The Effect of Early Spironolactone Administration on 2-Year Acute Graft Rejection in Cardiac Transplant Patients
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Future Perspectives in Cardiac Transplantation
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bounader, K.; Flécher, E. End-stage heart failure: The future of heart transplant and artificial heart. Presse Med. 2024, 53, 104191. [Google Scholar] [CrossRef]
- Stewart, S.; MacIntyre, K.; Hole, D.; Capewell, S.; McMurray, J.J. More ‘malignant’ than cancer? Five-year survival following a first admission for heart failure. Eur. J. Heart Fail. 2001, 3, 315–322. [Google Scholar] [CrossRef]
- Shah, K.S.; Kittleson, M.M.; Kobashigawa, J.A. Updates on Heart Transplantation. Curr. Heart Fail. Rep. 2019, 16, 150–156. [Google Scholar] [CrossRef]
- Alexander, R.T.; Steenbergen, C. Cause of death and sudden cardiac death after heart transplantation. An autopsy study. Am. J. Clin. Pathol. 2003, 119, 740–748. [Google Scholar] [CrossRef]
- Gjesdal, G.; Lundgren, J.; Czuba, T.; Wareham, N.E.; Gustafsson, F.; Nilsson, J.; Smith, J.G.; Braun, O.Ö. Validation of cause of death classification after heart transplantation and cause-specific life expectancy compared to the general population. Clin. Transplant. 2022, 36, e14756. [Google Scholar] [CrossRef]
- Mitchell, R.N. Graf vascular disase:Immune response meets the vessel wall. Annu. Rev. Pathol. 2009, 4, 19–47. [Google Scholar] [CrossRef]
- Wilhelm, M.J. Long-term outcome following heart transplantation: Current perspective. J. Thorac. Dis. 2015, 7, 549–551. [Google Scholar] [CrossRef]
- Kim, I.C.; Youn, J.C.; Kobashigawa, J.A. The Past, Present and Future of Heart Transplantation. Korean Circ. J. 2018, 48, 565–590. [Google Scholar] [CrossRef]
- Colvin, M.M.; Cook, J.L.; Chang, P.; Francis, G.; Hsu, D.T.; Kiernan, M.S.; Kobashigawa, J.A.; Lindenfeld, J.; Masri, S.C.; Miller, D.; et al. Antibody-mediated rejection in cardiac transplantation: Emerging knowledge in diagnosis and management: A scientific statement from the American Heart Association. Circulation 2015, 131, 1608–1639. [Google Scholar] [CrossRef] [PubMed]
- Ingulli, E. Mechanism of cellular rejection in transplantation. Pediatr. Nephrol. 2010, 25, 61–74. [Google Scholar] [CrossRef] [PubMed]
- Aliabadi, A.Z.; Grömmer, M.; Dunkler, D.; Eskandary, F.; Salameh, O.; Gökler, J.; Hutschala, D.; Steinlechner, B.; Opfermann, P.; Laufer, G.; et al. Impact of Rabbit Antithymocyte Globulin Dose on Long-term Outcomes in Heart Transplant Patients. Transplantation 2016, 100, 685–693. [Google Scholar] [CrossRef]
- Zuckermann, A.; Schulz, U.; Deuse, T.; Ruhpawar, A.; Schmitto, J.D.; Beiras-Fernandez, A.; Hirt, S.; Schweiger, M.; Kopp-Fernandes, L.; Barten, M.J. Thymoglobulin induction in heart transplantation: Patient selection and implications for maintenance immunosuppression. Transpl. Int. 2015, 28, 259–269. [Google Scholar] [CrossRef]
- Kugathasan, L.; Rayner, D.G.; Wang, S.M.; Rodenas-Alesina, E.; Orchanian-Cheff, A.; Stehlik, J.; Gustafsson, F.; Greig, D.; McDonald, M.; Bertolotti, A.M.; et al. Induction therapy in heart transplantation: A systematic review and network meta-analysis for developing evidence-based recommendations. Clin. Transplant. 2024, 38, e15326. [Google Scholar] [CrossRef]
- Bessa, A.B.; Cristelli, M.P.; Felipe, C.R.; Foresto, R.D.; Fonseca, M.C.M.; Pestana, J.M.; Tedesco-Silva, H. Real-world cost-effectiveness analysis of thymoglobulin versus no induction therapy in kidney transplant recipients at low risk of graft loss. J. Bras. Nefrol. 2025, 47, e20240060. [Google Scholar] [CrossRef]
