Associations Between Inflammatory and Bone Turnover Markers and Mortality in Hemodialysis Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. Clinical and Biochemical Assessment
2.3. Follow-Up
2.4. Statistical Analysis
3. Results
3.1. Characteristics of the Study Group
3.2. Survival Analysis
3.2.1. IPTH Impact on Survival
3.2.2. Impact of 25(OH)D, 25-Hydroxyvitamin D(Calcidiol) on Survival
3.2.3. Impact of Serum Phosphorus (PO4) on Survival
3.2.4. Impact of Serum Calcium on Survival
3.2.5. Impact6 of Plasma TGF-β on Survival
3.2.6. Impact of Plasma VEGF on Survival
3.2.7. Impact of Soluble Klotho on Survival
3.2.8. Impact of Age on Survival
3.3. Association Between Inflammation and CKD-MBD
3.4. Association Between iPTH and Age
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jager, K.J.; Kovesdy, C.; Langham, R.; Rosenberg, M.; Jha, V.; Zoccali, C. A Single Number for Advocacy and Communication—Worldwide More than 850 Million Individuals Have Kidney Diseases. Kidney Int. 2019, 96, 1048–1050. [Google Scholar] [CrossRef] [PubMed]
- Pecoits-Filho, R.; Okpechi, I.G.; Donner, J.A.; Harris, D.C.H.; Aljubori, H.M.; Bello, A.K.; Bellorin-Font, E.; Caskey, F.J.; Collins, A.; Cueto-Manzano, A.M.; et al. Capturing and Monitoring Global Differences in Untreated and Treated End-Stage Kidney Disease, Kidney Replacement Therapy Modality, and Outcomes. Kidney Int. Suppl. 2020, 10, e3–e9. [Google Scholar] [CrossRef] [PubMed]
- Ratiu, I.A.; Mihaescu, A.; Olariu, N.; Ratiu, C.A.; Cristian, B.G.; Ratiu, A.; Indries, M.; Fratila, S.; Dejeu, D.; Teusdea, A.; et al. Hepatitis C Virus Infection in Hemodialysis Patients in the Era of Direct-Acting Antiviral Treatment: Observational Study and Narrative Review. Medicina 2024, 60, 2093. [Google Scholar] [CrossRef]
- Tomlinson, J.A.P.; Wheeler, D.C. The Role of Trimethylamine N-Oxide as a Mediator of Cardiovascular Complications in Chronic Kidney Disease. Kidney Int. 2017, 92, 809–815. [Google Scholar] [CrossRef]
- Bello, A.K.; Levin, A.; Lunney, M.; Osman, M.A.; Ye, F.; Ashuntantang, G.E.; Bellorin-Font, E.; Benghanem Gharbi, M.; Davison, S.N.; Ghnaimat, M.; et al. Status of Care for End Stage Kidney Disease in Countries and Regions Worldwide: International Cross Sectional Survey. BMJ 2019, 367, l5873. [Google Scholar] [CrossRef]
- Zhou, L.; Fu, P. The Interpretation of KDIGO 2017 Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention and Treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Chin. J. Evid.-Based Med. 2017, 17, 869–875. [Google Scholar] [CrossRef]
- Isakova, T.; Wahl, P.; Vargas, G.S.; Gutiérrez, O.M.; Scialla, J.; Xie, H.; Appleby, D.; Nessel, L.; Bellovich, K.; Chen, J.; et al. Fibroblast Growth Factor 23 Is Elevated before Parathyroid Hormone and Phosphate in Chronic Kidney Disease. Kidney Int. 2011, 79, 1370–1378. [Google Scholar] [CrossRef]
- Laflamme, G.H.; Jowsey, J. Bone and Soft Tissue Changes with Oral Phosphate Supplements. J. Clin. Investig. 1972, 51, 2834–2840. [Google Scholar] [CrossRef]
