Genetic Analysis of CYP1B1 and Other Anterior Segment Dysgenesis-Associated Genes in Latvian Cohort of Primary Congenital Glaucoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
- IOP above 21 mmHg;
- Haab striae, increased corneal diameter (>11 mm in newborns, >12 mm in children younger than 1 year old, and >13 mm in children older than 1 year old);
- Glaucomatous changes in the optic nerve disc (cup–disc asymmetry of >0.2, focal rim thinning, or progressive increase in cup–disc ratio);
- Increased ocular dimensions that outpace normal growth (buphthalmos).
2.2. Massive Parallel Sequencing
2.3. Bioinformatics Analyses of NGS Data and Variant Filtering
2.4. PCR and Sanger Sequencing
2.5. Statistical Data Analysis
3. Results
4. Discussion
- (1)
- Population-specific genetic architecture: The distinct Baltic genetic background may harbour alternative PCG-associated loci or protective variants that modify CYP1B1 expression.
- (2)
- Modifier gene effects: Potential interactions with other glaucoma-related genes (e.g., TEK, LTBP2) cannot be excluded.
- (3)
- Technical considerations: While our comprehensive sequencing covered all coding regions, deep intronic or regulatory variants would require WGS for detection.
4.1. CYP1B1 Gene Function and Pathogenic Mechanisms in PCG
4.2. CYP1B1 Variants in Other Populations
Country | Probands | Number of Patients with Pathogenic Variants in CYP1B1 (%) | Most Frequent Variant |
---|---|---|---|
Spain [15] | 161 | 56 (34.8%) | p.E387K (rs55989760) |
Italy [54] | 72 | 25 (34.7%) | p.G61E (rs289367000) |
Germany [55] | 39 | 7 (18.0%) | N/A * |
France [34] | 31 | 15 (48.4%) | g.4340delG |
Denmark [56] | 37 | 10 (27.0%) ** | p.W57 * (rs72549387) |
Portugal [51] | 30 | 22 (73.3%) | p.A179fs (rs771076928) |
Russia [35] | 25 | 5 (25.0%) | p.R444Q (rs72549376) p.R444 * (rs377049098) |
Slovakia (Roma population) [32] | 20 | 20 (100%) | p.E387K (rs55989760) |
Switzerland [36] | 14 | 6 (42.9%) | p. L487P (rs1682415237) p.R355fs (rs72549380) c.1044-3C>T (rs761216127) |
Latvia (this study) | 20 | 0 | N/A |
4.3. Genetic Landscape of PCG Beyond CYP1B1
4.4. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spaeth, G.L. European Glaucoma Society Terminology and Guidelines for Glaucoma, 5th Edition. Br. J. Ophthalmol. 2021, 105, 1–169. [Google Scholar] [CrossRef]
- Elksne, E.; Baumane, K.; Ozolins, A.; Valeina, S. The epidemiological and clinical findings from the latvian registry of primary congenital glaucoma and evaluation of prognostic factors. Medicina 2021, 57, 44. [Google Scholar] [CrossRef] [PubMed]
- Thau, A.; Lloyd, M.; Freedman, S.; Beck, A.; Grajewski, A.; Levin, A.V. New classification system for pediatric glaucoma: Implications for clinical care and a research registry. Curr. Opin. Ophthalmol. 2018, 29, 385–394. [Google Scholar] [CrossRef]
- Shah, M.; Bouhenni, R.; Benmerzouga, I. Geographical Variability in CYP1B1 Mutations in Primary Congenital Glaucoma. J. Clin. Med. 2022, 11, 2048. [Google Scholar] [CrossRef] [PubMed]
- Yu-Wai-Man, C.; Arno, G.; Brookes, J.; Garcia-Feijoo, J.; Khaw, P.T.; Moosajee, M. Primary congenital glaucoma including next-generation sequencing-based approaches: Clinical utility gene card. Eur. J. Hum. Genet. 2018, 26, 1713–1718. [Google Scholar] [CrossRef]
- Nebert, D.W.; Russell, D.W. Clinical importance of the cytochromes P450. Lancet 2002, 360, 1155–1162. [Google Scholar] [CrossRef]