- Alloway, R.R.; Woodle, E.S.; Abramowicz, D.; Segev, D.L.; Castan, R.; Ilsley, J.N.; Jeschke, K.; Somerville, K.T.; Brennan, D.C. Rabbit anti-thymocyte globulin for the prevention of acute rejection in kidney transplantation. Am. J. Transplant. 2019, 19, 2252–2261. [Google Scholar] [CrossRef]
- Lischke, R.; Simonek, J.; Davidová, R.; Schützner, J.; Stolz, A.J.; Vojácek, J.; Burkert, J.; Pafko, P. Induction therapy in lung transplantation: Initial single-center experience comparing daclizumab and antithymocyte globulin. Transplant. Proc. 2007, 39, 205–212. [Google Scholar] [CrossRef]
- Pourmand, G.R.; Dehghani, S.; Saraji, A.; Khaki, S.; Mortazavi, S.H.; Mehrsai, A.; Sajadi, H. Relationship between Post-kidney Transplantation Antithymocyte Globulin Therapy and Wound Healing Complications. Int. J. Organ Transplant. Med. 2012, 3, 79–84. [Google Scholar]
- Busani, S.; Rinaldi, L.; Begliomini, B.; Pasetto, A.; Girardis, M. Thymoglobulin-induced severe cardiovascular reaction and acute renal failure in a patient scheduled for orthotopic liver transplantation. Minerva Anestesiol. 2006, 72, 243–248. [Google Scholar]
- Söderlund, C.; Rådegran, G. Immunosuppressive therapies after heart transplantation--The balance between under- and over-immunosuppression. Transplant. Rev. 2015, 29, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Kobashigawa, J.A.; Miller, L.W.; Russell, S.D.; Ewald, G.A.; Zucker, M.J.; Goldberg, L.R.; Eisen, H.J.; Salm, K.; Tolzman, D.; Gao, J.; et al. Tacrolimus with mycophenolate mofetil (MMF) or sirolimus vs. cyclosporine with MMF in cardiac transplant patients: 1-year report. Am. J. Transplant. 2006, 6, 1377–1386. [Google Scholar] [CrossRef] [PubMed]
- Masarone, D.; Vastarella, R.; Melillo, E.; Petraio, A.; Pacileo, G. Beta-blocker therapy in heart transplant recipients: A review. Clin. Transplant. 2020, 34, e14081. [Google Scholar] [CrossRef]
- Castel, M.Á.; Roig, E.; Rios, J.; Tomas, C.; Mirabet, S.; Cardona, M.; Brossa, V.; López, L.; Vargas, L.; Sionis, A.; et al. Long-term prognostic value of elevated heart rate one year after heart transplantation. Int. J. Cardiol. 2013, 168, 2003–2007. [Google Scholar] [CrossRef]
- Masarone, D.; Tedford, R.J.; Melillo, E.; Petraio, A.; Pacileo, G. Angiotensin-converting enzyme inhibitor therapy after heart transplant: From molecular basis to clinical effects. Clin. Transplant. 2022, 36, e14696. [Google Scholar] [CrossRef]
- Arashi, H.; Sato, T.; Kobashigawa, J.; Luikart, H.; Kobayashi, Y.; Okada, K.; Sinha, S.; Honda, Y.; Yeung, A.C.; Khush, K.; et al. Long-term clinical outcomes with use of an angiotensin-converting enzyme inhibitor early after heart transplantation. Am. Heart J. 2020, 222, 30–37. [Google Scholar] [CrossRef]
- Vallakati, A.; Reddy, S.; Dunlap, M.E.; Taylor, D.O. Impact of Statin Use After Heart Transplantation: A Meta-Analysis. Circ. Heart Fail. 2016, 9, e003265. [Google Scholar] [CrossRef]
- Szyguła-Jurkiewicz, B.; Szczurek, W.; Zembala, M. The role of statins in patients after heart transplantation. Kardiochir. Torakochirurgia Pol. 2015, 12, 42–47. [Google Scholar] [CrossRef]
- Golbus, J.R.; Adie, S.; Yosef, M.; Murthy, V.L.; Aaronson, K.D.; Konerman, M.C. Statin intensity and risk for cardiovascular events after heart transplantation. ESC Heart Fail. 2020, 7, 2074–2081. [Google Scholar] [CrossRef] [PubMed]
- Baba, D.-F.; Suciu, H.; Avram, C.; Danilesco, A.; Moldovan, D.A.; Rauta, R.C.; Huma, L.; Sin, I.A. The Role of Preoperative Chronic Statin Therapy in Heart Transplant Receipts-A Retrospective Single-Center Cohort Study. Int. J. Environ. Res. Public Health 2023, 20, 3471. [Google Scholar] [CrossRef]