- Komaba, H.; Fuller, D.S.; Taniguchi, M.; Yamamoto, S.; Nomura, T.; Zhao, J.; Bieber, B.A.; Robinson, B.M.; Pisoni, R.L.; Fukagawa, M. Fibroblast Growth Factor 23 and Mortality Among Prevalent Hemodialysis Patients in the Japan Dialysis Outcomes and Practice Patterns Study. Kidney Int. Rep. 2020, 5, 1956–1964. [Google Scholar] [CrossRef]
- Yeung, S.M.H.; Binnenmars, S.H.; Gant, C.M.; Navis, G.; Gansevoort, R.T.; Bakker, S.J.L.; De Borst, M.H.; Laverman, G.D. Fibroblast Growth Factor 23 and Mortality in Patients with Type 2 Diabetes and Normal or Mildly Impaired Kidney Function. Diabetes Care 2019, 42, 2151–2153. [Google Scholar] [CrossRef]
- Sim, J.J.; Bhandari, S.K.; Smith, N.; Chung, J.; Liu, I.L.A.; Jacobsen, S.J.; Kalantar-Zadeh, K. Phosphorus and Risk of Renal Failure in Subjects with Normal Renal Function. Am. J. Med. 2013, 126, 311–318. [Google Scholar] [CrossRef]
- Hartwig, A.; Koschek, K.; Lühring, A. Influence of Proton Donors on the Cationic Polymerization of Epoxides. In Adhesion: Current Research and Applications; Wiley: Hoboken, NJ, USA, 2006; pp. 205–216. [Google Scholar] [CrossRef]
- Hu, M.C.; Kuro-o, M.; Moe, O.W. Renal and Extrarenal Actions of Klotho. Semin. Nephrol. 2013, 33, 118–129. [Google Scholar] [CrossRef]
- Nowak, K.L.; Chonchol, M. Does Inflammation Affect Outcomes in Dialysis Patients? Semin. Dial. 2018, 31, 388–397. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.Y.; Liu, X.S.; Huang, X.R.; Yu, X.Q.; Lan, H.Y. Diverse Role of TGF-β in Kidney Disease. Front. Cell Dev. Biol. 2020, 8, 123. [Google Scholar] [CrossRef]
- Reinders, M.E.J.; Sho, M.; Izawa, A.; Wang, P.; Mukhopadhyay, D.; Koss, K.E.; Geehan, C.S.; Luster, A.D.; Sayegh, M.H.; Briscoe, D.M. Proinflammatory Functions of Vascular Endothelial Growth Factor in Alloimmunity. J. Clin. Investig. 2003, 112, 1655–1665. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Carrero, J.J.; Yu, X.; Bárány, P.; Qureshi, A.R.; Eriksson, M.; Anderstam, B.; Chmielewski, M.; Heimbürger, O.; Stenvinkel, P.; et al. Associations of VEGF and Its Receptors SVEGFR-1 and-2 with Cardiovascular Disease and Survival in Prevalent Haemodialysis Patients. Nephrol. Dial. Transplant. 2009, 24, 3468–3473. [Google Scholar] [CrossRef] [PubMed]
- Mallamaci, F.; Benedetto, F.A.; Tripepi, G.; Cutrupi, S.; Pizzini, P.; Stancanelli, B.; Seminara, G.; Bonanno, G.; Rapisarda, F.; Fatuzzo, P.; et al. Vascular Endothelial Growth Factor, Left Ventricular Dysfunction and Mortality in Hemodialysis Patients. J. Hypertens. 2008, 26, 1875–1882. [Google Scholar] [CrossRef]
- Di Marco, G.S.; Reuter, S.; Hillebrand, U.; Amler, S.; König, M.; Larger, E.; Oberleithner, H.; Brand, E.; Pavenstädt, H.; Brand, M. The Soluble VEGF Receptor SFlt1 Contributes to Endothelial Dysfunction in CKD. J. Am. Soc. Nephrol. 2009, 20, 2235–2245. [Google Scholar] [CrossRef]
- Yuan, J.; Guo, Q.; Qureshi, A.R.; Anderstam, B.; Eriksson, M.; Heimbürger, O.; Bárány, P.; Stenvinkel, P.; Lindholm, B. Circulating Vascular Endothelial Growth Factor (VEGF) and Its Soluble Receptor 1 (SVEGFR-1) Are Associated with Inflammation and Mortality in Incident Dialysis Patients. Nephrol. Dial. Transplant. 2013, 28, 2356–2363. [Google Scholar] [CrossRef]