- Bejjani, B.A.; Xu, L.; Armstrong, D.; Lupski, J.R.; Reneker, L.W. Expression patterns of cytochrome P4501B1 (Cyp1b1) in FVB/N mouse eyes. Exp. Eye Res. 2002, 75, 249–257. [Google Scholar] [CrossRef]
- Zhao, Y.; Sorenson, C.M.; Sheibani, N. Cytochrome P450 1B1 and Primary Congenital Glaucoma. J. Ophthalmic Vis. Res. 2015, 10, 60. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, S.; Sorenson, C.M.; Teixeira, L.; Dubielzig, R.R.; Peters, D.M.; Conway, S.J.; Jefcoate, C.R.; Sheibani, N. Cyp1b1 mediates periostin regulation of trabecular meshwork development by suppression of oxidative stress. Mol. Cell Biol. 2013, 33, 4225–4240. [Google Scholar] [CrossRef]
- Doshi, M.; Marcus, C.; Bejjani, B.A.; Edward, D.P. Immunolocalization of CYP1B1 in normal, human, fetal and adult eyes. Exp. Eye Res. 2006, 82, 24–32. [Google Scholar] [CrossRef]
- Hollander, D.A.; Sarfarazi, M.; Stoilov, I.; Wood, I.S.; Fredrick, D.R.; Alvarado, J.A. Genotype and phenotype correlations in congenital glaucoma: CYP1B1 mutations, goniodysgenesis, and clinical characteristics. Am. J. Ophthalmol. 2006, 142, 993–1004. [Google Scholar] [CrossRef] [PubMed]
- Genčík, A.; Genčíkova, A.; Ferák, V. Population genetical aspects of primary congenital glaucoma. I. Incidence, prevalence, gene frequency, and age of onset. Hum. Genet. 1982, 61, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Abu-Amero, K.K.; Osman, E.A.; Mousa, A.; Wheeler, J.; Whigham, B.; Allingham, R.R.; Hauser, M.A.; Al-Obeidan, S.A. Screening of CYP1B1 and LTBP2 genes in Saudi families with primary congenital glaucoma: Genotype-phenotype correlation. Mol. Vis. 2011, 17, 2911. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC3224840/ (accessed on 14 July 2024).
- Bejjani, B.A.; Lewis, R.A.; Tomey, K.F.; Anderson, K.L.; Dueker, D.K.; Jabak, M.; Astle, W.F.; Otterud, B.; Leppert, M.; Lupski, J.R. Mutations in CYP1B1, the gene for cytochrome P4501B1, are the predominant cause of primary congenital glaucoma in Saudi Arabia. Am. J. Hum. Genet. 1998, 62, 325–333. [Google Scholar] [CrossRef]
- López-Garrido, M.P.; Medina-Trillo, C.; Morales-Fernandez, L.; Garcia-Feijoo, J.; Martínez-de-la-Casa, J.M.; García-Antón, M.; Escribano, J. Null CYP1B1 genotypes in primary congenital and nondominant juvenile glaucoma. Ophthalmology 2013, 120, 716–723. [Google Scholar] [CrossRef]
- Medina-Trillo, C.; Aroca-Aguilar, J.D.; Ferre-Fernández, J.J.; Alexandre-Moreno, S.; Morales, L.; Méndez-Hernández, C.D.; García-Feijoo, J.; Escribano, J. Role of FOXC2 and PITX2 rare variants associated with mild functional alterations as modifier factors in congenital glaucoma. PLoS ONE 2019, 14, e0211029. [Google Scholar] [CrossRef]
- Leysen, L.; Cassiman, C.; Vermeer, S.; Casteels, I.; Balikova, I. Genetics in primary congenital glaucoma: Implications in disease management and counseling. Eur. J. Med. Genet. 2022, 65, 104378. [Google Scholar] [CrossRef]
- Reščenko, R.; Brīvība, M.; Atava, I.; Rovīte, V.; Pečulis, R.; Silamiķelis, I.; Ansone, L.; Megnis, K.; Birzniece, L.; Leja, M. Whole-Genome Sequencing of 502 Individuals from Latvia: The First Step towards a Population-Specific Reference of Genetic Variation. Int. J. Mol. Sci. 2023, 24, 15345. [Google Scholar] [CrossRef] [PubMed]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve years of SAMtools and BCFtools. Gigascience 2021, 10, giab008. [Google Scholar] [CrossRef]