- Avram, C.; Mărușteri, M. Normality assessment, few paradigms and use cases. Romanian Rev. Lab. Med. 2022, 30, 251–260. [Google Scholar] [CrossRef]
- Custodio, L.F.P.; Martins, S.B.S.; Viana, L.A.; Cristelli, M.P.; Requião-Moura, L.; Chow, C.Y.Z.; Camargo, S.F.D.N.; Nakamura, M.R.; Foresto, R.D.; Tedesco-Silva, H.; et al. Efficacy and safety of single-dose anti-thymocyte globulin versus basiliximab induction therapy in pediatric kidney transplant recipients: A retrospective comparative cohort study. Pediatr. Transplant. 2024, 28, e14713. [Google Scholar] [CrossRef] [PubMed]
- Hussain, Y.; Khan, H. Immunosuppressive Drugs. Encycl. Infect. Immun. 2022, 726–740. [Google Scholar] [CrossRef]
- Schneiderman, J. Extracorporeal photopheresis: Cellular therapy for the treatment of acute and chronic graft-versus-host disease. Hematol. Hematol. Am. Soc. Hematol. Educ. Program. 2017, 2017, 639–644. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, N.S.; Tostes, R.C.; Paradis, P.; Schiffrin, E.L. Aldosterone, Inflammation, Immune System, and Hypertension. Am. J. Hypertens. 2021, 34, 15–27. [Google Scholar] [CrossRef]
- Huma, L.; Suciu, H.; Avram, C.; Suteu, R.-A.; Danilesco, A.; Baba, D.-F.; Moldovan, D.-A.; Sin, A.-I. Implications of Preoperative C-Reactive Protein Levels in Heart Transplant Patients—A Single-Center Retrospective Study. J. Clin. Med. 2024, 13, 7466. [Google Scholar] [CrossRef] [PubMed]
- Baba, D.-F.; Suciu, H.; Avram, C.; Gyorgy, M.; Danilesco, A.; Huma, L.; Sin, I.A. Elevated Levels of Neutrophil-to Monocyte Ratio Are Associated with the Initiation of Paroxysmal Documented Atrial Fibrillation in the First Two Months after Heart Transplantation: A Uni-Institutional Retrospective Study. J. Cardiovasc. Dev. Dis. 2023, 10, 81. [Google Scholar] [CrossRef]
- Baba, D.-F.; Suciu, H.; Huma, L.; Avram, C.; Danilesco, A.; Moldovan, D.A.; Opincar, A.S.; Sin, A.I. Platelet-to-Albumin Ratio: The Prognostic Utility in the Prediction of 2-Month Postoperative Heart Transplant Complications. J. Cardiovasc. Dev. Dis. 2023, 10, 241. [Google Scholar] [CrossRef] [PubMed]
- Herrada, A.A.; Contreras, F.J.; Marini, N.P.; Amador, C.A.; González, P.A.; Cortés, C.M.; Riedel, C.A.; Carvajal, C.A.; Figueroa, F.; Michea, L.F.; et al. Aldosterone promotes autoimmune damage by enhancing Th17-mediated immunity. J. Immunol. 2010, 184, 191–202. [Google Scholar] [CrossRef]
- Amador, C.A.; Barrientos, V.; Peña, J.; Herrada, A.A.; González, M.; Valdés, S.; Carrasco, L.; Alzamora, R.; Figueroa, F.; Kalergis, A.M.; et al. Spironolactone decreases DOCA-salt-induced organ damage by blocking the activation of T helper 17 and the downregulation of regulatory T lymphocytes. Hypertension 2014, 63, 797–803. [Google Scholar] [CrossRef]
- Poulter, L.W.; Bradley, N.J.; Turk, J.L. The role of macrophages in skin allograft rejection: I. histochemical studies during first-set rejection. Transplantation 1971, 12, 40–44. [Google Scholar] [CrossRef]
- Li, J.; Li, C.; Zhuang, Q.; Peng, B.; Zhu, Y.; Ye, Q.; Ming, Y. The Evolving Roles of Macrophages in Organ Transplantation. J. Immunol. Res. 2019, 2019, 5763430. [Google Scholar] [CrossRef]
- Miller, C.L.; Madsen, J.C. Targeting IL-6 to prevent cardiac allograft rejection. Am. J. Transplant. 2022, 22, 12–17. [Google Scholar] [CrossRef]
