GLP-1R Agonists and Their Therapeutic Potential in Inflammatory Bowel Disease and Other Immune-Mediated Inflammatory Diseases, a Systematic Review of the Literature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Selection Criteria
2.3. Data Extraction and Assessment of Study Quality
3. Results
3.1. Evidence from Animal Studies on the Impact of GLP-1 RAs on Intestinal Inflammation in Experimental Colitis
3.1.1. Effect on Anti-Inflammatory Cell Signalling and Cytokine Expression
3.1.2. Effect on Gut Microbial Homeostasis
3.1.3. Effect on Gut Barrier Function
3.1.4. Effect on Oxidative Stress
3.1.5. Other Effects
3.2. Evidence from Human Clinical Studies on the Effects of GLP-1 RAs in Modulating IBD Outcomes
3.3. Evidence from Human In Vitro and Clinical Studies on the Effect of GLP-1 RAs on Disease Activity in Non-IBD Immune-Mediated Inflammatory Diseases (IMIDs)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
IBD | Inflammatory Bowel Disease |
CD | Crohn’s Disease |
UC | Ulcerative colitis |
PsO | Psoriasis |
GLP-1 | Glucagon-like peptide-1 |
GLP-1RA | Glucagon-like peptide-1 receptor agonist |
IMID | Immune Mediated Inflammatory Disease |
cAMP | cyclic adenosine monophosphate |
IEL | intra epithelial lymphocytes |
CSMCs | colon smooth muscle cells |
ILC3 | Group 2 innate lymphoid cells |
PKA | protein kinase A |
NFκB | Nuclear factor kappa beta |
DSS | Dextran Sodium sulphate |
Ex-4 | Exendin-4 |
RT-qPCR | Real time quantitative (reverse transcriptase) polymerase chain reaction |
CRP | C-reactive protein |
LDH | lactate dehydrogenase |
LPS | lipopolysaccharide |
CREB | cAMP response element binding protein |
TCR | T cell receptor |
AdTr | adoptive transfer |
DMS | N, N-dimethyl sphingosine |
S1P | sphingosine-1-phosphate |
LTβR | Lymphotoxin beta receptor |
ELISA | enzyme linked immunosorbent assay |
ClpB | Caseinolytic protease B |
SNS | suppresses sympathetic nervous system |
NE | norepinephrine |
BT | bacterial translocation |
TAC | total antioxidant capacity |
SOD | superoxide dismutase |
GSH | glutathione |
MDA | malondialdehyde |
T2DM | Type 2 Diabetes Mellitus |
AOMs | anti-obesity medications |
aOR | adjusted odds ratio |
RA | rheumatoid arthritis |
FLS | fibroblast-like synoviocytes |
BMI | Body Mass Index |
PsA | Psoriatic Arthritis |
RCT | randomized controlled trial |
PASI | Psoriasis Area Severity Index |
DLQI | Dermatology Life Quality Index |
iNKT cells | invariant natural killer T cells |
References
- Chang, J.T. Pathophysiology of Inflammatory Bowel Diseases. N. Engl. J. Med. 2020, 383, 2652–2664. [Google Scholar] [CrossRef] [PubMed]
- GBD 2017 Inflammatory Bowel Disease Collaborators. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 2020, 5, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Dulai, P.S.; Zarrinpar, A.; Ramamoorthy, S.; Sandborn, W.J. Obesity in IBD: Epidemiology, pathogenesis, disease course and treatment outcomes. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Holt, D.Q.; Moore, G.T.; Strauss, B.J.; Hamilton, A.L.; De Cruz, P.; Kamm, M.A. Visceral adiposity predicts post-operative Crohn’s disease recurrence. Aliment. Pharmacol. Ther. 2017, 45, 1255–1264. [Google Scholar] [CrossRef]
- Kurnool, S.; Nguyen, N.H.; Proudfoot, J.; Dulai, P.S.; Boland, B.S.; Vande Casteele, N.; Evans, E.; Grunvald, E.L.; Zarrinpar, A.; Sandborn, W.J.; et al. High body mass index is associated with increased risk of treatment failure and surgery in biologic-treated patients with ulcerative colitis. Aliment. Pharmacol. Ther. 2018, 47, 1472–1479. [Google Scholar] [CrossRef]
- Stidham, R.W.; Waljee, A.K.; Day, N.M.; Bergmans, C.L.; Zahn, K.M.; Higgins, P.D.; Wang, S.C.; Su, G.L. Body fat composition assessment using analytic morphomics predicts infectious complications after bowel resection in Crohn’s disease. Inflamm. Bowel Dis. 2015, 21, 1306–1313. [Google Scholar] [CrossRef]
- Bryant, R.V.; Schultz, C.G.; Ooi, S.; Goess, C.; Costello, S.P.; Vincent, A.D.; Schoeman, S.; Lim, A.; Bartholomeusz, F.D.; Travis, S.P.L.; et al. Visceral Adipose Tissue Is Associated with Stricturing Crohn’s Disease Behavior, Fecal Calprotectin, and Quality of Life. Inflamm. Bowel Dis. 2019, 25, 592–600. [Google Scholar] [CrossRef]
- Tan, Z.; Chin, A.; Welman, C.J.; Thin, L. A High Visceral-to-Skeletal Muscle Area Ratio on Cross-Sectional Imaging Is Associated with Failure of Standard Ustekinumab Doses: A Multicenter Study. Clin. Transl. Gastroenterol. 2024, 15, e00722. [Google Scholar] [CrossRef]
- Lim, Z.; Welman, C.J.; Raymond, W.; Thin, L. The Effect of Adiposity on Anti-Tumor Necrosis Factor-Alpha Levels and Loss of Response in Crohn’s Disease Patients. Clin. Transl. Gastroenterol. 2020, 11, e00233. [Google Scholar] [CrossRef]