- Dolzhenko, E.; Deshpande, V.; Schlesinger, F.; Krusche, P.; Petrovski, R.; Chen, S.; Emig-Agius, D.; Gross, A.; Narzisi, G.; Bowman, B.; et al. ExpansionHunter: A sequence-graph-based tool to analyze variation in short tandem repeat regions. Bioinformatics 2019, 35, 4754–4756. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Schulz-Trieglaff, O.; Shaw, R.; Barnes, B.; Schlesinger, F.; Källberg, M.; Cox, A.J.; Kruglyak, S.; Saunders, C.T. Manta: Rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics 2016, 32, 1220–1222. [Google Scholar] [CrossRef] [PubMed]
- Geoffroy, V.; Herenger, Y.; Kress, A.; Stoetzel, C.; Piton, A.; Dollfus, H.; Muller, J. AnnotSV: An integrated tool for structural variations annotation. Bioinformatics 2018, 34, 3572–3574. [Google Scholar] [CrossRef] [PubMed]
- McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.; Thormann, A.; Flicek, P.; Cunningham, F. The Ensembl Variant Effect Predictor. Genome Biol. 2016, 17. [Google Scholar] [CrossRef]
- Pais, L.S.; Snow, H.; Weisburd, B.; Zhang, S.; Baxter, S.M.; DiTroia, S.; O’Heir, E.; England, E.; Chao, K.R.; Lemire, G. seqr: A web-based analysis and collaboration tool for rare disease genomics. Hum. Mutat. 2022, 43, 698–707. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Baux, D.; Van Goethem, C.; Ardouin, O.; Guignard, T.; Bergougnoux, A.; Koenig, M.; Roux, A.F. MobiDetails: Online DNA variants interpretation. Eur. J. Hum. Genet. 2020, 29, 356–360. [Google Scholar] [CrossRef]
- VCV002854449.2-ClinVar—NCBI. Available online: https://www.ncbi.nlm.nih.gov/clinvar/variation/2854449/?oq=%22c.4357C%3EA%22[VARNAME]+%22PXDN%22[GENE]&m=NM_012293.3(PXDN):c.4357C%3EA%20(p.Pro1453Thr)%3Fterm=c.4357C%3EA%20%20PXDN (accessed on 21 February 2025).
- Wang, R.; Wiggs, J.L. Common and Rare Genetic Risk Factors for Glaucoma. Cold Spring Harb. Perspect. Med. 2014, 4, a017244. [Google Scholar] [CrossRef]
- Kaushik, S.; Dubey, S.; Choudhary, S.; Ratna, R.; Pandav, S.S.; Khan, A.O. Anterior segment dysgenesis: Insights into the genetics and pathogenesis. Indian J. Ophthalmol. 2022, 70, 2293. [Google Scholar] [CrossRef]
- Plášilová, M.; Stoilov, I.; Sarfarazi, M.; Kádasi, L.; Feráková, E.; Ferák, V. Identification of a single ancestral CYP1B1 mutation in Slovak Gypsies (Roms) affected with primary congenital glaucoma. J. Med. Genet. 1999, 36, 290. [Google Scholar] [CrossRef] [PubMed]
- Badeeb, O.M.; Micheal, S.; Koenekoop, R.K.; den Hollander, A.I.; Hedrawi, M.T. CYP1B1 mutations in patients with primary congenital glaucoma from Saudi Arabia. BMC Med. Genet. 2014, 15, 109. [Google Scholar] [CrossRef]
- Colomb, E.; Kaplan, J.; Garchon, H.J. Novel cytochrome P450 1B1 (CYP1B1) mutations in patients with primary congenital glaucoma in France. Hum. Mutat. 2003, 22, 496. [Google Scholar] [CrossRef] [PubMed]
- Ivanoshchuk, D.E.; Mikhailova, S.V.; Fenkova, O.G.; Shakhtshneider, E.V.; Fursova, A.Z.; Bychkov, I.Y.; Voevoda, M.I. Screening of West Siberian patients with primary congenital glaucoma for CYP1B1 gene mutations. Vavilov J. Genet. Breed. 2020, 24, 861. [Google Scholar] [CrossRef]
- Lang, E.; Koller, S.; Bähr, L.; Töteberg-Harms, M.; Atac, D.; Roulez, F.; Bahr, A.; Steindl, K.; Feil, S.; Berger, W. Exome Sequencing in a Swiss Childhood Glaucoma Cohort Reveals CYP1B1 and FOXC1 Variants as Most Frequent Causes. Transl. Vis. Sci. Technol. 2020, 9, 47. [Google Scholar] [CrossRef] [PubMed]
- Sutter, T.R.; Tang, Y.M.; Hayes, C.L.; Wo, Y.Y.; Jabs, E.W.; Li, X.; Yin, H.; Cody, C.W.; Greenlee, W.F. Complete cDNA sequence of a human dioxin-inducible mRNA identifies a new gene subfamily of cytochrome P450 that maps to chromosome 2. J. Biol. Chem. 1994, 269, 13092–13099. [Google Scholar] [CrossRef]