- Martín-Fernández, B.; Rubio-Navarro, A.; Cortegano, I.; Ballesteros, S.; Alía, M.; Cannata-Ortiz, P.; Olivares-Álvaro, E.; Egido, J.; de Andrés, B.; Gaspar, M.L.; et al. Aldosterone Induces Renal Fibrosis and Inflammatory M1-Macrophage Subtype via Mineralocorticoid Receptor in Rats. PLoS ONE 2016, 11, e0145946. [Google Scholar] [CrossRef]
- Yang, H.; Cheng, H.; Dai, R.; Shang, L.; Zhang, X.; Wen, H. Macrophage polarization in tissue fibrosis. PeerJ 2023, 11, e16092. [Google Scholar] [CrossRef] [PubMed]
- Pichler, M.; Rainer, P.P.; Schauer, S.; Hoefler, G. Cardiac fibrosis in human transplanted hearts is mainly driven by cells of intracardiac origin. J. Am. Coll. Cardiol. 2012, 59, 1008–1016. [Google Scholar] [CrossRef]
- Luther, J.M.; Fogo, A.B. The role of mineralocorticoid receptor activation in kidney inflammation and fibrosis. Kidney Int. Suppl. 2022, 12, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Miller, C.L.; Madsen, J.C. IL-6 Directed Therapy in Transplantation. Curr. Transplant. Rep. 2021, 8, 191–204. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.K.; Wang, B.; Cao, X.H.; Liu, Y.S. Spironolactone alleviates myocardial fibrosis via inhibition of Ets-1 in mice with experimental autoimmune myocarditis. Exp. Ther. Med. 2022, 23, 369. [Google Scholar] [CrossRef]
- Cîrstea, I.M.; Mîndrilă, B.; Țieranu, E.; Țieranu, L.M.; Istrătoaie, O.; Militaru, C.; Donoiu, I. Overview of Non-Vitamin K Oral Anticoagulants. Farm. J. 2020, 68, 206–212. [Google Scholar] [CrossRef]
- Ghenea, A.E.; Ungureanu, A.M.; Turculeanu, A.; Popescu, M.; Carsote, M.; Ţieranu, M.L.; Ţieranu, E.N.; Vasile, C.M.; Cioboată, R.; Udriştoiu, A.L.; et al. Predictors of early and sustained virological response of viral hepatitis C. Rom. J. Morphol. Embryol. 2020, 61, 1185–1192. [Google Scholar] [CrossRef]
- Ferreira, J.P.; Verdonschot, J.; Wang, P.; Pizard, A.; Collier, T.; Ahmed, F.Z.; Brunner-La-Rocca, H.P.; Clark, A.L.; Cosmi, F.; Cuthbert, J.; et al. Proteomic and Mechanistic Analysis of Spironolactone in Patients at Risk for HF. JACC Heart Fail. 2021, 9, 268–277. [Google Scholar] [CrossRef]
- Morales-Buenrostro, L.E.; Ortega-Trejo, J.A.; Pérez-Villalva, R.; Marino, L.A.; González-Bobadilla, Y.; Juárez, H.; Zamora-Mejía, F.M.; González, N.; Espinoza, R.; Barrera-Chimal, J. Spironolactone reduces oxidative stress in living donor kidney transplantation:a randomized controlled trial. Am. J. Physiol. Renal Physiol. 2019, 317, F519–F528. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, L.A.; Bistrup, C.; Stubbe, J.; Carlström, M.; Checa, A.; Wheelock, C.E.; Palarasah, Y.; Bladbjerg, E.M.; Thiesson, H.C.; Jensen, B.L. Effect of spironolactone for 1 yr on endothelial function and vascular inflammation biomarkers in renal transplant recipients. Am. J. Physiol. Renal Physiol. 2019, 317, F529–F539. [Google Scholar] [CrossRef] [PubMed]
- Peled, Y.; Ram, E.; Freimark, D.; Kassif, Y.; Shlomo, N.; Kogan, A.; Maor, E.; Klempfner, R.; Lavee, J. Treatment with a Statin or Spironolactone is Associated with a Reduced Risk for Primary Graft Dysfunction and Mortality. J. Heart Lung Transplant. 2019, 38, S295–S296. [Google Scholar] [CrossRef]
- Targoński, R.; Sadowski, J.; Price, S.; Targoński, R. Sodium-induced inflammation-an invisible player in resistant hypertension. Hypertens. Res. 2020, 43, 629–633. [Google Scholar] [CrossRef]
- Scozzi, D.; Wang, X.; Liao, F.; Liu, Z.; Zhu, J.; Pugh, K.; Ibrahim, M.; Hsiao, H.M.; Miller, M.J.; Yizhan, G.; et al. Neutrophil extracellular trap fragments stimulate innate immune responses that prevent lung transplant tolerance. Am. J. Transplant. 2019, 19, 1011–1023. [Google Scholar] [CrossRef]
