Changes in Gingival Crevicular Fluid Endocan (ESM-1) Levels as a Potential Biomarker After Non-Surgical Periodontal Treatment in Periodontitis Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Inclusion and Exclusion Criteria
2.3. Periodontal Examination
2.4. GCF Collection
2.5. Periodontal Therapy
2.6. GCF ELISA Method for Endocan, TNF-α, and VEGF
2.7. Statistical Analysis
3. Results
3.1. Clinical Parameters
3.2. Biochemical Findings
3.3. Correlations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ESM-1 | Endothelial cell-specific molecule-1 |
GCF | Gingival crevicular fluid |
NSPT | Non-surgical periodontal therapy |
PMNL | Polymorphonuclear leukocytes |
TNF-α | Tumor necrosis factor-alpha |
VEGF | Vascular endothelial growth factor |
PI | Plaque index |
GI | Gingival index |
iCAL | Interproximal clinical attachment level |
BOP | Bleeding on probing |
PD | Probing depth |
CV | Coefficient of variation |
ICAM-1 | Intercellular adhesion molecule-1 |
LFA-1 | Lymphocyte-function-associated antigen-1 |
References
- Nascimento, G.G.; Alves-Costa, S.; Romandini, M. Burden of severe periodontitis and edentulism in 2021, with projections up to 2050: The Global Burden of Disease 2021 study. J. Periodontal. Res. 2024, 59, 823–867. [Google Scholar] [CrossRef] [PubMed]
- Freire, M.O.; Van Dyke, T.E. Natural resolution of inflammation. Periodontology 2013, 63, 149–164. [Google Scholar] [CrossRef] [PubMed]
- Del Fabbro, M.; Francetti, L.; Pizzoni, L.; Weinstein, R.L. Congenital neutrophil defects and periodontal diseases. Minerva Stomatol. 2000, 49, 293–311. [Google Scholar] [PubMed]
- Meyle, J.; Chapple, I. Molecular aspects of the pathogenesis of periodontitis. Periodontology 2015, 69, 7–17. [Google Scholar] [CrossRef]
- Bianchi, S.; Bernardi, S.; Simeone, D.; Torge, D.; Macchiarelli, G.; Marchetti, E. Proliferation and Morphological Assessment of Human Periodontal Ligament Fibroblast towards Bovine Pericardium Membranes: An In Vitro Study. Materials 2022, 15, 8284. [Google Scholar] [CrossRef]
- Barros, S.P.; Williams, R.; Offenbacher, S.; Morelli, T. Gingival crevicular fluid as a source of biomarkers for periodontitis. Periodontology 2016, 70, 53–64. [Google Scholar] [CrossRef]
- Boyce, B.F.; Li, P.; Yao, Z.; Zhang, Q.; Badell, I.R.; Schwarz, E.M.; O’Keefe, R.J.; Xing, L. TNF-alpha and pathologic bone resorption. Keio J. Med. 2005, 54, 127–131. [Google Scholar] [CrossRef]
- Kitaura, H.; Marahleh, A.; Ohori, F.; Noguchi, T.; Nara, Y.; Pramusita, A.; Kinjo, R.; Ma, J.; Kanou, K.; Mizoguchi, I. Role of the Interaction of Tumor Necrosis Factor-α and Tumor Necrosis Factor Receptors 1 and 2 in Bone-Related Cells. Int. J. Mol. Sci. 2022, 27, 1481. [Google Scholar] [CrossRef]
- Madureira, D.F.; Lucas De Abreu Lima, I.; Costa, G.C.; Lages, E.M.B.; Martins, C.C.; Aparecida Da Silva, T. Tumor Necrosis Factor-alpha in Gingival Crevicular Fluid as a Diagnostic Marker for Periodontal Diseases: A Systematic Review. J. Evid. Based Dent. Pract. 2018, 18, 315–331. [Google Scholar] [CrossRef]
- Güneri, P.; Unlü, F.; Yeşilbek, B.; Bayraktar, F.; Kokuludağ, A.; Hekimgil, M.; Boyacioğlu, H. Vascular endothelial growth factor in gingival tissues and crevicular fluids of diabetic and healthy periodontal patients. J. Periodontol. 2004, 75, 91–97. [Google Scholar] [CrossRef]