- Yarur, A.J.; Abreu, M.T.; Deepak, P.; Beniwal-Patel, P.; Papamichael, K.; Vaughn, B.; Bruss, A.; Sekhri, S.; Moosreiner, A.; Gu, P.; et al. Patients with Inflammatory Bowel Diseases and Higher Visceral Adipose Tissue Burden May Benefit from Higher Infliximab Concentrations to Achieve Remission. Am. J. Gastroenterol. 2023, 118, 2005–2013. [Google Scholar] [CrossRef]
- Yarur, A.J.; Bruss, A.; Moosreiner, A.; Beniwal-Patel, P.; Nunez, L.; Berens, B.; Colombel, J.F.; Targan, S.R.; Fox, C.; Melmed, G.Y.; et al. Higher Intra-Abdominal Visceral Adipose Tissue Mass Is Associated with Lower Rates of Clinical and Endoscopic Remission in Patients with Inflammatory Bowel Diseases Initiating Biologic Therapy: Results of the Constellation Study. Gastroenterology 2023, 165, 963–975.e5. [Google Scholar] [CrossRef] [PubMed]
- Upala, S.; Sanguankeo, A. Effect of lifestyle weight loss intervention on disease severity in patients with psoriasis: A systematic review and meta-analysis. Int. J. Obes. 2015, 39, 1197–1202. [Google Scholar] [CrossRef] [PubMed]
- Romero-Talamas, H.; Aminian, A.; Corcelles, R.; Fernandez, A.P.; Schauer, P.R.; Brethauer, S. Psoriasis improvement after bariatric surgery. Surg. Obes. Relat. Dis. 2014, 10, 1155–1159. [Google Scholar] [CrossRef]
- Graaf, C.; Donnelly, D.; Wootten, D.; Lau, J.; Sexton, P.M.; Miller, L.J.; Ahn, J.M.; Liao, J.; Fletcher, M.M.; Yang, D.; et al. Glucagon-Like Peptide-1 and Its Class B G Protein-Coupled Receptors: A Long March to Therapeutic Successes. Pharmacol. Rev. 2016, 68, 954–1013. [Google Scholar] [CrossRef] [PubMed]
- Arvanitakis, K.; Koufakis, T.; Popovic, D.; Maltese, G.; Mustafa, O.; Doumas, M.; Giouleme, O.; Kotsa, K.; Germanidis, G. GLP-1 Receptor Agonists in Obese Patients with Inflammatory Bowel Disease: From Molecular Mechanisms to Clinical Considerations and Practical Recommendations for Safe and Effective Use. Curr. Obes. Rep. 2023, 12, 61–74. [Google Scholar] [CrossRef]
- Alharbi, S.H. Anti-inflammatory role of glucagon-like peptide 1 receptor agonists and its clinical implications. Ther. Adv. Endocrinol. Metab. 2024, 15, 20420188231222367. [Google Scholar] [CrossRef]
- Prisma Executive. 2020. Available online: https://www.prisma-statement.org/ (accessed on 1 February 2025).
- Institute JBI. Available online: https://jbi.global/about-jbi (accessed on 1 March 2025).
- Sun, H.; Shu, J.; Tang, J.; Li, Y.; Qiu, J.; Ding, Z.; Xuan, B.; Chen, M.; Gan, C.; Lin, J.; et al. GLP-1 receptor agonists alleviate colonic inflammation by modulating intestinal microbiota and the function of group 3 innate lymphoid cells. Immunology 2024, 172, 451–468. [Google Scholar] [CrossRef]
- Yusta, B.; Baggio, L.L.; Koehler, J.; Holland, D.; Cao, X.; Pinnell, L.J.; Johnson-Henry, K.C.; Yeung, W.; Surette, M.G.; Bang, K.W.; et al. GLP-1R Agonists Modulate Enteric Immune Responses Through the Intestinal Intraepithelial Lymphocyte GLP-1R. Diabetes 2015, 64, 2537–2549. [Google Scholar] [CrossRef]
- Mahdy, R.N.E.; Nader, M.A.; Helal, M.G.; Abu-Risha, S.E.; Abdelmageed, M.E. Protective effect of Dulaglutide, a GLP1 agonist, on acetic acid-induced ulcerative colitis in rats: Involvement of GLP-1, TFF-3, and TGF-β/PI3K/NF-κB signaling pathway. Naunyn Schmiedebergs Arch. Pharmacol. 2024, 398, 5611–5628. [Google Scholar] [CrossRef]
- Anbazhagan, A.N.; Thaqi, M.; Priyamvada, S.; Jayawardena, D.; Kumar, A.; Gujral, T.; Chatterjee, I.; Mugarza, E.; Saksena, S.; Onyuksel, H.; et al. GLP-1 nanomedicine alleviates gut inflammation. Nanomedicine 2017, 13, 659–665. [Google Scholar] [CrossRef]
- Bang-Berthelsen, C.H.; Holm, T.L.; Pyke, C.; Simonsen, L.; Søkilde, R.; Pociot, F.; Heller, R.S.; Folkersen, L.; Kvist, P.H.; Jackerott, M.; et al. GLP-1 Induces Barrier Protective Expression in Brunner’s Glands and Regulates Colonic Inflammation. Inflamm. Bowel Dis. 2016, 22, 2078–2097. [Google Scholar] [CrossRef] [PubMed]
- Al-Dwairi, A.; Alqudah, T.E.; Al-Shboul, O.; Alqudah, M.; Mustafa, A.G.; Alfaqih, M.A. Glucagon-like peptide-1 exerts anti-inflammatory effects on mouse colon smooth muscle cells through the cyclic adenosine monophosphate/nuclear factor-κB pathway in vitro. J. Inflamm. Res. 2018, 11, 95–109. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.K.; Yusta, B.; Koehler, J.A.; Baggio, L.L.; McLean, B.A.; Matthews, D.; Seeley, R.J.; Drucker, D.J. Divergent roles for the gut intraepithelial lymphocyte GLP-1R in control of metabolism, microbiota, and T cell-induced inflammation. Cell Metab. 2022, 34, 1514–1531.e7. [Google Scholar] [CrossRef] [PubMed]
- Kato, S.; Sato, T.; Fujita, H.; Kawatani, M.; Yamada, Y. Effects of GLP-1 receptor agonist on changes in the gut bacterium and the underlying mechanisms. Sci. Rep. 2021, 11, 9167. [Google Scholar] [CrossRef]