- Liu, Y.; Qin, X.; Lei, Z.; Chai, H.; Wu, Z. Diphenyleneiodonium ameliorates acute liver rejection during transplantation by inhibiting neutrophil extracellular traps formation in vivo. Transpl. Immunol. 2021, 68, 101434. [Google Scholar] [CrossRef]
- Torres-Ruiz, J.; Villca-Gonzales, R.; Gómez-Martín, D.; Zentella-Dehesa, A.; Tapia-Rodríguez, M.; Uribe-Uribe, N.O.; Morales-Buenrostro, L.E.; Alberú, J. A potential role of neutrophil extracellular traps (NETs) in kidney acute antibody mediated rejection. Transpl. Immunol. 2020, 60, 101286. [Google Scholar] [CrossRef]
- Ross, H.J.; Gullestad, L.; Hunt, S.A.; Tovey, D.A.; Puryear, J.B.; McMillan, A.; Stinson, E.B.; Valantine, H.A. Early Doppler echocardiographic dysfunction is associated with an increased mortality after orthotopic cardiac transplantation. Circulation 1996, 94, II289–II293. [Google Scholar]
- Sciaccaluga, C.; Fusi, C.; Landra, F.; Barilli, M.; Lisi, M.; Mandoli, G.E.; D’Ascenzi, F.; Focardi, M.; Valente, S.; Cameli, M. Diastolic function in heart transplant: From physiology to echocardiographic assessment and prognosis. Front. Cardiovasc. Med. 2022, 9, 969270. [Google Scholar] [CrossRef]
- Griffin, J.M.; DeFilippis, E.M.; Rosenblum, H.; Topkara, V.K.; Fried, J.A.; Uriel, N.; Takeda, K.; Farr, M.A.; Maurer, M.S.; Clerkin, K.J. Comparing outcomes for infiltrative and restrictive cardiomyopathies under the new heart transplant allocation system. Clin. Transplant. 2020, 34, e14109. [Google Scholar] [CrossRef]
- Saeed, D.; Feldman, D.; Banayosy, A.E.; Birks, E.; Blume, E.; Cowger, J.; Hayward, C.; Jorde, U.; Kremer, J.; MacGowan, G.; et al. The 2023 International Society for Heart and Lung Transplantation Guidelines for Mechanical Circulatory Support: A 10- Year Update. J. Heart Lung Transplant. 2023, 42, e1–e222. [Google Scholar] [CrossRef] [PubMed]
- Coyan, G.N.; Huckaby, L.V.; Diaz-Castrillon, C.E.; Miguelino, A.M.; Kilic, A. Trends and outcomes following total artificial heart as bridge to transplant from the UNOS database. J. Card. Surg. 2022, 37, 1215–1221. [Google Scholar] [CrossRef]
- Shafran, D.; Kodish, E.; Tzakis, A. Organ shortage: The greatest challenge facing transplant medicine. World J. Surg. 2014, 38, 1650–1657. [Google Scholar] [CrossRef] [PubMed]
- Griffith, B.P.; Goerlich, C.E.; Singh, A.K.; Rothblatt, M.; Lau, C.L.; Shah, A.; Lorber, M.; Grazioli, A.; Saharia, K.K.; Hong, S.N.; et al. Genetically Modified Porcine-to-Human Cardiac Xenotransplantation. N. Engl. J. Med. 2022, 387, 35–44. [Google Scholar] [CrossRef]
- Denner, J. First transplantation of a pig heart from a multiple gene-modified donor, porcine cytomegalovirus/roseolovirus, and antiviral drugs. Xenotransplantation 2023, 30, e12800. [Google Scholar] [CrossRef] [PubMed]
- Cooper, D.K.C.; Cozzi, E. Clinical Pig Heart Xenotransplantation-Where Do We Go From Here? Transpl. Int. 2024, 37, 12592. [Google Scholar] [CrossRef]
- Koomalsingh, K.; Kobashigawa, J.A. The future of cardiac transplantation. Ann. Cardiothorac. Surg. 2018, 7, 135–142. [Google Scholar] [CrossRef]
- Yang, L.; Güell, M.; Niu, D.; George, H.; Lesha, E.; Grishin, D.; Aach, J.; Shrock, E.; Xu, W.; Poci, J.; et al. Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science 2015, 350, 1101–1104. [Google Scholar] [CrossRef]
- Ardehali, A.; Esmailian, F.; Deng, M.; Soltesz, E.; Hsich, E.; Naka, Y.; Mancini, D.; Camacho, M.; Zucker, M.; Leprince, P.; et al. Ex-vivo perfusion of donor hearts for human heart transplantation (PROCEED II): A prospective, open-label, multicentre, randomised non-inferiority trial. Lancet 2015, 385, 2577–2584. [Google Scholar] [CrossRef]