- Unlü, F.; Güneri, P.G.; Hekimgil, M.; Yeşilbek, B.; Boyacioğlu, H. Expression of vascular endothelial growth factor in human periodontal tissues: Comparison of healthy and diabetic patients. J. Periodontol. 2003, 74, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Shibuya, M. Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) Signaling in Angiogenesis: A Crucial Target for Anti- and Pro-Angiogenic Therapies. Genes Cancer 2011, 2, 1097–1105. [Google Scholar] [CrossRef] [PubMed]
- Kasprzak, A.; Surdacka, A.; Tomczak, M.; Przybyszewska, W.; Seraszek-Jaros, A.; Malkowska-Lanzafame, A.; Siodła, E.; Kaczmarek, E. Expression of angiogenesis-stimulating factors (VEGF, CD31, CD105) and angiogenetic index in gingivae of patients with chronic periodontitis. Folia Histochem. Cytobiol. 2012, 50, 554–564. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, R.C.; Costa, A.D.L.L.; Freitas, R.D.A.; Bezerra, B.A.D.A.; Santos, B.R.M.D.; Pinto, L.P.; Gurgel, B.C.D.V. Immunoexpression of HIF-1α and VEGF in Periodontal Disease and Healthy Gingival Tissues. Braz. Dent. J. 2016, 27, 117–122. [Google Scholar] [CrossRef]
- Lassalle, P.; Molet, S.; Janin, A.; Heyden, J.V.; Tavernier, J.; Fiers, W.; Devos, R.; Tonnel, A.B. ESM-1 is a novel human endothelial cell-specific molecule expressed in lung and regulated by cytokines. J. Biol. Chem. 1996, 23, 20458–20464. [Google Scholar] [CrossRef]
- Kulkarni, V.; Shetty, S.; Bhandary, R.; Mary, Y. In silico Analysis of Human Endothelial Cell-specific Molecule 1 and Interleukin-6 Genetic Variants Involved in Coronary Artery Disease. Biomed. Biotechnol. Res. J. 2024, 8, 422–427. [Google Scholar] [CrossRef]
- Sarrazin, S.; Adam, E.; Lyon, M.; Depontieu, F.; Motte, V.; Landolfi, C.; Lortat-Jacob, H.; Bechard, D.; Lassalle, P.; Delehedde, M. Endocan or endothelial cell specific molecule-1 (ESM-1): A potential novel endothelial cell marker and a new target for cancer therapy. Biochim. Biophys. Acta 2006, 1765, 25–37. [Google Scholar] [CrossRef]
- Roudnicky, F.; Poyet, C.; Wild, P.; Krampitz, S.; Negrini, F.; Huggenberger, R.; Rogler, A.; Stöhr, R.; Hartmann, A.; Provenzano, M.; et al. Endocan is upregulated on tumor vessels in invasive bladder cancer where it mediates VEGF-A-induced angiogenesis. Cancer Res. 2013, 73, 1097–1106. [Google Scholar] [CrossRef]
- Yilmaz, M.I.; Siriopol, D.; Saglam, M.; Kurt, Y.G.; Unal, H.U.; Eyileten, T.; Gok, M.; Cetinkaya, H.; Oguz, Y.; Sari, S.; et al. Plasma endocan levels associate with inflammation, vascular abnormalities, cardiovascular events, and survival in chronic kidney disease. Kidney Int. 2014, 86, 1213–1220. [Google Scholar] [CrossRef]
- Scuruchi, M.; Aliquò, F.; Avenoso, A.; Mandraffino, G.; Vermiglio, G.; Minuti, A.; Campo, S.; Campo, G.M.; D’Ascola, A. Endocan Knockdown Down-Regulates the Expression of Angiogenesis-Associated Genes in Il-1ß Activated Chondrocytes. Biomolecules 2023, 13, 851. [Google Scholar] [CrossRef]
- Rennel, E.; Mellberg, S.; Dimberg, A.; Petersson, L.; Botling, J.; Ameur, A.; Westholm, J.O.; Komorowski, J.; Lassalle, P.; Cross, M.J.; et al. Endocan is a VEGF-A and PI3K regulated gene with increased expression in human renal cancer. Exp. Cell Res. 2007, 313, 1285–1294. [Google Scholar] [CrossRef] [PubMed]
- Yazici, S.E.; Gedik, M.E.; Leblebici, C.B.; Kosemehmetoglu, K.; Gunaydin, G.; Dogrul, A.B. Can endocan serve as a molecular “hepatostat” in liver regeneration? Mol. Med. 2023, 29, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Lo Gullo, A.; Mandraffino, G.; Rodríguez-Carrio, J.; Scuruchi, M.; Sinicropi, D.; Postorino, M.; Morace, C.; Giuffrida, C.; Sciortino, D.; Gallizzi, R.; et al. Endocan and Circulating Progenitor Cells in Women with Systemic Sclerosis: Association with Inflammation and Pulmonary Hypertension. Biomedicines 2021, 9, 533. [Google Scholar] [CrossRef] [PubMed]
