; Rubinstein, A. Increased retinal blood flow velocity in patients with early diabetes mellitus. Retina 2012, 32, 112–119. [Google Scholar] [CrossRef]
- Agemy, S.A.; Scripsema, N.K.; Shah, C.M.; Chui, T.; Garcia, P.M.; Lee, J.G.; Gentile, R.C.; Hsiao, Y.S.; Zhou, Q.; Ko, T.; et al. Retinal Vascular Perfusion Density Mapping Using Optical Coherence Tomography Angiography in Normals and Diabetic Retinopathy Patients. Retina 2015, 35, 2353–2363. [Google Scholar] [CrossRef]
- Abucham-Neto, J.Z.; Torricelli, A.A.M.; Lui, A.C.F.; Guimarães, S.N.; Nascimento, H.; Regatieri, C.V. Comparison between optical coherence tomography angiography and fluorescein angiography findings in retinal vasculitis. Int. J. Retin. Vitr. 2018, 4, 15. [Google Scholar] [CrossRef]
- Kashani, A.H.; Chen, C.L.; Gahm, J.K.; Zheng, F.; Richter, G.M.; Rosenfeld, P.J.; Shi, Y.; Wang, R.K. Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications. Prog. Retin. Eye Res. 2017, 60, 66–100. [Google Scholar] [CrossRef]
- Shahlaee, A.; Samara, W.A.; Hsu, J.; Say, E.A.; Khan, M.A.; Sridhar, J.; Hong, B.K.; Shields, C.L.; Ho, A.C. In Vivo Assessment of Macular Vascular Density in Healthy Human Eyes Using Optical Coherence Tomography Angiography. Am. J. Ophthalmol. 2016, 165, 39–46. [Google Scholar] [CrossRef]
- Di, G.; Weihong, Y.; Xiao, Z.; Zhikun, Y.; Xuan, Z.; Yi, Q.; Fangtian, D. A morphological study of the foveal avascular zone in patients with diabetes mellitus using optical coherence tomography angiography. Graefes Arch. Clin. Exp. Ophthalmol. 2016, 254, 873–879. [Google Scholar] [CrossRef] [PubMed]
- Freiberg, F.J.; Pfau, M.; Wons, J.; Wirth, M.A.; Becker, M.D.; Michels, S. Optical coherence tomography angiography of the foveal avascular zone in diabetic retinopathy. Graefes Arch. Clin. Exp. Ophthalmol. 2016, 254, 1051–1058. [Google Scholar] [CrossRef]
- Villarroel, M.; Ciudin, A.; Hernández, C.; Simó, R. Neurodegeneration: An early event of diabetic retinopathy. World J. Diabetes 2010, 1, 57–64. [Google Scholar] [CrossRef]
- Takase, N.; Nozaki, M.; Kato, A.; Ozeki, H.; Yoshida, M.; Ogura, Y. Enlargement of Foveal Avascular Zone in Diabetic Eyes Evaluated by En Face Optical Coherence Tomography Angiography. Retina 2015, 35, 2377–2383. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.Y.; Chu, Z.; Shahidzadeh, A.; Wang, R.K.; Puliafito, C.A.; Kashani, A.H. Quantifying Microvascular Density and Morphology in Diabetic Retinopathy Using Spectral-Domain Optical Coherence Tomography Angiography. Investig. Ophthalmol. Vis. Sci. 2016, 57, 362–370. [Google Scholar] [CrossRef]
- Couturier, A.; Mané, V.; Bonnin, S.; Erginay, A.; Massin, P.; Gaudric, A.; Tadayoni, R. Capillary Plexus Anomalies in Diabetic Retinopathy on Optical Coherence Tomography Angiography. Retina 2015, 35, 2384–2391. [Google Scholar] [CrossRef]
- Yu, J.; Gu, R.; Zong, Y.; Xu, H.; Wang, X.; Sun, X.; Jiang, C.; Xie, B.; Jia, Y.; Huang, D. Relationship Between Retinal Perfusion and Retinal Thickness in Healthy Subjects: An Optical Coherence Tomography Angiography Study. Investig. Ophthalmol. Vis. Sci. 2016, 57, 204–210. [Google Scholar] [CrossRef]