- Dhital, K.K.; Iyer, A.; Connellan, M.; Chew, H.C.; Gao, L.; Doyle, A.; Hicks, M.; Kumarasinghe, G.; Soto, C.; Dinale, A.; et al. Adult heart transplantation with distant procurement and ex-vivo preservation of donor hearts after circulatory death: A case series. Lancet 2015, 385, 2585–2591. [Google Scholar] [CrossRef]
- Messer, S.J.; Axell, R.G.; Colah, S.; White, P.A.; Ryan, M.; Page, A.A.; Parizkova, B.; Valchanov, K.; White, C.W.; Freed, D.H.; et al. Functional assessment and transplantation of the donor heart after circulatory death. J. Heart Lung Transplant. 2016, 35, 1443–1452. [Google Scholar] [CrossRef] [PubMed]
- Elezaby, A.; Dexheimer, R.; Sallam, K. Cardiovascular effects of immunosuppression agents. Front. Cardiovasc. Med. 2022, 9, 981838. [Google Scholar] [CrossRef] [PubMed]
- Pober, J.S.; Chih, S.; Kobashigawa, J.; Madsen, J.C.; Tellides, G. Cardiac allograft vasculopathy: Current review and future research directions. Cardiovasc. Res. 2021, 117, 2624–2638. [Google Scholar] [CrossRef] [PubMed]
- Dandel, M.; Hetzer, R. Impact of immunosuppressive drugs on the development of cardiac allograft vasculopathy. Curr. Vasc. Pharmacol. 2010, 8, 706–719. [Google Scholar] [CrossRef]
- Kampaktsis, P.N.; Doulamis, I.P.; Asleh, R.; Makri, E.; Kalamaras, I.; Papastergiopoulos, C.; Emfietzoglou, M.; Drosou, A.; Alnsasra, H.; Duque, E.R.; et al. Characteristics, Predictors, and Outcomes of Early mTOR Inhibitor Use After Heart Transplantation: Insights From the UNOS Database. J. Am. Heart Assoc. 2022, 11, e025507. [Google Scholar] [CrossRef]
- Kokko, K.E.; Newell, K.A.; Pearson, T.C.; Larsen, C.P. Enhanced immunosuppression induced by targeted mutation of cytotoxic T lymphocyte antigen 4-immunoglobulin. Curr. Opin. Organ Transplant. 2005, 10, 265–269. [Google Scholar] [CrossRef]
- Spitaleri, G.; Farrero Torres, M.; Sabatino, M.; Potena, L. The pharmaceutical management of cardiac allograft vasculopathy after heart transplantation. Expert Opin. Pharmacother. 2020, 21, 1367–1376. [Google Scholar] [CrossRef] [PubMed]
- Gormally, E.; Caboux, E.; Vineis, P.; Hainaut, P. Circulating free DNA in plasma or serum as biomarker of carcinogenesis: Practical aspects and biological significance. Mutat. Res. 2007, 635, 105–117. [Google Scholar] [CrossRef]
- Agbor-Enoh, S.; Shah, P.; Tunc, I.; Hsu, S.; Russell, S.; Feller, E.; Shah, K.; Rodrigo, M.E.; Najjar, S.S.; Kong, H.; et al. Cell-Free DNA to Detect Heart Allograft Acute Rejection. Circulation 2021, 143, 1184–1197. [Google Scholar] [CrossRef]
- Vejpongsa, P.; Torre-Amione, G.; Marcos-Abdala, H.G.; Kumar, S.; Youker, K.; Bhimaraj, A.; Nagueh, S.F. Long term development of diastolic dysfunction and heart failure with preserved left ventricular ejection fraction in heart transplant recipients. Sci. Rep. 2022, 12, 3834. [Google Scholar] [CrossRef]
- Wu, Y.L.; Ye, Q.; Ho, C. Cellular and Functional Imaging of Cardiac Transplant Rejection. Curr. Cardiovasc. Imaging Rep. 2011, 4, 50–62. [Google Scholar] [CrossRef] [PubMed]
- Steding-Ehrenborg, K.; Nelsson, A.; Hedström, E.; Engblom, H.; Ingvarsson, A.; Nilsson, J.; Braun, O.; Arheden, H. Diastolic Filling in Patients After Heart Transplantation Is Impaired Due to an Altered Geometrical Relationship Between the Left Atrium and Ventricle. J. Am. Heart Assoc. 2024, 13, e033672. [Google Scholar] [CrossRef]
- Mreyoud, H.; Walter, K.; Wilpula, E.; Park, J.M. The efficacy and safety of sodium-glucose cotransporter-2 inhibitors in solid organ transplant recipients: A scoping review. Pharmacotherapy 2024, 44, 444–466. [Google Scholar] [CrossRef] [PubMed]