- Biagioli, M.; Marchianò, S.; Roselli, R.; Di Giorgio, C.; Bellini, R.; Bordoni, M.; Distrutti, E.; Catalanotti, B.; Zampella, A.; Graziosi, L.; et al. GLP-1 Mediates Regulation of Colonic ACE2 Expression by the Bile Acid Receptor GPBAR1 in Inflammation. Cells 2022, 11, 1187. [Google Scholar] [CrossRef]
- Villumsen, M.; Schelde, A.B.; Jimenez-Solem, E.; Jess, T.; Allin, K.H. GLP-1 based therapies and disease course of inflammatory bowel disease. EClinicalMedicine 2021, 37, 100979. [Google Scholar] [CrossRef]
- Desai, A.; Khataniar, H.; Hashash, J.G.; Farraye, F.A.; Regueiro, M.; Kochhar, G.S. Effectiveness and Safety of Semaglutide for Weight Loss in Patients with Inflammatory Bowel Disease and Obesity. Inflamm. Bowel Dis. 2024, 31, 696–705. [Google Scholar] [CrossRef]
- Desai, A.; Petrov, J.; Hashash, J.G.; Patel, H.; Brahmbhatt, B.; Kochhar, G.S.; Farraye, F.A. Use of glucagon-like peptide-1 receptor agonists for type 2 diabetes mellitus and outcomes of inflammatory bowel disease. Aliment. Pharmacol. Ther. 2024, 60, 620–632. [Google Scholar] [CrossRef]
- St-Pierre, J.; Klein, J.; Choi, N.K.; Fear, E.; Pannain, S.; Rubin, D.T. Efficacy and Safety of GLP-1 Agonists on Metabolic Parameters in Non-diabetic Patients with Inflammatory Bowel Disease. Dig. Dis. Sci. 2024, 69, 4437–4445. [Google Scholar] [CrossRef]
- Gorelik, Y.; Ghersin, I.; Lujan, R.; Shlon, D.; Loewenberg Weisband, Y.; Ben-Tov, A.; Matz, E.; Zacay, G.; Dotan, I.; Turner, D.; et al. GLP-1 analog use is associated with improved disease course in inflammatory bowel disease: A report from the Epi-IIRN. J. Crohns Colitis 2024, 19, jjae160. [Google Scholar] [CrossRef]
- Nielsen, J.; Friedman, S.; Nørgård, B.M.; Knudsen, T.; Kjeldsen, J.; Wod, M. Glucagon-Like Peptide 1 Receptor Agonists Are Not Associated with an Increased Risk of Ileus or Intestinal Obstruction in Patients with Inflammatory Bowel Disease-A Danish Nationwide Cohort Study. Inflamm. Bowel Dis. 2024, izae276. [Google Scholar] [CrossRef] [PubMed]
- Ramos Belinchón, C.; Martínez-Lozano, H.; Serrano Moreno, C.; Hernández Castillo, D.; Lois Chicharro, P.; Ferreira Ocampo, P.; Marín-Jiménez, I.; Bretón Lesmes, I.; Menchén, L. Effectiveness and safety of a GLP-1 agonist in obese patients with inflammatory bowel disease. Rev. Esp. Enferm. Dig. 2024, 116, 478–483. [Google Scholar] [CrossRef] [PubMed]
- Anderson, S.R.; Ayoub, M.; Coats, S.; McHenry, S.; Tan, T.; Deepak, P. Safety and Effectiveness of Glucagon-like Peptide-1 Receptor Agonists in Inflammatory Bowel Disease. Am. J. Gastroenterol. 2024, 10, 14309. [Google Scholar] [CrossRef] [PubMed]
- Levine, I.; Sekhri, S.; Schreiber-Stainthorp, W.; Locke, B.; Delau, O.; Elhawary, M.; Pandit, K.; Meng, X.; Axelrad, J. GLP-1 Receptor Agonists Confer No Increased Rates of IBD Exacerbation Among Patients with IBD. Inflamm. Bowel Dis. 2024, 31, 467–475. [Google Scholar] [CrossRef]
- Pham, J.T.; Ghusn, W.; Acosta, A.; Loftus, E.V., Jr.; Johnson, A.M. Effectiveness and Safety of Antiobesity Medications in Patients with Obesity and Inflammatory Bowel Disease. Am. J. Gastroenterol. 2023, 119, 1197–1200. [Google Scholar] [CrossRef]
- Faurschou, A.; Pedersen, J.; Gyldenlove, M.; Poulsen, S.S.; Holst, J.J.; Thyssen, J.P.; Zachariae, C.; Vilsboll, T.; Skov, L.; Knop, F.K. Increased expression of glucagon-like peptide-1 receptors in psoriasis plaques. Exp. Dermatol. 2013, 22, 150–152. [Google Scholar] [CrossRef]
- Tao, Y.; Ge, G.; Wang, Q.; Wang, W.; Zhang, W.; Bai, J.; Lin, J.; Shen, J.; Guo, X.; Xu, Y.; et al. Exenatide ameliorates inflammatory response in human rheumatoid arthritis fibroblast-like synoviocytes. IUBMB Life 2019, 71, 969–977. [Google Scholar] [CrossRef]
- Du, X.; Zhang, H.; Zhang, W.; Wang, Q.; Wang, W.; Ge, G.; Bai, J.; Guo, X.; Zhang, Y.; Jiang, X.; et al. The protective effects of lixisenatide against inflammatory response in human rheumatoid arthritis fibroblast-like synoviocytes. Int. Immunopharmacol. 2019, 75, 105732. [Google Scholar] [CrossRef]
- Nicolau, J.; Nadal, A.; Sanchis, P.; Pujol, A.; Nadal, C.; Masmiquel, L. Effects of liraglutide among patients living with psoriasis and obesity. Med. Clin. 2023, 161, 293–296. [Google Scholar] [CrossRef]
- Lin, L.; Xu, X.; Yu, Y.; Ye, H.; He, X.; Chen, S.; Chen, X.; Shao, Z.; Chen, P. Glucagon-like peptide-1 receptor agonist liraglutide therapy for psoriasis patients with type 2 diabetes: A randomized-controlled trial. J. Dermatol. Treat. 2022, 33, 1428–1434. [Google Scholar] [CrossRef]