- Senel, K.; Baykal, T.; Seferoglu, B.; Altas, E.U.; Baygutalp, F.; Ugur, M.; Kiziltunc, A. Circulating Vascular Endothelial Growth Factor Concentrations in Patients with Postmenopausal Osteoporosis. Arch. Med. Sci. 2013, 9, 709–712. [Google Scholar] [CrossRef]
- Çebi, H.; Akşahin, E.; Yüksel, H.Y.; Çelebi, L.; Aktekin, C.N.; Hapa, O.; Muratli, H.H.; Biçimoǧlu, A. Plasma Vascular Endothelial Growth Factor Levels Are Similar in Subjects with and without Osteoporosis. Eklem Hast. Cerrahisi 2010, 21, 91–97. [Google Scholar]
- Aquino, H.B.S.; Canziani, M.E.F.; Barra, A.B.L.; Roque-da-Silva, A.P.; Strogoff-de-Matos, J.P.; Dalboni, M.A.; Moyses, R.M.A.; Elias, R.M. PTH May Predict Early Mortality in Incident Patients on Hemodialysis: Results from a Large Cohort. Int. Urol. Nephrol. 2024, 57, 545–551. [Google Scholar] [CrossRef]
- Al Salmi, I.; Bieber, B.; Al Rukhaimi, M.; Alsahow, A.; Shaheen, F.; Al-Ghamdi, S.M.G.; Al Wakeel, J.; Al Ali, F.; Al-Aradi, A.; Hejaili, F.A.; et al. Parathyroid Hormone Serum Levels and Mortality among Hemodialysis Patients in the Gulf Cooperation Council Countries: Results from the DOPPS (2012–2018). Kidney360 2020, 1, 1083–1090. [Google Scholar] [CrossRef]
- Tentori, F.; Blayney, M.J.; Albert, J.M.; Gillespie, B.W.; Kerr, P.G.; Bommer, J.; Young, E.W.; Akizawa, T.; Akiba, T.; Pisoni, R.L.; et al. Mortality Risk for Dialysis Patients With Different Levels of Serum Calcium, Phosphorus, and PTH: The Dialysis Outcomes and Practice Patterns Study (DOPPS). Am. J. Kidney Dis. 2008, 52, 519–530. [Google Scholar] [CrossRef]
- Supplements, K.I. KDIGO 2017 Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease–Mineral and Bone Disorder (CKD-MBD). Kidney Int. Suppl. 2017, 7, 1–59. [Google Scholar] [CrossRef]
- Tentori, F.; Zepel, L.; Fuller, D.S.; Wang, M.; Bieber, B.A.; Robinson, B.M.; Pisoni, R.L. The DOPPS Practice Monitor for US Dialysis Care: PTH Levels and Management of Mineral and Bone Disorder in US Hemodialysis Patients. Am. J. Kidney Dis. 2015, 66, 536–539. [Google Scholar] [CrossRef]
- Cannata-Andía, J.B.; Fernández-Martín, J.L.; Zoccali, C.; London, G.M.; Locastelli, F.; Ketteler, M.; Ferreira, A.; Covic, A.; Floege, J.; Górriz, J.L.; et al. Current Management of Secondary Hyperparathyroidism: A Multicenter Observational Study (COSMOS). J. Nephrol. 2008, 21, 290–298. [Google Scholar] [CrossRef]
- Asada, S.; Yoshida, K.; Fukuma, S.; Nomura, T.; Wada, M.; Onishi, Y.; Kurita, N.; Fukagawa, M.; Fukuhara, S.; Akizawa, T. Effectiveness of Cinacalcet Treatment for Secondary Hyperparathyroidism on Hospitalization: Results from the MBD-5D Study. PLoS ONE 2019, 14, e0216399. [Google Scholar] [CrossRef] [PubMed]
- Hajare, A.D.; Dagar, N.; Gaikwad, A.B. Klotho Antiaging Protein: Molecular Mechanisms and Therapeutic Potential in Diseases. Mol. Biomed. 2025, 6, 19. [Google Scholar] [CrossRef]
- Zhao, X.; Han, D.; Zhao, C.; Yang, F.; Wang, Z.; Gao, Y.; Jin, M.; Tao, R. New Insights into the Role of Klotho in Inflammation and Fibrosis: Molecular and Cellular Mechanisms. Front. Immunol. 2024, 15, 1454142. [Google Scholar] [CrossRef]