- Vincent, A.L.; Billingsley, G.; Buys, Y.; Levin, A.V.; Priston, M.; Trope, G.; Williams-Lyn, D.; Héon, E. Digenic inheritance of early-onset glaucoma: CYP1B1, a potential modifier gene. Am. J. Hum. Genet. 2002, 70, 448–460. [Google Scholar] [CrossRef]
- Chavarria-Soley, G.; Sticht, H.; Aklillu, E.; Ingelman-Sundberg, M.; Pasutto, F.; Reis, A.; Rautenstrauss, B. Mutations in CYP1B1 cause primary congenital glaucoma by reduction of either activity or abundance of the enzyme. Hum. Mutat. 2008, 29, 1147–1153. [Google Scholar] [CrossRef]
- Medina-Trillo, C.; Ferre-Fernández, J.J.; Aroca-Aguilar, J.D.; Bonet-Fernández, J.M.; Escribano, J. Functional characterization of eight rare missense CYP1B1 variants involved in congenital glaucoma and their association with null genotypes. Acta Ophthalmol. 2016, 94, e555–e560. [Google Scholar] [CrossRef]
- Amirmokhtari, N.; Foresi, B.D.; Dewan, S.S.; Bouhenni, R.A.; Smith, M.A. Absence of Cytochrome P450-1b1 Increases Susceptibility of Pressure-Induced Axonopathy in the Murine Retinal Projection. Front. Cell Dev. Biol. 2021, 9, 636321. [Google Scholar] [CrossRef]
- Libby, R.T.; Smith, R.S.; Savinova, O.V.; Zabaleta, A.; Martin, J.E.; Gonzalez, F.J.; John, S.W. Modification of ocular defects in mouse developmental glaucoma models by tyrosinase. Science 2003, 299, 1578–1581. [Google Scholar] [CrossRef]
- Williams, A.L.; Eason, J.; Chawla, B.; Bohnsack, B.L. Cyp1b1 Regulates Ocular Fissure Closure Through a Retinoic Acid-Independent Pathway. Invest. Ophthalmol. Vis. Sci. 2017, 58, 1084–1097. [Google Scholar] [CrossRef]
- Kelberman, D.; Islam, L.; Jacques, T.S.; Russell-Eggitt, I.; Bitner-Glindzicz, M.; Khaw, P.T.; Nischal, K.K.; Sowden, J.C. CYP1B1-related anterior segment developmental anomalies novel mutations for infantile glaucoma and von Hippel’s ulcer revisited. Ophthalmology 2011, 118, 1865–1873. [Google Scholar] [CrossRef]
- Tanwar, M.; Dada, T.; Dada, R. Axenfeld-Rieger Syndrome Associated with Congenital Glaucoma and Cytochrome P4501B1 Gene Mutations. Case Rep. Med. 2010, 2010, 212656. [Google Scholar] [CrossRef] [PubMed]
- Chavarria-Soley, G.; Michels-Rautenstrauss, K.; Caliebe, A.; Kautza, M.; Mardin, C.; Rautenstrauss, B. Novel CYP1B1 and known PAX6 mutations in anterior segment dysgenesis (ASD). J. Glaucoma 2006, 15, 499–504. [Google Scholar] [CrossRef] [PubMed]
- Vincent, A.; Billingsley, G.; Priston, M.; Williams-Lyn, D.; Sutherland, J.; Glaser, T.; Oliver, E.; Walter, M.A.; Heathcote, G.; Levin, A.; et al. Phenotypic heterogeneity of CYP1B1: Mutations in a patient with Peters’ anomaly. J. Med. Genet. 2001, 38, 324–326. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.O.; Aldahmesh, M.A.; Al-Abdi, L.; Mohamed, J.Y.; Hashem, M.; Al-Ghamdi, I.; Alkuraya, F.S. Molecular characterization of newborn glaucoma including a distinct aniridic phenotype. Ophthalmic Genet. 2011, 32, 138–142. [Google Scholar] [CrossRef]
- Melki, R.; Colomb, E.; Lefort, N.; Brézin, A.P.; Garchon, H.J. CYP1B1 mutations in French patients with early-onset primary open-angle glaucoma. J. Med. Genet. 2004, 41, 647–651. [Google Scholar] [CrossRef]
- Reis, L.M.; Tyler, R.C.; Weh, E.; Hendee, K.E.; Kariminejad, A.; Abdul-Rahman, O.; Ben-Omran, T.; Manning, M.A.; Yesilyurt, A.; McCarty, C.A.; et al. Analysis of CYP1B1 in pediatric and adult glaucoma and other ocular phenotypes. Mol. Vis. 2016, 22, 1229. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC5070572/ (accessed on 23 July 2024).