- Lynch, G.; Romo, J.S.A.; Linderman, R.; Krawitz, B.D.; Mo, S.; Zakik, A.; Carroll, J.; Rosen, R.B.; Chui, T.Y.P. Within-subject assessment of foveal avascular zone enlargement in different stages of diabetic retinopathy using en face OCT reflectance and OCT angiography. Biomed. Opt. Express 2018, 9, 5982–5996. [Google Scholar] [CrossRef] [PubMed]
- You, Q.S.; Chan, J.C.H.; Ng, A.L.K.; Choy, B.K.N.; Shih, K.C.; Cheung, J.J.C.; Wong, J.K.W.; Shum, J.W.H.; Ni, M.Y.; Lai, J.S.M.; et al. Macular Vessel Density Measured with Optical Coherence Tomography Angiography and Its Associations in a Large Population-Based Study. Investig. Ophthalmol. Vis. Sci. 2019, 60, 4830–4837. [Google Scholar] [CrossRef]
- Dimitrova, G. Morphometric characteristics of central retinal artery and vein in the optic nerve head of patients with diabetes. Investig. Ophthalmol. Vis. Sci. 2012, 53, 1637. [Google Scholar] [CrossRef]
- Dimitrova, G.; Kato, S.; Tamaki, Y.; Yamashita, H.; Nagahara, M.; Sakurai, M.; Kitano, S.; Fukushima, H. Choroidal circulation in diabetic patients. Eye 2001, 15 Pt 5, 602–607. [Google Scholar] [CrossRef] [PubMed]
- Ong, J.X.; Konopek, N.; Fukuyama, H.; Fawzi, A.A. Deep Capillary Nonperfusion on OCT Angiography Predicts Complications in Eyes with Referable Nonproliferative Diabetic Retinopathy. Ophthalmol. Retin. 2023, 7, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Nesper, P.L.; Ong, J.X.; Fawzi, A.A. Deep Capillary Geometric Perfusion Deficits on OCT Angiography Detect Clinically Referable Eyes with Diabetic Retinopathy. Ophthalmol. Retin. 2022, 6, 1194–1205. [Google Scholar] [CrossRef]
- Tsai, A.S.H.; Jordan-Yu, J.M.; Gan, A.T.L.; Teo, K.Y.C.; Tan, G.S.W.; Lee, S.Y.; Chong, V.; Cheung, C.M.G. Diabetic Macular Ischemia: Influence of Optical Coherence Tomography Angiography Parameters on Changes in Functional Outcomes Over One Year. Investig. Ophthalmol. Vis. Sci. 2021, 62, 9. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yu, Y.; Liu, X.; Shi, Y.; Jin, X.; Zhang, Y.; Xu, S.; Zhang, N.; Dong, L.; Zhou, S.; et al. Quantitative analysis of retinal vessel density and thickness changes in diabetes mellitus evaluated using optical coherence tomography angiography: A cross-sectional study. BMC Ophthalmol. 2021, 21, 259. [Google Scholar] [CrossRef]
- Vujosevic, S.; Midena, E. Retinal layers changes in human preclinical and early clinical diabetic retinopathy support early retinal neuronal and Müller cells alterations. J. Diabetes Res. 2013, 2013, 905058. [Google Scholar] [CrossRef]
- Oshitari, T.; Hanawa, K.; Adachi-Usami, E. Changes of macular and RNFL thicknesses measured by Stratus OCT in patients with early stage diabetes. Eye 2009, 23, 884–889. [Google Scholar] [CrossRef]
- Srinivasan, S.; Pritchard, N.; Sampson, G.P.; Edwards, K.; Vagenas, D.; Russell, A.W.; Malik, R.A.; Efron, N. Focal loss volume of ganglion cell complex in diabetic neuropathy. Clin. Exp. Optom. 2016, 99, 526–534. [Google Scholar] [CrossRef] [PubMed]
- Hegazy, A.I.; Zedan, R.H.; Macky, T.A.; Esmat, S.M. Retinal ganglion cell complex changes using spectral domain optical coherence tomography in diabetic patients without retinopathy. Int. J. Ophthalmol. 2017, 10, 427–433. [Google Scholar]
- Miwa, Y.; Murakami, T.; Suzuma, K.; Uji, A.; Yoshitake, S.; Fujimoto, M.; Yoshitake, T.; Tamura, Y.; Yoshimura, N. Relationship between Functional and Structural Changes in Diabetic Vessels in Optical Coherence Tomography Angiography. Sci. Rep. 2016, 6, 29064. [Google Scholar] [CrossRef]