- Ahern, T.; Tobin, A.M.; Corrigan, M.; Hogan, A.; Sweeney, C.; Kirby, B.; O’Shea, D. Glucagon-like peptide-1 analogue therapy for psoriasis patients with obesity and type 2 diabetes: A prospective cohort study. J. Eur. Acad. Dermatol. Venereol. 2013, 27, 1440–1443. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Lin, L.; Chen, P.; Yu, Y.; Chen, S.; Chen, X.; Shao, Z. Treatment with liraglutide, a glucagon-like peptide-1 analogue, improves effectively the skin lesions of psoriasis patients with type 2 diabetes: A prospective cohort study. Diabetes Res. Clin. Pract. 2019, 150, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Buysschaert, M.; Baeck, M.; Preumont, V.; Marot, L.; Hendrickx, E.; Van Belle, A.; Dumoutier, L. Improvement of psoriasis during glucagon-like peptide-1 analogue therapy in type 2 diabetes is associated with decreasing dermal gammadelta T-cell number: A prospective case-series study. Br. J. Dermatol. 2014, 171, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Hogan, A.E.; Tobin, A.M.; Ahern, T.; Corrigan, M.A.; Gaoatswe, G.; Jackson, R.; O’Reilly, V.; Lynch, L.; Doherty, D.G.; Moynagh, P.N.; et al. Glucagon-like peptide-1 (GLP-1) and the regulation of human invariant natural killer T cells: Lessons from obesity, diabetes and psoriasis. Diabetologia 2011, 54, 2745–2754. [Google Scholar] [CrossRef]
- Faurschou, A.; Gyldenlove, M.; Rohde, U.; Thyssen, J.P.; Zachariae, C.; Skov, L.; Knop, F.K.; Vilsboll, T. Lack of effect of the glucagon-like peptide-1 receptor agonist liraglutide on psoriasis in glucose-tolerant patients—A randomized placebo-controlled trial. J. Eur. Acad. Dermatol. Venereol. 2015, 29, 555–559. [Google Scholar] [CrossRef]
- Petkovic-Dabic, J.; Binic, I.; Caric, B.; Bozic, L.; Umicevic-Sipka, S.; Bednarcuk, N.; Dabic, S.; Situm, M.; Popovic-Pejicic, S.; Stojiljkovic, M.P.; et al. Effects of Semaglutide Treatment on Psoriatic Lesions in Obese Patients with Type 2 Diabetes Mellitus: An Open-Label, Randomized Clinical Trial. Biomolecules 2025, 15, 46. [Google Scholar] [CrossRef]
- Nauck, M.A.; Quast, D.R.; Wefers, J.; Meier, J.J. GLP-1 receptor agonists in the treatment of type 2 diabetes-state-of-the-art. Mol. Metab. 2021, 46, 101102. [Google Scholar] [CrossRef]
- Eng, J.; Kleinman, W.A.; Singh, L.; Singh, G.; Raufman, J.P. Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma suspectum venom. Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas. J. Biol. Chem. 1992, 267, 7402–7405. [Google Scholar] [CrossRef]
- Jastreboff, A.M.; Aronne, L.J.; Ahmad, N.N.; Wharton, S.; Connery, L.; Alves, B.; Kiyosue, A.; Zhang, S.; Liu, B.; Bunck, M.C.; et al. Tirzepatide Once Weekly for the Treatment of Obesity. N. Engl. J. Med. 2022, 387, 205–216. [Google Scholar] [CrossRef]
- Klingberg, E.; Bilberg, A.; Bjorkman, S.; Hedberg, M.; Jacobsson, L.; Forsblad-d’Elia, H.; Carlsten, H.; Eliasson, B.; Larsson, I. Weight loss improves disease activity in patients with psoriatic arthritis and obesity: An interventional study. Arthritis Res. Ther. 2019, 21, 17. [Google Scholar] [CrossRef]
- Sparks, J.A.; Halperin, F.; Karlson, J.C.; Karlson, E.W.; Bermas, B.L. Impact of Bariatric Surgery on Patients with Rheumatoid Arthritis. Arthritis Care Res. 2015, 67, 1619–1626. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Yu, C.; Li, D.G.; Yan, Q.; Zhang, S.X.; Yang, X.D.; Zhang, Z. The outcomes of bariatric surgery on rheumatoid arthritis disease activity: A prospective cohort study. Sci. Rep. 2020, 10, 3167. [Google Scholar] [CrossRef] [PubMed]
- Kreps, D.J.; Halperin, F.; Desai, S.P.; Zhang, Z.Z.; Losina, E.; Olson, A.T.; Karlson, E.W.; Bermas, B.L.; Sparks, J.A. Association of weight loss with improved disease activity in patients with rheumatoid arthritis: A retrospective analysis using electronic medical record data. Int. J. Clin. Rheumtol. 2018, 13, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Egeberg, A.; Sorensen, J.A.; Gislason, G.H.; Knop, F.K.; Skov, L. Incidence and Prognosis of Psoriasis and Psoriatic Arthritis in Patients Undergoing Bariatric Surgery. JAMA Surg. 2017, 152, 344–349. [Google Scholar] [CrossRef]
- Mahil, S.K.; McSweeney, S.M.; Kloczko, E.; McGowan, B.; Barker, J.N.; Smith, C.H. Does weight loss reduce the severity and incidence of psoriasis or psoriatic arthritis? A Critically Appraised Topic. Br. J. Dermatol. 2019, 181, 946–953. [Google Scholar] [CrossRef]
- Buysschaert, M.; Tennstedt, D.; Preumont, V. Improvement of psoriasis during exenatide treatment in a patient with diabetes. Diabetes Metab. 2012, 38, 86–88. [Google Scholar] [CrossRef]
- Faurschou, A.; Knop, F.K.; Thyssen, J.P.; Zachariae, C.; Skov, L.; Vilsboll, T. Improvement in psoriasis after treatment with the glucagon-like peptide-1 receptor agonist liraglutide. Acta Diabetol. 2014, 51, 147–150. [Google Scholar] [CrossRef]
- Faurschou, A.; Zachariae, C.; Skov, L.; Vilsboll, T.; Knop, F.K. Gastric bypass surgery: Improving psoriasis through a GLP-1-dependent mechanism? Med. Hypotheses 2011, 77, 1098–1101. [Google Scholar] [CrossRef]