- Simões, M.J.; Carmona, S.; Roberts, R.; Wainwright, G.; Faro, C.; Silva, E.; Egas, C. CYP1B1 mutational screening in a Portuguese cohort of primary congenital glaucoma patients. Ophthalmic Genet. 2017, 38, 197–199. [Google Scholar] [CrossRef]
- Sarfarazi, M.; Stoilov, I. Molecular genetics of primary congenital glaucoma. Eye 2000, 14, 422–428. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Han, Y.; Oatts, J.T. Genetic changes and testing associated with childhood glaucoma: A systematic review. PLoS ONE 2024, 19, e0298883. [Google Scholar] [CrossRef] [PubMed]
- Giuffre’, I. Molecular analysis of Italian patients with congenital glaucoma. Ophthalmic Genet. 2011, 1–8. [Google Scholar] [CrossRef]
- Weisschuh, N.; Wolf, C.; Wissinger, B.; Gramer, E. A clinical and molecular genetic study of German patients with primary congenital glaucoma. Am. J. Ophthalmol. 2009, 147, 744–753. [Google Scholar] [CrossRef]
- Grønskov, K.; Redó-Riveiro, A.; Sandfeld, L.; Zibrandtsen, N.; Harris, P.; Bach-Holm, D.; Tümer, Z. CYP1B1 Mutations in Individuals with Primary Congenital Glaucoma and Residing in Denmark. J. Glaucoma. 2016, 25, 926–930. [Google Scholar] [CrossRef]
- Chouiter, L.; Nadifi, S. Analysis of CYP1B1 Gene Mutations in Patients with Primary Congenital Glaucoma. J. Pediatr. Genet. 2017, 6, 205. [Google Scholar] [CrossRef]
- Kushniarevich, A.; Utevska, O.; Chuhryaeva, M.; Agdzhoyan, A.; Dibirova, K.; Uktveryte, I.; Möls, M.; Mulahasanovic, L.; Pshenichnov, A.; Frolova, S.; et al. Genetic Heritage of the Balto-Slavic Speaking Populations: A Synthesis of Autosomal, Mitochondrial and Y-Chromosomal Data. PLoS ONE 2015, 10, e0135820. [Google Scholar] [CrossRef] [PubMed]
- Allentoft, M.E.; Sikora, M.; Refoyo-Martínez, A.; Irving-Pease, E.K.; Fischer, A.; Barrie, W.; Ingason, A.; Stenderup, J.; Sjögren, K.G.; Pearson, A.; et al. Population genomics of postglacial western eurasia. bioRxiv 2023. [Google Scholar] [CrossRef]
- Urnikyte, A.; Flores-Bello, A.; Mondal, M.; Molyte, A.; Comas, D.; Calafell, F.; Bosch, E.; Kučinskas, V. Patterns of genetic structure and adaptive positive selection in the Lithuanian population from high-density SNP data. Sci. Rep. 2019, 9, 9163. [Google Scholar] [CrossRef]
- Ava, S.; Demirtaş, A.A.; Karahan, M.; Erdem, S.; Oral, D.; Keklikçi, U. Genetic analysis of patients with primary congenital glaucoma. Int. Ophthalmol. 2021, 41, 2565–2574. [Google Scholar] [CrossRef]
- Mears, A.J.; Jordan, T.; Mirzayans, F.; Dubois, S.; Kume, T.; Parlee, M.; Ritch, R.; Koop, B.; Kuo, W.L.; Collins, C.; et al. Mutations of the forkhead/winged-helix gene, FKHL7, in patients with Axenfeld-Rieger anomaly. Am. J. Hum. Genet. 1998, 63, 1316–1328. [Google Scholar] [CrossRef] [PubMed]
- Saleem, R.A.; Banerjee-Basu, S.; Berry, F.B.; Baxevanis, A.D.; Walter, M.A. Structural and functional analyses of disease-causing missense mutations in the forkhead domain of FOXC1. Hum. Mol. Genet. 2003, 12, 2993–3005. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, D.Y.; Swiderski, R.E.; Alward, W.L.; Searby, C.C.; Patil, S.R.; Bennet, S.R.; Kanis, A.B.; Gastier, J.M.; Stone, E.M.; Sheffield, V.C. The forkhead transcription factor gene FKHL7 is responsible for glaucoma phenotypes which map to 6p25. Nat. Genet. 1998, 19, 140–147. [Google Scholar] [CrossRef]
- Valleix, S.; Niel, F.; Nedelec, B.; Algros, M.P.; Schwartz, C.; Delbosc, B.; Delpech, M.; Kantelip, B. Homozygous nonsense mutation in the FOXE3 gene as a cause of congenital primary aphakia in humans. Am. J. Hum. Genet. 2006, 79, 358–364. [Google Scholar] [CrossRef]