- Lisowska, K.A.; Storoniak, H.; Soroczyńska-Cybula, M.; Maziewski, M.; Dębska-Ślizień, A. Serum Levels of α-Klotho, Inflammation-Related Cytokines, and Mortality in Hemodialysis Patients. J. Clin. Med. 2022, 11, 6518. [Google Scholar] [CrossRef] [PubMed]
- Zsemlye, E.; Durmanova, V.; Kluckova, K.; Kozak, J.; Rychly, B.; Svajdler, M.; Matejcik, V.; Homolova, M.; Steno, J.; Hunakova, L.; et al. Association of Klotho Gene Polymorphism and Serum Level of α Klotho Protein with Different Tumor Grades, Overall Survival and Cytokine Profile in Glioma Patients. Int. J. Mol. Sci. 2025, 26, 330. [Google Scholar] [CrossRef] [PubMed]
- Sircuța, A.F.; Grosu, I.D.; Schiller, A.; Petrica, L.; Ivan, V.; Schiller, O.; Bodea, M.; Mircea, M.N.; Goleț, I.; Bob, F. The Relationship between Circulating Kidney Injury Molecule-1 and Cardiovascular Morbidity and Mortality in Hemodialysis Patients. Biomedicines 2024, 12, 1903. [Google Scholar] [CrossRef]
- Valenzuela, P.L.; Cobo, F.; Diez-Vega, I.; Sánchez-Hernández, R.; Pedrero-Chamizo, R.; Verde-Rello, Z.; González-Gross, M.; Santiago, C.; Pérez Ruiz, M. Physical Performance, Plasma S-Klotho, and All-Cause Mortality in Elderly Dialysis Patients: A Prospective Cohort Study. Exp. Gerontol. 2019, 122, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Mehrotra, R.; Kermah, D.; Budoff, M.; Salusky, I.B.; Mao, S.S.; Gao, Y.L.; Takasu, J.; Adler, S.; Norris, K. Hypovitaminosis D in Chronic Kidney Disease. Clin. J. Am. Soc. Nephrol. 2008, 3, 1144–1151. [Google Scholar] [CrossRef]
- Eizawa, T.; Murakami, Y.; Matsui, K.; Takahashi, M.; Muroi, K.; Amemiya, M.; Takano, R.; Kusano, E.; Shimada, K.; Ikeda, U. Circulating Endothelial Progenitor Cells Are Reduced in Hemodialysis Patients. Curr. Med. Res. Opin. 2003, 19, 627–633. [Google Scholar] [CrossRef]
- Catar, R.; Moll, G.; Kamhieh-Milz, J.; Luecht, C.; Chen, L.; Zhao, H.; Ernst, L.; Willy, K.; Girndt, M.; Fiedler, R.; et al. Expanded Hemodialysis Therapy Ameliorates Uremia-Induced Systemic Microinflammation and Endothelial Dysfunction by Modulating VEGF, TNF-α and AP-1 Signaling. Front. Immunol. 2021, 12, 774052. [Google Scholar] [CrossRef]
- Stefoni, S.; Cianciolo, G.; Donati, G.; Dormi, A.; Grazia Silvestri, M.; Colì, L.; De Pascalis, A.; Iannelli, S. Low TGF-Β1 Serum Levels Are a Risk Factor for Atherosclerosis Disease in ESRD Patients. Kidney Int. 2002, 61, 324–335. [Google Scholar] [CrossRef]
- Sagi, B.; Peti, A.; Lakatos, O.; Gyimesi, T.; Sulyok, E.; Wittmann, I.; Csiky, B. Pro- And Anti-Inflammatory Factors, Vascular Stiffness and Outcomes in Chronic Hemodialysis Patients. Physiol. Int. 2020, 107, 256–266. [Google Scholar] [CrossRef]
Parameter | Patients Treated with HD (Mean Values +/− Standard Deviation) |
---|---|
Age (years) | 60.1 +/− 11.8 |
Female: Male | 21:42 |
Hemoglobin (g/dL) | 10.9 +/− 1.0 |
Hematocrit (%) | 33.3 +/− 4.3 |
Serum ferritin (ng/mL) | 995.9 +/− 358.0 |
TSAT (%) | 30.6 +/− 10.5 |