Author (Year) | Study Origin and Years of Study | Study Type | Patient Cohort | Intervention | Comparator | Major Outcomes Reported | Results | JBI Score Author 1 | JBI Score Author 2 | |
---|---|---|---|---|---|---|---|---|---|---|
Villumsen et al. (2021) [28] | Denmark, 2007–2019 | Population cohort | IBD with T2DM n = 3751 CD n = 960, UC n = 2791 | GLP-1 based therapies n = 982 (GLP-1RA +/− DPPIV inhibitor) | Conventional anti-diabetic therapy (n = 2769) 1 | IBD outcomes: Composite need for oral corticosteroid treatment, need for anti-TNFα treatment, IBD-related hospitalisation, or IBD-related major surgery Metabolic outcomes: Not reported | IBD outcomes: Adjusted incidence rate ratio (IRR) for composite outcome: 0.52 (95% CI 0.42–0.65) overall UC: 0.50 (95% CI 0.39–0.65), CD: 0.62 (95% CI 0.41–0.92). IRR for GLP-1 receptor agonists only 0.56 (95% CI 0.39–0.83). | 8/11 | 8/11 | |
Belinchon et al. (2024) [34] | Spain, 2019–2021 | Case series | IBD with obesity n = 16 CD n = 9 UC n = 7 | Semaglutide (n = 11) or liraglutide (n = 5) | Baseline | IBD outcomes: Faecal calprotectin, CRP, disease activity index (CD: decrease in Harvey–Bradshaw index (HBI) of 3 or more points from baseline; UC decrease in partial Mayo score of 2 or more points from baseline), need for IBD therapy escalation Metabolic outcomes: % д in body weight and a weight reduction of 5% or more at 6 months | IBD outcomes: No significant changes in CRP, faecal calprotectin and disease activity index. One patient required isolated course of oral budesonide Metabolic outcomes: д% body weight = −6.2% (−3.4- [−8.5]). 58.3% (7/12) achieved a 5% or more weight reduction at six months | 9/10 | 9/10 | |
Desai et al. (2024) [29] | USA, 2021–2023 | Retrospective cohort study | (i) IBD with obesity, n = 47,424 (ii) non-IBD obese patients on semaglutide, n = 21,019 | IBD patients on Semaglutide (n = 150), liraglutide (n = 75), tirzepatide (n = 95) | IBD patients on other anti-obesity medications (AOM) 2 (n = 197) | IBD outcomes: Risk of oral steroid use, hospitalization requiring IV corticosteroids, initiation of advanced therapies in bio-naïve patients, IBD-related surgery, any-cause hospitalization, and any-cause emergency department (ED) visit Metabolic outcomes: Total body weight (TBW) change in pounds from baseline to between 6 and 15 months | IBD outcomes: No difference between semaglutide-treated versus non semaglutide/other AOM-treated obese IBD patients for all outcomes apart for lower adjusted OR for any-cause hospitalization (aOR, 0.35; 95% CI, 0.19–0.67) Metabolic outcomes: Similar TBW change (p = 0.24): −16 ± 13.4 pounds in IBD cohort on semaglutide, −18 ± 12.7 pounds in non-IBD cohort on semaglutide. Semaglutide superior to other AOMs (p < 0.01 for all), superior to liraglutide (p = 0.04), inferior to tirzepatide (p = 0.01) for weight loss | 8/11 | 9/11 | |
Desai et al. (2024) [30] | USA, 2010–2022 | Retrospective cohort study | IBD with T2DM UC n = 1130 CD n = 1140 | Liraglutide(n = 212), semaglutide (n = 555) or dulaglutide (n = 546) | Conventional oral hypoglycaemics agents 3 (UC n = 4615, CD n = 4744) | IBD outcomes: Hospitalisation requiring IV methylprednisolone and IBD-related surgery, oral corticosteroid use, first-time advanced therapy initiation within 3 years Metabolic outcomes: Not reported | IBD outcomes: Lower risk of surgery in GLP-1RA cohort UC aHR: 0.37, 95% CI: 0.14–0.97. CD aHR: 0.55, 95% CI: 0.36–0.84) No significant differences in other outcomes | 9/10 | 8/10 | |
Anderson et al. (2024) [35] | USA, 2014–2024 | Retrospective case series | IBD patients on GLP-1RA (n = 120) CD, n = 61 UC n = 59 On GLP-1RA for: Diabetes n = 72, Weight loss n = 43, MASH n = 5 | GLP-1RAs Dulaglutide 26 (21.7) exenatide, 8 (6.7) liraglutide 12 (10) semaglutide 74 (61.7) Tirzepatide 0 (0) | Status 1 year prior compared to 1 year after GLP-1RA initiation for IBD outcomes | IBD outcomes: Clinical severity scores (HBI for CD, modified Mayo score for UC), Endoscopic scores (Simple Endoscopic Score for CD and the Mayo Endoscopic score for UC), number of IBD-related hospitalizations, and changes in CRP levels Metabolic outcomes: % д weight 1 year after GLP-1RA initiation | IBD outcomes: Decrease in CRP (12.92 vs. 6.38 mg/dL, p = 0.005) No significant differences for other outcomes Metabolic outcomes: % д weight = −3.9% (±7.7%) | 10/10 | 9/10 | |
Levine et al. (2024) [36] | USA, 2009–2023 | Case–control | IBD patients n = 224 UC n = 97, CD n = 100, unclassified n = 27 | GLP-1RAs (n = 224) Semaglutide 148 (66.1) Liraglutide 47 (21.0) Dulaglutide 16 (7.1) Tirzepatide 12 (5.4) Exenatide 1 (0.5) | Baseline status for comparison of IBD outcomes. non-IBD controls on GLP-1RA (N = 224) for comparison of BMI change. | IBD outcomes: Composite of IBD-related hospitalisation, corticosteroid prescription, medication escalation or changes, or IBD related surgery Metabolic outcomes: Change in BMI | IBD outcomes: no change in IBD exacerbation in the year following GLP-1RA initiation compared with the year before Metabolic outcomes: median BMI decrease from 33.5–31.6 kg/m2; p = <0.01, comparable to non-IBD matched controls | 10/10 | 10/10 | |