- Raven, L.M.; Muir, C.A.; Kessler Iglesias, C.; Bart, N.K.; Muthiah, K.; Kotlyar, E.; Macdonald, P.; Hayward, C.S.; Jabbour, A.; Greenfield, J.R. Sodium glucose co-transporter 2 inhibition with empagliflozin on metabolic, cardiac and renal outcomes in recent cardiac transplant recipients (EMPA-HTx): Protocol for a randomised controlled trial. BMJ Open. 2023, 13, e069641. [Google Scholar] [CrossRef] [PubMed]
- Anker, S.D.; Butler, J.; Filippatos, G.; Ferreira, J.P.; Bocchi, E.; Böhm, M.; Brunner-La Rocca, H.P.; Choi, D.J.; Chopra, V.; Chuquiure-Valenzuela, E.; et al. Empagliflozin in Heart Failure with a Preserved Ejection Fraction. N. Engl. J. Med. 2021, 385, 1451–1461. [Google Scholar] [CrossRef]
- Solomon, S.D.; de Boer, R.A.; DeMets, D.; Hernandez, A.F.; Inzucchi, S.E.; Kosiborod, M.N.; Lam, C.S.P.; Martinez, F.; Shah, S.J.; Lindholm, D.; et al. Dapagliflozin in heart failure with preserved and mildly reduced ejection fraction: Rationale and design of the DELIVER trial. Eur. J. Heart Fail. 2021, 23, 1217–1225. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2023, 44, 3627–3639. [Google Scholar] [CrossRef]
- Kommu, S.; Berg, R.L. The Efficacy and Safety of Sacubitril/Valsartan Compared to Valsartan in Patients with Heart Failure and Mildly Reduced and Preserved Ejection Fractions: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Clin. Med. 2024, 13, 1572. [Google Scholar] [CrossRef]
- Basile, C.; Paolillo, S.; Gargiulo, P.; Marzano, F.; Asile, G.; Parlati, A.L.M.; Chirico, A.; Nardi, E.; Buonocore, D.; Colella, A.; et al. Sacubitril/valsartan reduces cardiac decompensation in heart failure with preserved ejection fraction: A meta-analysis. J. Cardiovasc. Med. 2023, 24, 44–51. [Google Scholar] [CrossRef]
- Pitt, B.; Pfeffer, M.A.; Assmann, S.F.; Boineau, R.; Anand, I.S.; Claggett, B.; Clausell, N.; Desai, A.S.; Diaz, R.; Fleg, J.L.; et al. Spironolactone for heart failure with preserved ejection fraction. N. Engl. J. Med. 2014, 370, 1383–1392. [Google Scholar] [CrossRef]
- Beldhuis, I.E.; Myhre, P.L.; Bristow, M.; Claggett, B.; Damman, K.; Fang, J.C.; Fleg, J.L.; McKinlay, S.; Lewis, E.F.; O’Meara, E.; et al. Spironolactone in Patients With Heart Failure, Preserved Ejection Fraction, and Worsening Renal Function. J. Am. Coll. Cardiol. 2021, 77, 1211–1221. [Google Scholar] [CrossRef] [PubMed]
- Tsujimoto, T.; Kajio, H. Spironolactone Use and Improved Outcomes in Patients With Heart Failure With Preserved Ejection Fraction With Resistant Hypertension. J. Am. Heart Assoc. 2020, 9, e018827. [Google Scholar] [CrossRef] [PubMed]
- Baba, D.F.; Suciu, H.; Avram, C.; Harpa, M.M.; Stoian, M.; Moldovan, D.A.; Huma, L.; Rusu, G.; Pal, T.; Danilesco, A.; et al. The Impact of Heart Failure Chronic Treatment Prior to Cardiac Transplantation on Early Outcomes. Medicina 2024, 60, 1801. [Google Scholar] [CrossRef]
- Hackshaw, A. Small studies: Strengths and limitations. Eur. Respir. J. 2008, 32, 1141–1143. [Google Scholar] [CrossRef] [PubMed]
Total (n = 36) | Spironolactone (n = 14) | Non-Spironolactone (n = 22) | p Value | |
---|---|---|---|---|
Daily dosage, mg (mean, SD) | 33.3 (12.2) | |||
Age, years (mean, SD/median, 25th–75th IQR) | 40,417 (13,561)/ 41,000 (39,000–47,341) | 39,214 (17,290)/ 41,000 (24,957–54,104) | 41,182 (10,949)/ 42,000 (39,000–47,047) | 0.678 * |
Females (n, %) | 3 (8.3) | 2 (14.3) | 1 (4.5) | 0.016 † |
BMI, kg/m2 (mean, SD/median, 25th–75th IQR) | 23,439 (4,574)/ 24,100 (22,661–25207) | 23,086 (4.988)/ 23,900 (19,085–25,800) | 23,664 (4.396)/ 24,100 (21,835–26,600) | 0.717 * |