Serum creatinine (predialysis) mg/dL | 8.4 +/− 1.9 |
Serum urea (predialysis) mg/dL | 123.1 +/− 28.7 |
Serum calcium (mg/dL) | 8.6 +/− 0.4 |
4 | |
Serum intact parathyroid hormone (IPTH) baseline (pg/mL) | 551.4 +/− 425.5 |
Serum phosphorus (PO4) (mg/dL) | 5.0 +/− 1.3 |
Plasma TGF-β (pg/mL) | 298.9 +/− 609.5 |
Plasma VEGF baseline (pg/mL) | 1371.3 +/− 787.5 |
Serum albumin (g/dL) | 4.4 +/− 0.3 |
Serum 25(OH)D baseline (ng/mL) | 36.7 +/− 10.4 |
IL-6 (pg/mL) | 10.8 +/− 0.9 |
CRP (mg/dL) | 1.0 +/− 0.9 |
sKlotho (pg/mL) | 447.8 +/− 327.2 |
Serum alkaline phosphatase (ALP) baseline (IU/L) | 114.4 +/− 63.7 |
Cox Univariate Regression | Cox Multivariate Regression | |||||
---|---|---|---|---|---|---|
Variables | HR | 95% CI | p-Value | HR | 95% CI | p-Value |
iPTH | 1.02 | 1.01–1.04 | 0.045 | 1.03 | 1.02–1.05 | 0.042 |
Age | 1.07 | 1.02–1.12 | 0.016 | 1.12 | 1.01–1.23 | 0.024 |
PO4 | 0.98 | 0.74–1.31 | 0.901 | |||
Serum calcium | ||||||
soluble KLOTHO | 1.01 | 0.99–1.02 | 0.254 | - | - | - |
Serum 25(OH)D | 1.01 | 0.97–1.05 | 0.743 | - | - | - |
Plasma TGF-β | 1.00 | 0.98–1.05 | 0.422 | - | - | - |
Plasma VEGF | 1.00 | 0.90–1.10 | 0.802 | - | - | - |
Parameter | IL-6 Baseline | CRP Baseline | TGF-β Baseline | |||
---|---|---|---|---|---|---|
t | p Value | t | p Value | t | p Value | |
Baseline soluble Klotho | 4.90476 | <0.001 | −0.35570 | 0.723 | 1.99230 | 0.055 |
Calcium | 0.80389 | 0.425 | −0.31564 | 0.754 | −0.03676 | 0.971 |
PO4 | 0.82892 | 0.411 | −0.13309 | 0.895 | −0.57314 | 0.570 |
Baseline iPTH | −1.31392 | 0.195 | 0.14649 | 0.884 | −1.04538 | 0.303 |
Baseline 25(OH)D | −0.01717 | 0.986 | 1.73724 | 0.088 | 0.85369 | 0.399 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sircuța, A.F.; Grosu, I.D.; Schiller, A.; Petrica, L.; Ivan, V.; Schiller, O.; Maralescu, F.-M.; Palamar, M.; Mircea, M.-N.; Nișulescu, D.; et al. Associations Between Inflammatory and Bone Turnover Markers and Mortality in Hemodialysis Patients. Biomedicines 2025, 13, 1163. https://doi.org/10.3390/biomedicines13051163
Sircuța AF, Grosu ID, Schiller A, Petrica L, Ivan V, Schiller O, Maralescu F-M, Palamar M, Mircea M-N, Nișulescu D, et al. Associations Between Inflammatory and Bone Turnover Markers and Mortality in Hemodialysis Patients. Biomedicines. 2025; 13(5):1163. https://doi.org/10.3390/biomedicines13051163
Chicago/Turabian StyleSircuța, Alexandru Florin, Iulia Dana Grosu, Adalbert Schiller, Ligia Petrica, Viviana Ivan, Oana Schiller, Felix-Mihai Maralescu, Marcel Palamar, Monica-Nicoleta Mircea, Daniel Nișulescu, and et al. 2025. "Associations Between Inflammatory and Bone Turnover Markers and Mortality in Hemodialysis Patients" Biomedicines 13, no. 5: 1163. https://doi.org/10.3390/biomedicines13051163
APA StyleSircuța, A. F., Grosu, I. D., Schiller, A., Petrica, L., Ivan, V., Schiller, O., Maralescu, F.-M., Palamar, M., Mircea, M.-N., Nișulescu, D., Goleț, I., & Bob, F. (2025). Associations Between Inflammatory and Bone Turnover Markers and Mortality in Hemodialysis Patients. Biomedicines, 13(5), 1163. https://doi.org/10.3390/biomedicines13051163