St-Pierre et al. (2024) [31] | USA, 2021–2024 | Retrospective cohort study | 36 IBD patients, non-diabetic UC n = 12 CD n = 24 | Semaglutide or tirzepatide | None | IBD outcomes: CRP levels, Faecal calprotectin, change in IBD therapy. Metabolic outcomes: Changes in BMI and total body weight | IBD outcomes: no significant changes in CRP levels, Insufficient sample size for FCP for statistical analysis, n = 6 change in IBD therapy 4 Metabolic outcomes: BMI significantly decreased from 34 (IQR 31.6–36.2) to 31 (IQR 29–36,1) (p < 0.0001), TBW significant decreased by a median of 8.15 (IQR 15.9–2.2) kg (p < 0.0001) | 4/10 | 4/10 | |
Gorelik et al. (2024) [32] | Israel, 2005–2021 | Population cohort | 3737 IBD patients with T2DM | GLP-1RA users (n = 633) | Non-GLP-1RA users (n = 3104) | IBD outcomes: Composite of steroid-dependence, initiation of advanced IBD therapy, hospitalisation, surgery, or death Metabolic outcomes: Not reported | IBD outcomes: Full cohort: aHR 5 0.74, 95% CI: 0.62–0.89 UC: aHR 0.71, 95% CI 0.52–0.96 CD: aHR 0.78, 95% CI 0.62–0.99 patients with obesity: aHR 0.61, 95% CI 0.50–0.77, non-obese patients: aHR 0.94, 95% CI 0.67–1.31 | 10/10 | 8/10 | |
Nielsen et al. (2024) [33] | Denmark, 2018–2024 | Population cohort | 61,927 patients with IBD UC n = 41,191 CD n = 20,736 | GLP-1RA (Semaglutide) n = 4430) | Non-GLP-1RA users (n = 57,497) | IBD outcomes: Time to paralytic ileus or intestinal obstruction Metabolic outcomes: Not reported | IBD outcomes: 21 (0.5%) GLP-1RA users vs. 1766 (3.1%) patients non GLP1RA users developed ileus or intestinal obstruction Crude HR was 0.66 (95% CI 0.43–1.01) Adjusted HR was 0.57 (95% CI 0.36–0.88) 7 | 11/11 | 9/11 | |
Pham et al. (2024) [37] | USA, 2001–2022 | Case control | IBD patients on anti-obesity medications (AOMs) n = 36 CD n = 21 UC n = 15 | Liraglutide n = 9, Semaglutide n = 10 The remainder on AOMs: Phentermine, Phentermine-topiramate and Naltrexone-bupropion | non-IBD controls (n = 36) | IBD outcomes: Any increase/change in IBD medications or objective evidence of endoscopic/radiographic inflammation with increased symptoms, corticosteroid use, hospitalisation, or surgery Metabolic outcomes: TBW loss in 12 months between cases and controls | IBD outcomes: n = 7, 19.4% experienced IBD flare for all anti-obesity medications 6 | 10/10 | 10/10 | |
IBD-related complication | N (%) | |||||||||
Crohn’s disease flare | 6 (28.6) | |||||||||
Corticosteroid used | 3 | |||||||||
Change in IBD therapy | 4 | |||||||||
Hospitalization | 2 | |||||||||
Surgery | 0 | |||||||||
Ulcerative colitis flare | 1 (6.7) | |||||||||
Corticosteroid used | 1 | |||||||||
Change in IBD therapy | 1 | |||||||||
Hospitalization | 0 | |||||||||
Hospitalization 0 | 0 | |||||||||
Metabolic outcomes: Case vs. controls weight loss was −6.9 ± 8.3 and −8.1 ± 7 (p = 0.3) No difference in %TBWL between cases and controls and similar frequency of GI side effects between case and control for GLP1RAs |
Author, Year of Publication, Country | Study Population | What Was Studied | Results | ||
---|---|---|---|---|---|
Faurschou, 2013, Denmark [38] | Psoriasis n = 6, (3 males, age (40–64)). 5/6 with no other psoriasis treatment Healthy controls n = 6 (3 males, age (21–287)) | GLP1R gene expression 1 in skin and blood of pts with psoriasis vs. healthy controls Were GLP1Rs expressed in keratinocytes or immune cells with or without stimulation with TNFα+/− γIFN? IL-17 expression | Psoriasis pt, n = 6 | Healthy control, n = 6 | |
5/6 expressed GLP1R in affected skin 5/6 had NO GLP1R expression in unaffected skin Numerically higher level of GLP-1R expression in blood | 5/6 did not express GLP1R Numerically lower level of GLP-1R expression in blood RNA but p = 0.19 (vs. psoriasis patients) | ||||
No GLP1R expression from any of the keratinocyte cell cultures despite stimulation with TNFα and γ IFN: expressed in immune cells IL-17 significantly increased in psoriasis plaques compared with healthy control p > 0.03) | |||||
Tao, 2019, China [39] | Rheumatoid arthritis patients n = 12, | To study effect of exenatide on a TNFα-stimulated cell culture of FLS 2, including FLS exposed to 10 ng/mL of TNF-α for 24 h
NFκB transcriptional activity via luciferase reporter assay | Inflammatory Variable tested | Effect of TNF-α stimulation at 10 ng/mL for 24 h | Effect of adding exenatide (in increasing doses, 10 and 20 nM) |