- van Dijk, H.W.; Verbraak, F.D.; Kok, P.H.; Stehouwer, M.; Garvin, M.K.; Sonka, M.; De Vries, J.H.; Schlingemann, R.O.; Abràmoff, M.D. Early neurodegeneration in the retina of type 2 diabetic patients. Investig. Ophthalmol. Vis. Sci. 2012, 53, 2715–2719. [Google Scholar] [CrossRef] [PubMed]
- Pauk-Domańska, M.; Walasik-Szemplińska, D. Color Doppler imaging of the retrobulbar vessels in diabetic retinopathy. J. Ultrason. 2014, 14, 28–35. [Google Scholar] [CrossRef] [PubMed]
Diabetic Patients | Control | |
---|---|---|
Patients (N) | 27 | 29 |
Eyes (N) | 54 | 58 |
Gender (N) | M = 15; F = 12 | M = 12; F = 17 |
Age (years) * | 52.3 ± 10.8 | 49.0 ± 10.3 |
Duration of DM (months) * | 83.4 ± 24.3 | - |
HBA1c (%) * | 7.3 ± 1.2 | - |
Group | Mean | Standard Deviation | Difference | t | p * | |
---|---|---|---|---|---|---|
Flow Outer Retinal (mm2) | Diabetic patients (N = 49) | 1.19 | 0.17 | −0.11 | −2.914 | 0.004 |
Control (N = 48) | 1.08 | 0.20 | ||||
Flow Choroid Capillaris (mm2) | Diabetic patients (N = 48) | 1.87 | 0.082 | 0.028 | 1.807 | 0.07 |
Control (N = 48) | 1.9 | 0.07 | ||||
VD SCP—whole image (%) | Diabetic patients (N = 51) | 45 | 4.53 | 3.31 | 3.702 | <0.001 |
Control (N = 47) | 48.31 | 4.29 | ||||
VD DCP—whole image (%) | Diabetic patients (N = 50) | 45 | 6.06 | 3.11 | 2.56 | 0.012 |
Control (N = 47) | 48.11 | 5.92 | ||||
VD SCP—fovea (%) | Diabetic patients (N = 51) | 18.89 | 7.53 | 0.12 | 0.0823 | 0.963 |
Control (N = 47) | 19.02 | 7.23 | ||||
VD DCP—fovea (%) | Diabetic patients (N = 50) | 34.04 | 8.82 | 1.74 | 1.006 | 0.317 |
Control (N = 47) | 35.78 | 8.13 | ||||
VD SCP—parafovea (%) | Diabetic patients (N = 51) | 45.10 | 6.89 | 4.45 | 3.61 | <0.001 |
Control (N = 47) | 49.55 | 5.03 | ||||
VD DCP—parafovea (%) | Diabetic patients (N = 50) | 50.84 | 4.77 | 3.39 | 3.57 | <0.001 |
Control (N = 47) | 54.23 | 4.56 | ||||
VD SCP—perifovea (%) | Diabetic patients (N = 51) | 46.13 | 4.25 | 3.34 | 3.75 | <0.001 |
Control (N = 46) | 49.47 | 4.52 | ||||
VD DCP—perifovea (%) | Diabetic patients (N = 50) | 45.96 | 6.67 | 3.07 | 2.253 | 0.027 |
Control (N = 46) | 49.03 | 6.67 |
MODEL | F, p * | Gender | Age | Interaction Age × Group | |||
---|---|---|---|---|---|---|---|
Unstandardized B | p * | Standardized B | p * | Standardized B | p * | ||
VD SCP—whole image (%)—initial | 13.906; <0.001 | 2.85 | 0.003 | −0.295 | 0.002 | ||
VD SCP—whole image (%)—interaction | 9.539; <0.001 | 2.643 | 0.007 | −0.207 | 0.13 | −0.128 | 0.359 |
VD SCP—fovea (%)—initial | 0.415; 0.661 | −0.905 | 0.582 | −0.093 | 0.391 | ||
VD SCP—fovea (%)—interaction | 0.328; 0.805 | −0.746 | 0.661 | −0.136 | 0.377 | 0.063 | 0.690 |
VD SCP parafovea (%)—initial | 7.895; <0.001 | 2.95 | 0.03 | −0.246 | 0.016 | ||
VD SCP parafovea (%)—interaction | 5.977; <0.001 | 2.496 | 0.072 | −0.104 | 0.464 | −0.205 | 0.163 |
VD SCP perifovea (%)—initial | 16.147; <0.001 | 3.103 | <0.001 | −0.205 | 0.002 | ||
VD SCP perifovea (%)—interaction | 10.914; <0.001 | 2.936 | 0.002 | −0.233 | 0.083 | −0.105 | 0.445 |
VD DCP whole image (%)—initial | 8.860; <0.001 | 2.210 | 0.086 | −0.307 | 0.003 | ||
VD DCP whole image (%)—interaction | 5.845; <0.001 | 2.229 | 0.095 | −0.313 | 0.03 | 0.009 | 0.953 |