- Scuruchi, M.; D’Ascola, A.; Avenoso, A.; Mandraffino, G.; Campo, S.; Campo, G.M. Endocan, a novel inflammatory marker, is upregulated in human chondrocytes stimulated with IL-1 beta. Mol. Cell. Biochem. 2021, 476, 1589–1597. [Google Scholar] [CrossRef]
- Liu, S.; Bai, T.; Feng, J. Endocan, a novel glycoprotein with multiple biological activities, may play important roles in neurological diseases. Front. Aging Neurosci. 2024, 16, 1438367. [Google Scholar] [CrossRef]
- Kumar, S.K.; Mani, K.P. Proinflammatory signaling mechanism of endocan in macrophages: Involvement of TLR2 mediated MAPK-NFkB pathways. Cytokine 2023, 175, 156482. [Google Scholar] [CrossRef]
- Tayman, M.A.; Önder, C.; Kurgan, Ş.; Serdar, M.A.; Günhan, M. Endocan (ESM-1) levels in gingival crevicular fluid correlate with ICAM-1 and LFA-1 in periodontitis. Braz. Oral Res. 2020, 35, e005. [Google Scholar] [CrossRef]
- Löe, H.; Silness, J. Periodontal Disease in Pregnancy. I. Prevalence and Severity. Acta Odontol. Scand. 1963, 21, 533–551. [Google Scholar] [CrossRef]
- Silness, J.; Löe, H. Periodontal Disease in Pregnancy. II. Correlation Between Oral Hygiene and Periodontal Condtion. Acta Odontol. Scand. 1964, 22, 121–135. [Google Scholar] [CrossRef]
- Ainamo, J.; Bay, I. Problems and proposals for recording gingivitis and plaque. Int. Dent. J. 1975, 25, 229–235. [Google Scholar]
- Papapanou, P.N.; Sanz, M.; Buduneli, N.; Dietrich, T.; Feres, M.; Fine, D.H.; Flemmig, T.F.; Garcia, R.; Giannobile, W.V.; Graziani, F.; et al. Periodontitis: Consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Clin. Periodontol. 2018, 45 (Suppl. 20), 162–170. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, F.; Bieling, K.; Latz, T.; Nuesry, E.; Becker, J. Healing of intrabony peri-implantitis defects following application of a nanocrystalline hydroxyapatite (Ostim) or a bovine-derived xenograft (Bio-Oss) in combination with a collagen membrane (Bio-Gide). A case series. J. Clin. Periodontol. 2006, 33, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Koo, T.K.; Li, M.Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Griffiths, G.S. Formation, collection and significance of gingival crevice fluid. Periodontology 2003, 31, 32–42. [Google Scholar] [CrossRef]
- Cobb, C.M. Clinical significance of non-surgical periodontal therapy: An evidence-based perspective of scaling and root planing. J. Clin. Periodontol. 2002, 29, 22–32. [Google Scholar] [CrossRef]
- Basim, P.; Argun, D. A Comparison of the Circulating Endocan Levels between the Inflammatory and Malignant Diseases of the Same Organ: The Breast. J. Investig. Surg. 2021, 34, 1207–1213. [Google Scholar] [CrossRef]
- Buduneli, N.; Kinane, D.F. Host-derived diagnostic markers related to soft tissue destruction and bone degradation in periodontitis. J. Clin. Periodontol. 2011, 38 (Suppl. 11), 85–105. [Google Scholar] [CrossRef]
- Lin, S.J.; Chen, Y.L.; Kuo, M.Y.; Li, C.L.; Lu, H.K. Measurement of gp130 cytokines oncostatin M and IL-6 in gingival crevicular fluid of patients with chronic periodontitis. Cytokine 2005, 30, 160–167. [Google Scholar] [CrossRef]