Mitochondrial function | Decreased MMP and cytochrome C oxidase activity | Increased MMP and cytochrome C oxidase activity p < 0.01 | |||
NOX-4 [7] expression and oxidative stress (GSH, ROS) | NOX-4 protein and mRNA expression significantly upregulated. GSH levels reduced, and ROS increased. | Expression of NOX-4 protein and mRNA attenuated p < 0.01 Increased levels of GSH and decreased ROS p < 0.01 | |||
HMG1 expression | Significantly increased | Attenuation of HMG1 back to normal levels | |||
IL-1β, IL-6 expression (protein and mRNA), and MMP 3 and 13 | All significantly increased | All attenuated with increased doses p < 0.01 | |||
p38/MAPK and NF-κB proinflammatory signalling pathways | Increased expression of phosphor-p38 (p-p38), phospho-IκBα 9 (p-pIκBα), nuclear p65, and NFκB luciferase activity | Expression of p-p38, p- IκBα, nuclear p65, and NFκB luciferase activity, attenuated with increasing doses p < 0.01. | |||
Du, 2019, China [40] | Rheumatoid arthritis patients with joint replacements, n = 10 | Study effect of adding lixisenatide (10 and 20 nM) to 10 ng/mL of IL-1β stimulated cell culture of FLS 2
Activation of proinflammatory signalling pathways (JNK via Western Blot, AP-1 and p-65/NFκB via luciferase assay) | Inflammatory Variable tested | Effect of IL-1β stimulation at 10 ng/mL for 24 h | Effect of adding lixisenatide (in increasing doses, 10 and 20 nM) |
ROS level | Sig increased | Sig decreased at increased doses p < 0.01 | |||
4-HNE expression | Sig increased | Sig decreased at increased doses p < 0.01 | |||
MMP | Sig decreased | Sig increased at increased doses p < 0.01 | |||
LDH | Sig increased | Sig decreased at increased doses p < 0.01 | |||
Expression of inflammatory cytokines and matrix metalloproteinases | Sig increased | Sig decreased at increased doses p < 0.01 | |||
Phospho-JNK AP-1 p-65/NFκB | Sig increased | Sig decreased at increased doses p < 0.01 |
Author (Year) | Study Origin/Year | Study Type | Patient Cohort (N, Mean Age) | Intervention | Comparator | Major Outcomes Reported | Result | JBI Score, No. of ‘Yes’ | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Author 1 | Author 2 | ||||||||||||||||
Nicolau 2023 [41] | Spain | Prospective open-label cohort study | Non-Diabetic Obese Psoriasis patients (N = 20, 45.4 ± 9.7 yrs) 30% had PsA. | Liraglutide 3 mg daily SC for 12 weeks + diet (−500 calories daily) + 150 min aerobic exercise) All continued biologic (16/20) or photo therapy (4/20) | Baseline status | IMID outcomes: PASI DLQI VAS Weight outcomes Weight BMI Waist circumference | PASI (pre/post): 10 ± 2/5 ± 1, p < 0.001 DLQI (pre/post): 13 ± 2/6 ± 1, p = 0.009 VAS (pre/post): 4.1 ± 0.4/2.3 ± 0.2, p = 0.009 Weight (pre/post): 110.1 ± 21/102.5 ± 21.7, p = 0.004 BMI (pre/post): 38.9 ± 5.8/36.4 ± 5.6, p = 0.003 Waist circ: 110 ± 8.4/107.2 ± 8, p = 0.04 | 6/11 | 5/11 | ||||||||
Lin 2022 [42] | China 2017–2019 | RCT Open label | Type 2 Diabetic Psoriasis patients N = 24, total. N = 13 intervention mean age 56.73 ± 8 yrs, N = 11 comparator, mean age 55.23 ± 7.84) | 1.8 mg Liraglutide daily SC for 12 weeks Continued conventional oral anti-diabetic meds | Conventional treatment (oral acitretin capsules 30 mg–50 mg/d + calcipotriol ointment) Continued conventional oral anti-diabetic meds | IMID outcomes: Mean change in PASI DLQI IL-23/IL-17/TNFα expression in skin Weight outcomes Weight BMI Waist circumference | PASI: control/Int: –6.15 ± 3.43/–12.32 ± 10.05, p = 0.049 DLQI: control/Int: –8.54 ± 5.33/–18.18 ± 5.86, p < 0.001 IL-23/IL-17/TNFα expression in skin of intervention lower than control p < 0.05 Weight: control/Int: 1.92 ± 2.33/–4.82 ± 2.04, p < 0.001 BMI: control/Int: 0.69 ± 0.84/–1.77 ± 0.73, p < 0.001 Waist Circ: Control/Int: 2.23 ± 2.35/–5.05 ± 3.76 p < 0.001 | 9/13 | 8/13 | ||||||||
Ahern 2013 [43] | Ireland 2010–2011 | Prospective open-label cohort | (7, 48 (40–58)) Obese and diabetic psoriasis pts, none with PsA | 0.6 mg for 2 weeks then 1.2 mg daily of Liraglutide SC for 10 weeks total | Baseline status | IMID outcomes: PASI DLQI % of circulating iNKT cells % of TNFα-producing monocytes Weight outcomes Weight | PASI (pre/post): 4.8 (2.6–11.4)/3.0 (1.9–7.9), p = 0.03) DLQI (pre/post): 6 (3.5–8.9)/2 (1–6.1), p = 0.03) %iNKT cells: increased by 37.9% (IQR:18.5–234.6, p = 0.03) % of TNFα-producing monocytes: −53% (IQR: 51.4–55.0) p = 0.07 Weight (pre/post): 137.8 kg (120–178 kg)/130.1 kg (115–166 kg, p = 0.06) | 6/11 | 5/11 | ||||||||