VD DCP fovea (%)- initial | 1.323; 0.271 | 0.720 | 0.704 | −0.148 | 0.172 | ||
VD DCP fovea (%)—interaction | 0.874; 0.458 | 0.694 | 0.724 | −0.142 | 0.355 | −0.009 | 0.956 |
VD DCP parafovea (%)—initial | 8.767; <0.001 | 1.808 | 0.081 | −0.303 | 0.003 | ||
VD DCP parafovea (%)—interaction | 6.393; <0.001 | 1.49 | 0.16 | −0.179 | 0.207 | −0.18 | 0.217 |
VD DCP perifovea (%)—initial | 6.743; 0.002 | 1.927 | 0.183 | −0.288 | 0.006 | ||
VD DCP perifovea (%)—interaction | 4.451; 0.006 | 1.693 | 0.190 | −0.298 | 0.042 | 0.015 | 0.921 |
Model | Unstandardized B | Standard Error | Standardized B | p | 95% CI Lower | 95% CI Upper | |
---|---|---|---|---|---|---|---|
M₁ | age | −0.095 | 0.058 | −0.226 | 0.108 | −0.212 | 0.022 |
gender | 1.719 | 1.240 | 0.172 | −0.775 | 4.213 | ||
M₂ | age | −0.090 | 0.057 | −0.213 | 0.118 | −0.204 | 0.024 |
gender | 0.979 | 1.260 | 0.441 | −1.556 | 3.514 | ||
HBA1c value | −1.223 | 0.615 | −0.278 | 0.053 | −2.460 | 0.015 | |
M₃ | age | −0.132 | 0.055 | −0.313 | 0.020 | −0.243 | −0.022 |
HBA1c | −1.048 | 0.578 | −0.238 | 0.076 | −2.211 | 0.115 | |
duration | −0.022 | 0.008 | −0.387 | 0.007 | −0.038 | −0.006 | |
gender | 2.151 | 1.248 | 0.092 | −0.362 | 4.664 | ||
Model | R2 | df1 | df2 | p | |||
M₁ | 0.096 | 2 | 48 | 0.089 | |||
M₂ | 0.166 | 1 | 47 | 0.053 | |||
M₃ | 0.288 | 1 | 46 | 0.007 |
Parameter | Group | Arithmetic Mean | Standard Deviation | Difference | t | p * |
---|---|---|---|---|---|---|
GCC total | Diabetic patients | 98.55 | 8.53 | −1.88 | −0.979 | 0.298 |
Control | 100.43 | 8.31 | ||||
GCC superior | Diabetic patients | 97.94 | 9.26 | −1.55 | −0.756 | 0.452 |
Control | 99.50 | 8.80 | ||||
GCC inferior | Diabetic patients | 99.17 | 8.31 | −2.22 | −1.184 | 0.240 |
Control | 101.38 | 8.10 | ||||
GCC FLV | Diabetic patients | 1.06 | 1.17 | 0.13 | 0.334 | 0.051 |
Control | 0.93 | 2.05 | ||||
GCC GLV | Diabetic patients | 2.84 | 3.76 | 1.04 | 1.404 | 0.164 |
Control | 1.80 | 2.79 |
Parameter | Duration of Diabetes |
---|---|
Non-Flow FAZ (mm2) | ρ = 0.249 (p = 0.289) |
Vascular Density—Whole Image | ρ = −0.134 (p = 0.573) |
GCC TOTAL | ρ = −0.001 (p = 0.970) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vinković, M.; Kopić, A.; Benašić, T.; Biuk, D.; Maduna, I.; Vujosevic, S. HD-OCT Angiography and SD-OCT in Patients with Mild or No Clinically Apparent Diabetic Retinopathy. Biomedicines 2025, 13, 1251. https://doi.org/10.3390/biomedicines13051251
Vinković M, Kopić A, Benašić T, Biuk D, Maduna I, Vujosevic S. HD-OCT Angiography and SD-OCT in Patients with Mild or No Clinically Apparent Diabetic Retinopathy. Biomedicines. 2025; 13(5):1251. https://doi.org/10.3390/biomedicines13051251
Chicago/Turabian StyleVinković, Maja, Andrijana Kopić, Tvrtka Benašić, Dubravka Biuk, Ivanka Maduna, and Stela Vujosevic. 2025. "HD-OCT Angiography and SD-OCT in Patients with Mild or No Clinically Apparent Diabetic Retinopathy" Biomedicines 13, no. 5: 1251. https://doi.org/10.3390/biomedicines13051251
APA StyleVinković, M., Kopić, A., Benašić, T., Biuk, D., Maduna, I., & Vujosevic, S. (2025). HD-OCT Angiography and SD-OCT in Patients with Mild or No Clinically Apparent Diabetic Retinopathy. Biomedicines, 13(5), 1251. https://doi.org/10.3390/biomedicines13051251