- Lamster, I.B.; Oshrain, R.L.; Fiorello, L.A.; Celenti, R.S.; Gordon, J.M. A comparison of 4 methods of data presentation for lysosomal enzyme activity in gingival crevicular fluid. J. Clin. Periodontol. 1988, 15, 347–352. [Google Scholar] [CrossRef]
- Pradeep, A.R.; Prapulla, D.V.; Sharma, A.; Sujatha, P.B. Gingival crevicular fluid and serum vascular endothelial growth factor: Their relationship in periodontal health, disease and after treatment. Cytokine 2011, 54, 200–204. [Google Scholar] [CrossRef]
- Pannicker, J.J.; Mehta, D.S. Effects of scaling and root planing on gingival crevicular fluid vascular endothelial growth factor level in chronic periodontitis patients with and without diabetes mellitus: A clinicobiochemical study. J. Indian Soc. Periodontol. 2016, 20, 244–248. [Google Scholar] [CrossRef] [PubMed]
- Afacan, B.; Öztürk, V.Ö.; Paşalı, Ç.; Bozkurt, E.; Köse, T.; Emingil, G. Gingival crevicular fluid and salivary HIF-1α, VEGF, and TNF-α levels in periodontal health and disease. J. Periodontol. 2019, 90, 788–797. [Google Scholar] [CrossRef] [PubMed]
- Gündoğar, H.; Üstün, K.; Şenyurt, S.Z.; Özdemir, E.Ç.; Sezer, U.; Erciyas, K. Gingival crevicular fluid levels of cytokine, chemokine, and growth factors in patients with periodontitis or gingivitis and periodontally healthy subjects: A cross-sectional multiplex study. Cent. Eur. J. Immunol. 2021, 46, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Chapple, C.C.; Kumar, R.K.; Hunter, N. Vascular remodelling in chronic inflammatory periodontal disease. J. Oral Pathol. Med. 2000, 29, 500–506. [Google Scholar] [CrossRef]
- Afacan, B.; Keleş Yücel, Z.P.; Paşali, Ç.; Atmaca İlhan, H.; Köse, T.; Emingil, G. Effect of non-surgical periodontal treatment on gingival crevicular fluid hypoxia inducible factor-1 alpha, vascular endothelial growth factor and tumor necrosis factor-alpha levels in generalized aggressive periodontitis patients. J. Periodontol. 2020, 91, 1495–1502. [Google Scholar] [CrossRef]
- Keles, G.C.; Cetinkaya, B.O.; Eroglu, C.; Simsek, S.B.; Kahraman, H. Vascular endothelial growth factor expression levels of gingiva in gingivitis and periodontitis patients with/without diabetes mellitus. Inflamm. Res. 2010, 59, 543–549. [Google Scholar] [CrossRef]
- Cetinkaya, B.O.; Keles, G.C.; Ayas, B.; Sakallioglu, E.E.; Acikgoz, G. The expression of vascular endothelial growth factor in a rat model at destruction and healing stages of periodontal disease. J. Periodontol. 2007, 78, 1129–1135. [Google Scholar] [CrossRef]
- Van Dyke, T.E.; Lester, M.A.; Shapira, L. The role of the host response in periodontal disease progression: Implications for future treatment strategies. J. Periodontol. 1993, 64 (Suppl. 8), 792–806. [Google Scholar] [CrossRef]
- Türer, Ç.C.; Durmuş, D.; Balli, U.; Güven, B. Effect of Non-Surgical Periodontal Treatment on Gingival Crevicular Fluid and Serum Endocan, Vascular Endothelial Growth Factor-A, and Tumor Necrosis Factor-Alpha Levels. J. Periodontol. 2017, 88, 493–501. [Google Scholar] [CrossRef]
- Kumar, G.; Ponnaiyan, D.; Parthasarathy, H.; Tadepalli, A.; Veeramani, S. Evaluation of Endocan and Tumor Necrosis Factor-α as Inflammatory Biomarkers in Type 2 Diabetes and Periodontal Disease. Genet. Test. Mol. Biomark. 2020, 24, 431–435. [Google Scholar] [CrossRef]
Group 1 (Control) (n = 26) | Group 2 (Periodontitis) (n = 27) | ||
---|---|---|---|
Age (mean ± SD) | 41.5 ± 7.5 | 45.5 ± 9.0 | |
Sex | Male | 13 (50%) | 15 (55.6%) |
Female | 13 (50%) | 12 (44.4%) |