BSA, m2 (mean, SD/median, 25th–75th IQR) | 1.849 (0.319)/ 1.935 (1.749–1.993) | 1.754 (0.381)/ 1.825 (1.604–1.982) | 1.910 (0.265)/ 1.975 (1.730–2.031) | 0.155 * |
Ischemic CM (n, %) | 8 (22.2) | 4 (28.6) | 4 (18.2) | 0.075 † |
Pre-T2DM (n, %) | 3 (8.3) | 3 (21.4) | 0 (0.0) | 0.061 † |
Pre-BBs (n, %) | 28 (77.8) | 10 (71.4) | 18 (81.8) | 0.904 † |
Pre-carvedilol (n, %) | 25 (69.4) | 9 (64.3) | 16 (72.7) | 0.560 † |
Pre-ACEIs (n, %) | 17 (47.2) | 8 (57.1) | 9 (40.9) | 0.589 † |
Pre-ramipril (n, %) | 12 (33.3) | 6 (42.9) | 6 (27.3) | 0.469 † |
Pre-MRAs (n, %) | 33 (91.7) | 14 (100.0) | 19 (86.4) | 0.003 † |
Pre-spironolactone (n, %) | 29 (80.6) | 13 (92.9) | 16 (72.7) | 0.469 † |
Duration of inotropes/vasopressors, days (mean, SD/median, 25th–75th IQR) | 6.806 (6.765) 4.500 (4.000–6.000) | 4.857 (4.036)/ 4.000 (3.000–5.104) | 8.045 (7.877)/ 5.000 (4.000–7.000) | 0.081 ** |
ICU stay, days (mean, SD/median, 25th–75th IQR) | 53,056 (68,201) 34,000 (30,659–39,341) | 35,286 (18,370)/ 32,500 (28,000–35,104) | 64,364 (84,847)/ 38,500 (30,953–42,935) | 0.163 ** |
Hospital stay, days (mean, SD/median, 25th–75th IQR) | 61,833 (71,952)/ 38,500 (34,000–46,411) | 41,286 (19,948)/ 37,000 (33,583–53,834) | 74,909 (89,003)/ 42,000 (33,906–64,093) | 0.236 ** |
2R/3R AGR (n, %) | 3 (8.3) | 1 (7.1) | 2 (9.1) | 0.084 † |
6-month mortality (n, %) | 4 (11.1) | 1 (7.1) | 3 (13.6) | 0.084 † |
2-year mortality (n, %) | 4 (11.1) | 1 (7.1) | 3 (13.6) | 0.084 † |
Spironolactone RR Value (95%CI) | NNT (95%CI) | p Value | |
---|---|---|---|
6-month AGR | 0.286 (0.074–1.101) | 2.800 (1.522–17.491) | 0.068 |
1-year AGR | 0.262 (0.069–0.999) | 2.484 (1.425–9.655) | 0.049 |
2-year AGR | 0.337 (0.118–0.964) | 2.369 (1.376–8.526) | 0.042 |
Early Spironolactone Usage | AGR Grade | Duration to First AGR (Months) | AGR Type |
---|---|---|---|
With spironolactone | 1R | 1 | ACR |
2R | 13 | ACR | |
1 | 2 | AMR | |
Without spironolactone | 1 | 1 | AMR |
1 | 18 | AMR | |
2 | 23 | AMR | |
1R | 2 | ACR | |
1 | 2 | AMR | |
1 | 3 | AMR | |
1R | 11 | ACR | |
1 | 2 | AMR | |
1R | 3 | ACR | |
1R | 1 | ACR | |
1R | 5 | ACR | |
1 | 1 | AMR | |
1R | 2 | ACR | |
3 | 2 | AMR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baba, D.-F.; Danilesco, A.; Suciu, H.; Avram, C.; Harpa, M.M.; Stoian, M.; Moldovan, D.-A.; Huma, L.; Rusu, G.; Pal, T.; et al. The Effect of Early Spironolactone Administration on 2-Year Acute Graft Rejection in Cardiac Transplant Patients. Biomedicines 2025, 13, 1164. https://doi.org/10.3390/biomedicines13051164
Baba D-F, Danilesco A, Suciu H, Avram C, Harpa MM, Stoian M, Moldovan D-A, Huma L, Rusu G, Pal T, et al. The Effect of Early Spironolactone Administration on 2-Year Acute Graft Rejection in Cardiac Transplant Patients. Biomedicines. 2025; 13(5):1164. https://doi.org/10.3390/biomedicines13051164
Chicago/Turabian StyleBaba, Dragos-Florin, Alina Danilesco, Horatiu Suciu, Calin Avram, Marius Mihai Harpa, Mircea Stoian, Diana-Andreea Moldovan, Laurentiu Huma, Gabriel Rusu, Tunde Pal, and et al. 2025. "The Effect of Early Spironolactone Administration on 2-Year Acute Graft Rejection in Cardiac Transplant Patients" Biomedicines 13, no. 5: 1164. https://doi.org/10.3390/biomedicines13051164
APA StyleBaba, D.-F., Danilesco, A., Suciu, H., Avram, C., Harpa, M. M., Stoian, M., Moldovan, D.-A., Huma, L., Rusu, G., Pal, T., Stoian, A., & Sin, A.-I. (2025). The Effect of Early Spironolactone Administration on 2-Year Acute Graft Rejection in Cardiac Transplant Patients. Biomedicines, 13(5), 1164. https://doi.org/10.3390/biomedicines13051164