- Doucette, L.; Green, J.; Fernandez, B.; Johnson, G.J.; Parfrey, P.; Young, T.L. A novel, non-stop mutation in FOXE3 causes an autosomal dominant form of variable anterior segment dysgenesis including Peters anomaly. Eur. J. Hum. Genet. 2011, 19, 293–299. [Google Scholar] [CrossRef]
- Khan, K.; Rudkin, A.; Parry, D.A.; Burdon, K.P.; McKibbin, M.; Logan, C.V.; Abdelhamed, Z.I.; Muecke, J.S.; Fernandez-Fuentes, N.; Laurie, K.J.; et al. Homozygous mutations in PXDN cause congenital cataract, corneal opacity, and developmental glaucoma. Am. J. Hum. Genet. 2011, 89, 464–473. [Google Scholar] [CrossRef] [PubMed]
- Khan, K.; Al-Maskari, A.; McKibbin, M.; Carr, I.M.; Booth, A.; Mohamed, M.; Siddiqui, S.; Poulter, J.A.; Parry, D.A.; Logan, C.V.; et al. Genetic heterogeneity for recessively inherited congenital cataract microcornea with corneal opacity. Invest. Ophthalmol. Vis. Sci. 2011, 52, 4294–4299. [Google Scholar] [CrossRef]
- Choi, A.; Lao, R.; Ling-Fung Tang, P.; Wan, E.; Mayer, W.; Bardakjian, T.; Shaw, G.M.; Kwok, P.Y.; Schneider, A.; Slavotinek, A.; et al. Novel mutations in PXDN cause microphthalmia and anterior segment dysgenesis. Eur. J. Hum. Genet. 2015, 23, 337–341. [Google Scholar] [CrossRef]
- Micheal, S.; Siddiqui, S.N.; Zafar, S.N.; Iqbal, A.; Khan, M.I.; Den Hollander, A.I. Identification of Novel Variants in LTBP2 and PXDN Using Whole-Exome Sequencing in Developmental and Congenital Glaucoma. PLoS ONE 2016, 11, e0159259. [Google Scholar] [CrossRef]
- Xia, K.; Wu, L.; Liu, X.; Xi, X.; Liang, D.; Zheng, D.; Cai, F.; Pan, Q.; Long, Z.; Dai, H.; et al. Mutation in PITX2 is associated with ring dermoid of the cornea. J. Med. Genet. 2004, 41, e129. [Google Scholar] [CrossRef]
- Doward, W.; Perveen, R.; Lloyd, I.C.; Ridgway, A.E.A.; Wilson, L.; Black, G.C.M. A mutation in the RIEG1 gene associated with Peters’ anomaly. J. Med. Genet. 1999, 36, 152–155. [Google Scholar] [CrossRef] [PubMed]
- Alward, W.L.; Semina, E.V.; Kalenak, J.W.; Héon, E.; Sheth, B.P.; Stone, E.M.; Murray, J.C. Autosomal dominant iris hypoplasia is caused by a mutation in the Rieger syndrome (RIEG/PITX2) gene. Am. J. Ophthalmol. 1998, 125, 98–100. [Google Scholar] [CrossRef] [PubMed]
- Bidinost, C.; Matsumoto, M.; Chung, D.; Salem, N.; Zhang, K.; Stockton, D.W.; Khoury, A.; Megarbane, A.; Bejjani, B.A.; Traboulsi, E.I. Heterozygous and homozygous mutations in PITX3 in a large Lebanese family with posterior polar cataracts and neurodevelopmental abnormalities. Investig. Ophthalmol. Vis. Sci. 2006, 47, 1274–1280. [Google Scholar] [CrossRef]
- Semina, E.V.; Ferrell, R.E.; Mintz-Hittner, H.A.; Bitoun, P.; Alward, W.L.M.; Reiter, R.S.; Funkhauser, C.; Daack-Hirsch, S.; Murray, J.C. A novel homeobox gene PITX3 is mutated in families with autosomal-dominant cataracts and ASMD. Nat. Genet. 1998, 19, 167–170. [Google Scholar] [CrossRef] [PubMed]
- Deml, B.; Reis, L.M.; Lemyre, E.; Clark, R.D.; Kariminejad, A.; Semina, E.V. Novel mutations in PAX6, OTX2 and NDP in anophthalmia, microphthalmia and coloboma. Eur. J. Hum. Genet. 2016, 24, 535–541. [Google Scholar] [CrossRef]
- Mirzayans, F.; Pearce, W.G.; MacDonald, I.M.; Walter, M.A. Mutation of the PAX6 gene in patients with autosomal dominant keratitis. Am. J. Hum. Genet. 1995, 57, 539. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC1801269/ (accessed on 25 July 2024).