Group 1 (C) | Group 2 (Before Treatment; BT) | Group 2 (After Treatment; AT) | p-Value | |
---|---|---|---|---|
PI | 0.73 ± 0.45 | 2.55 ± 0.64 | 0.85 ± 0.60 | <0.05 (BT-AT, BT-C) |
GI | 0.69 ± 0.47 | 2.44 ± 0.57 | 0.88 ± 0.64 | <0.05 (BT-AT, BT-C) |
PD (mm) | 2.26 ± 0.66 | 5.77 ± 1.01 | 3.70 ± 1.10 | <0.05 (BT-AT, BT-C, AT-C) |
BOP (%) | 0.00 ± 0.00 | 73.33 ± 8.77 | 10.55 ± 4.87 | <0.05 (BT-AT, BT-C, AT-C) |
iCAL (mm) | 2.26 ± 0.66 | 6.29 ± 1.48 | 4.22 ± 1.50 | <0.05 (BT-AT, BT-C, AT-C) |
Parameter | Group 1 (Control) | Group 2 (Before Treatment; BT) | Group 2 (After Treatment; AT) |
---|---|---|---|
ESM-1 (ng/30 sn) | 1686.22 ± 199.20 | 1706.71 ± 195.65 | 1541.27 ± 178.62 |
TNF-α (ng/30 sn) | 209.09 ± 17.16 | 236.51 ± 22.00 | 188.77 ± 17.36 |
VEGF-A (ng/30 sn) | 1601.06 ± 169.25 | 1695.76 ± 184.00 | 1424.70 ± 172.47 |
t | df | p-Value | ||
---|---|---|---|---|
ESM-1 | Group 2 (BT)-Group 2 (AT) | 3.55 | 26 | 0.001 * |
Group 1-Group 2 (AT) | 2.791 | 51 | 0.007 * | |
Group 1-Group 2 (BT) | −0.378 | 51 | 0.707 | |
TNF-α | Group 2 (BT)-Group 2 (AT) | 43.798 | 26 | 0.000 * |
Group 1-Group 2 (AT) | 8.787 | 51 | 0.000 * | |
Group 1-Group 2 (BT) | 5.069 | 51 | 0.000 * | |
VEGF-A | Group 1-Group 2 (BT) | 1.951 | 51 | 0.057 |
z | p | ||
---|---|---|---|
VEGF-A | Group 1-Group 2 (AT) | −4.715 | 0.000 * |
Group 2 (BT)-Group 2 (AT) | 3.027 | 0.002 |
Group 1 (Control) | Group 2 (Before Treatment; BT) | Group 2 (After Treatment; AT) | ||||
---|---|---|---|---|---|---|
Parameter | r | p | r | p | r | p |
ESM-1 to GI | 0.144 | 0.481 | −0.079 | 0.696 | 0.061 | 0.761 |
ESM-1 to PPD | 0.118 | 0.565 | −0.008 | 0.968 | 0.026 | 0.899 |
ESM-1 to iCAL | 0.118 | 0.565 | 0.038 | 0.851 | −0.064 | 0.753 |
VEGF-A to GI | 0.111 | 0.589 | −0.446 * | 0.020 * | 0.105 | 0.601 |
VEGF-A to PPD | 0.208 | 0.307 | −0.023 | 0.909 | 0.277 | 0.161 |
VEGF-A to iCAL | 0.208 | 0.307 | 0.075 | 0.709 | 0.133 | 0.509 |
TNF-α to GI | −0.033 | 0.872 | 0.029 | 0.886 | 0.159 | 0.429 |
TNF-α to PPD | 0.414 * | 0.035 * | 0.067 | 0.740 | 0.032 | 0.874 |
TNF-α to iCAL | 0.414 * | 0.035 * | 0.074 | 0.712 | 0.096 | 0.635 |
ESM-1 to VEGF-A | 0.491 * | 0.011 * | 0.247 | 0.215 | 0.599 * | 0.001 * |
ESM-1 to TNF-α | 0.529 * | 0.005 * | 0.262 | 0.187 | 0.593 * | 0.001 * |
VEGF-A to TNF-α | 0.399 * | 0.043 * | 0.298 | 0.131 | 0.417 * | 0.030 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karci, B.; Sokmen, K. Changes in Gingival Crevicular Fluid Endocan (ESM-1) Levels as a Potential Biomarker After Non-Surgical Periodontal Treatment in Periodontitis Patients. Biomedicines 2025, 13, 1159. https://doi.org/10.3390/biomedicines13051159
Karci B, Sokmen K. Changes in Gingival Crevicular Fluid Endocan (ESM-1) Levels as a Potential Biomarker After Non-Surgical Periodontal Treatment in Periodontitis Patients. Biomedicines. 2025; 13(5):1159. https://doi.org/10.3390/biomedicines13051159
Chicago/Turabian StyleKarci, Bilge, and Kevser Sokmen. 2025. "Changes in Gingival Crevicular Fluid Endocan (ESM-1) Levels as a Potential Biomarker After Non-Surgical Periodontal Treatment in Periodontitis Patients" Biomedicines 13, no. 5: 1159. https://doi.org/10.3390/biomedicines13051159
APA StyleKarci, B., & Sokmen, K. (2025). Changes in Gingival Crevicular Fluid Endocan (ESM-1) Levels as a Potential Biomarker After Non-Surgical Periodontal Treatment in Periodontitis Patients. Biomedicines, 13(5), 1159. https://doi.org/10.3390/biomedicines13051159