- Jordan, T.; Hanson, I.; Zaletayev, D.; Hodgson, S.; Prosser, J.; Seawright, A.; Hastie, N.; van Heyningen, V. The human PAX6 gene is mutated in two patients with aniridia. Nat. Genet. 1992, 1, 328–332. [Google Scholar] [CrossRef]
- Bonet-Fernández, J.M.; Aroca-Aguilar, J.D.; Corton, M.; Ramírez, A.I.; Alexandre-Moreno, S.; García-Antón, M.T.; Salazar, J.J.; Ferre-Fernández, J.J.; Atienzar-Aroca, R.; Villaverde, C.; et al. CPAMD8 loss-of-function underlies non-dominant congenital glaucoma with variable anterior segment dysgenesis and abnormal extracellular matrix. Hum. Genet. 2020, 139, 1209–1231. [Google Scholar] [CrossRef]
- Cheong, S.S.; Hentschel, L.; Davidson, A.E.; Gerrelli, D.; Davie, R.; Rizzo, R.; Pontikos, N.; Plagnol, V.; Moore, A.T.; Sowden, J.C.; et al. Mutations in CPAMD8 Cause a Unique Form of Autosomal-Recessive Anterior Segment Dysgenesis. Am. J. Hum. Genet. 2016, 99, 1338–1352. [Google Scholar] [CrossRef]
- Kopanos, C.; Tsiolkas, V.; Kouris, A.; Chapple, C.E.; Albarca Aguilera, M.; Meyer, R.; Massouras, A. VarSome: The human genomic variant search engine. Bioinformatics 2019, 35, 1978–1980. [Google Scholar] [CrossRef]
- Siggs, O.M.; Souzeau, E.; Pasutto, F.; Dubowsky, A.; Smith, J.E.; Taranath, D.; Pater, J.; Rait, J.L.; Narita, A.; Mauri, L.; et al. Prevalence of FOXC1 Variants in Individuals with a Suspected Diagnosis of Primary Congenital Glaucoma. JAMA Ophthalmol. 2019, 137, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, S.; Ghanekar, Y.; Kaur, K.; Kaur, I.; Mandal, A.K.; Rao, K.N.; Parikh, R.S.; Thomas, R.; Majumder, P.P. A polymorphism in the CYP1B1 promoter is functionally associated with primary congenital glaucoma. Hum. Mol. Genet. 2010, 19, 4083–4090. [Google Scholar] [CrossRef] [PubMed]
Sex | Year of Birth | Ethnicity | Cosanguinity | Age at Diagnosis (Months) | Affected Eye | IOP at Diagnosis (Affected Eye or Both (OD/OS)), (mmHg) | Genetic Testing | |
---|---|---|---|---|---|---|---|---|
PCG-1 | M | 2002 | Russian | No | 4 | OD | 27 | Gene-panel |
PCG-2 | M | 2003 | Latvian | No | 7 | OS | 30 | Gene-panel |
PCG-3 | F | 2004 | Russian | No | 8 | OD | 27 | Gene-panel; WGS |
PCG-4 | F | 2004 | Latvian | No | 4 | OD/OS | 22/24 | Gene-panel; WGS |
PCG-5 | M | 2006 | Latvian | No | 4 | OD | 27 | Gene-panel |
PCG-6 | F | 2008 | Russian | No | 5 | OD/OS | 25/26 | Gene-panel; WGS |
PCG-7 | M | 2008 | Latvian | No | 10 | OD/OS | 22/22 | Gene-panel |
PCG-8 | F | 2009 | Russian | No | 18 | OD | 24 | Gene-panel |
PCG-9 | F | 2011 | Latvian | No | 10 | OD/OS | 22/22 | Gene-panel |
PCG-10 | M | 2011 | Russian | No | 5 | OS | 31 | Gene-panel |
PCG-11 | F | 2012 | Latvian | No | 2 | OD | 22 | Gene-panel |
PCG-12 | M | 2014 | Latvian | No | 8 | OS | 44 | Gene-panel |
PCG-13 | M | 2015 | Latvian | No | 6 | OD | 30 | Gene-panel |
PCG-14 | F | 2015 | Latvian | No | 7 | OD | 27 | Gene-panel |
PCG-15 | M | 2015 | Russian | No | 7 | OS | 23 | Gene-panel, WGS |
PCG-16 | M | 2017 | Not reported | No | 8 | OS | 23 | Gene-panel |
PCG-17 | F | 2018 | Latvian | No | 8 | OS | 42 | Gene-panel |
PCG-18 | F | 2019 | Latvian | No | 7 | OS | 31 | Gene-panel |
PCG-19 | M | 2020 | Ukrainian | No | 9 | OD | 25 | Gene-panel |
PCG-20 | M | 2020 | Not reported | No | 18 | OD | 26 | Gene-panel |
Variant | Rs Code | Incidence in This Study (Alleles) | Frequency in This Study | Frequency in Latvia | p Value * | Gnomad Frequency | p-Value ** | SIFT | Poly Phen-2 | CADD | Clinvar Classification |
---|---|---|---|---|---|---|---|---|---|---|---|
c.1358A>G, p.Asn453Ser | rs1800440 | 7 | 0.1750 | 0.1360 | 0.48 | 0.1864 | 0.85 | No prediction | No prediction | 23.70 | Benign/Likely benign |
c.1294C>G, p.Leu432Val | rs1056836 | 19 | 0.4750 | 0.3890 | 0.27 | 0.4409 | 0.66 | No prediction | No prediction | 8.95 | Benign |
c.142C>G p.Arg48Gly | rs10012 | 15 | 0.3750 | 0.3890 | 0.86 | 0.2813 | 0.19 | No prediction | No prediction | 9.70 | Benign/Likely benign |
c.355G>T p.Ala119Ser | rs1056827 | 15 | 0.3750 | 0.4070 | 0.69 | 0.2852 | 0.21 | No prediction | No prediction | 4.73 | Benign/Likely benign |
c.1347T>C p.Asp449= | rs1056837 | 25 | 0.6250 | 0.6110 | 0.86 | 0.5597 | 0.41 | No prediction | No prediction | 0.66 | Benign |
Gene | OMIN | Locus | Mode of Inheritance | Phenotypes | Associated with PCG | References |
FOXC1 | 601090 | 6p25.3 | AD | ASGD 3 (Peters anomaly, Axenfeld anomaly, Rieger anomaly, iris hypoplasia, aniridia), Axenfeld–Rieger syndrome, PCG | Yes | [17,36,61,62,63,64] |
FOXE3 | 601094 | 1p33 | AR or AD | ASGD 2 (congenital primary aphakia, cataract, Peters anomaly, microphthalmia) | No | [65,66] |
PXDN | 269400 | 2p25.3 | AR | ASGD 7 (Corneal opacity, congenital cataract, microcornea) | Yes * | [17,67,68,69,70] |
PITX2 | 601542 | 4q25 | AD | Axenfeld–Rieger syndrome, ASGD 4 (Peters anomaly, iris hypoplasia), ring dermoid of cornea, PCG | Yes | [16,17,71,72,73] |
PITX3 | 602669 | 10q25 | AD or AR | ASGD 1, Congenital posterior polar cataract | No | [74,75] |
PAX6 | 607108 | 11p13 | AD | Anaridia, ASGD 5 (Peters anomaly, Axenfeld anomaly, and Rieger anomaly) keratitis, foveal hypoplasia, congenital cataract, optic nerve hypoplasia | No | [76,77,78] |
CPAMD8 | 608841 | 19p13.11 | AR | ASGD 8 (iris hypoplasia, ectopia lentis, corectopia, ectropion uveae, cataract) | Yes * | [79,80] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elksne, E.; Lace, B.; Stavusis, J.; Tvoronovica, A.; Zayakin, P.; Elksnis, E.; Ozolins, A.; Micule, I.; Valeina, S.; Inashkina, I. Genetic Analysis of CYP1B1 and Other Anterior Segment Dysgenesis-Associated Genes in Latvian Cohort of Primary Congenital Glaucoma. Biomedicines 2025, 13, 1222. https://doi.org/10.3390/biomedicines13051222
Elksne E, Lace B, Stavusis J, Tvoronovica A, Zayakin P, Elksnis E, Ozolins A, Micule I, Valeina S, Inashkina I. Genetic Analysis of CYP1B1 and Other Anterior Segment Dysgenesis-Associated Genes in Latvian Cohort of Primary Congenital Glaucoma. Biomedicines. 2025; 13(5):1222. https://doi.org/10.3390/biomedicines13051222
Chicago/Turabian StyleElksne, Eva, Baiba Lace, Janis Stavusis, Anastasija Tvoronovica, Pawel Zayakin, Eriks Elksnis, Arturs Ozolins, Ieva Micule, Sandra Valeina, and Inna Inashkina. 2025. "Genetic Analysis of CYP1B1 and Other Anterior Segment Dysgenesis-Associated Genes in Latvian Cohort of Primary Congenital Glaucoma" Biomedicines 13, no. 5: 1222. https://doi.org/10.3390/biomedicines13051222
APA StyleElksne, E., Lace, B., Stavusis, J., Tvoronovica, A., Zayakin, P., Elksnis, E., Ozolins, A., Micule, I., Valeina, S., & Inashkina, I. (2025). Genetic Analysis of CYP1B1 and Other Anterior Segment Dysgenesis-Associated Genes in Latvian Cohort of Primary Congenital Glaucoma. Biomedicines, 13(5), 1222. https://doi.org/10.3390/biomedicines13051222