Xu 2019 [44] | China 2017–2018 | Prospective open-label cohort | (7, 60 ± 8 yrs) Psoriasis patients with type 2 DM, none with PsA | Liraglutide 0.6 mg/1.2 mg/week each then max dose of 1.8 mg daily for 12 weeks No concurrent treatment with topical therapy, oral IS or biologic therapy | Baseline status | IMID outcomes PASI DLQI Weight outcomes BMI Abdo circumference | PASI (pre/post): 15.7 (1.5–31.3)/2.0 (0.3–8.7), (p = 0.03) DLQI (pre/post): 22 (8–27)/4 (0–10), (p = 0.001) Histopathology: significant reduction in neutrophils, Munro micro abscess and thickness of epidermal layer BMI (pre/post): 23 ± 4 kg/m2/21 ± 3 kgm2 (p < 0.01) Waist circ (pre/post): 87 ± 9 cm/83 ± 1 cm (p < 0.04) | 6/11 | 7/11 | ||||||||
Buysschaert 2014 [45] | Belgium 2011–2012 | Prospective open-label cohort | (7, 56 ± 8 yrs) Psoriasis patients with type 2 DM, having failed systemic and topical agents previously None with PsA | Exenatide n = 1 Liraglutide n = 6 At 7 and 18 weeks Dose not described | Baseline status | IMID outcomes PASI DLQI Histological activity IL-17 expression γδ T cells Weight outcomes BMI | PASI (pre/post 18 wks.): 12 ± 5.9/9.2 ± 6.4 (p = 0.04) Epidermis and corneum layer thickness decreased (pre/post): 0.47 ± 0.12 mm/0.40 ± 0.15 mm (p = 0.06). No change in dermis infiltrate, granular layer, or the presence of Munro micro-abscesses Decreased γδ T cells (pre/post): 6.7 ± 4.5%/2.7 ± 3.8%, with change in γδ T cells correlating with change in PASI score. (r = 0.894, p = 0.007) IL-17 expression decreased numerically but not statistically BMI (pre/post) 32.0 ± 10.1 kg/m2/30.6 ± 9.1 kg/m2 | 4/11 | 4/11 | ||||||||
Hogan 2011 [46] | Ireland | Case series | n = 3 (index +2 additional). Mean age = 52.3 Obese type 2 DM with psoriasis on no current treatment | Patient 1 = exenatide (2 months), then Liraglutide 9 months Patient 2 = Liraglutide, 6 weeks Patient 3 = Liraglutide, 6 weeks Dose not reported | Baseline | IMID outcomes PASI % iNKT cells skin and blood Weight outcomes BMI | PASI (pre/post) Patient 1: >15/10.5 Patient 2: 13.2/10.8 Patient 3: 4.8/3.8 Skin %iNKT cells (pre/post) Patient 1: NR Patient 2: 2.16/0.07 Patient 3: 0.32/0 Blood %iNKT cells (pre/post) Patient 1: NR Patient 2: 0.15/0.6 Patient 3: 0.16/0.57 BMI (pre/post) Patient 1: 37 kg/m2/NR Patient 2: 48.0/46.5 kg/m2 Patient 3: 43/41.1 kg/m2 GLP-1R expressed on iNKT cells GLP-1 induced a dose-dependent inhibition of iNKT cell cytokine secretion (γIFN, IL-2), but not cytolytic degranulation in vitro Increased cAMP—activates CREB transcription factor for IL-10 production | 7/10 | 7/10 | ||||||||
Faurschau 2015 [47] | Denmark | Double blind RCT 1:1 | (20, 48 ± 12 vs. 54 ± 14; liraglutide vs. placebo) Obese BMI (≥ 25 kg/m2), glucose-tolerant pts with plaque psoriasis PASI ≥ 8 PsA patients excluded | Liraglutide n = 11 (0.6, 1.2, 1.8 mg, increasing by 1 week, total 8 weeks No concomitant treatment: n = 4 Topical tx 1-2x daily: n = 6 Systemic tx: n = 0 No change in psoriasis treatment for the prior 3 months | Placebo n = 9, total 8 weeks No concomitant treatment: n = 6 Topical tx 1-2x daily: n = 3 Systemic tx: n = 1 (adalimumab) No change in psoriasis treatment for the prior 3 months | IMID outcomes дPASI (mean): from baseline for each group and between groups дDLQI (mean) from baseline and between groups Weight outcomes Д weight (mean) | Outcome | Placebo | Liraglutide | p value | 13/13 | 13/13 | |||||
дPASI | −1.3 ± 2.4 | −2.6 ± 2.1 | 0.228 | ||||||||||||||
дPASI from baseline | p = 0.14 | p = 0.0026 | - | ||||||||||||||
дDLQI: no difference between groups and compared to baseline for both placebo and liraglutide groups. | |||||||||||||||||
Outcome | Placebo | Liraglutide | p value | ||||||||||||||
Д weight | −1.5 ± 2.7 | −4.7 ± 2.5 | 0.014 | ||||||||||||||
Petkovic-Dabic 2025 [48] | Bosnia and Herzegovina 2024 | Open label RCT | (31, 58.6 ± 8.04 57.4 ± 13.02; semaglutide vs. placebo) Moderate to severe plaque psoriasis pts (PASI score ≥ 10) with obesity (≥30 kg/m2) diagnosed for ≥6 months No PsA patients | N = 15 Semaglutide up to 1 mg with metformin for 12 weeks Anti-obesogenic/diabetic diet Topical Keratolytic therapy and salicylic acid No systemic therapy for prior 3 months for psoriasis, or phototherapy | N = 16 Metformin only Anti-obesogenic/diabetic diet Topical Keratolytic therapy and salicylic acid No systemic therapy for prior 3 months for psoriasis or phototherapy | д IMID outcomes PASI (mean): from baseline for each group дDLQI (mean) from baseline for each group дCytokine expression and inflammatory markers (CRP, IL-1β, IL-6, and IL-23) Weight outcomes Д BMI | Outcome | Semaglutide | Control | 9/13 | 8/13 | ||||||
Med PASI (IQR) | Wk 0 | Wk 12 | P | Wk 0 | Wk 12 | P | |||||||||||
21 (19.8) | 10 (6) | 0.002 | 20.6 (8.9) | 15.9 (8.7) | 0.03 | ||||||||||||
Med DLQI (IQR) | 14 (5) | 4 (4) | 0.002 | 10.1 (4.3) | 8.1 (4.8) | 0.007 | |||||||||||
CRP level mg/L | 3.8 (3.1) | 1.9 (1.4) | 0.01 | 9.6 ± 10.7 | 7.6 ± 8.3 | 0.5 | |||||||||||
IL-6 pg/mL | 3.5 (2.3) | 2.8 (1.1) | 0.05 | 5.6 (12.2) | 2.3 (3.6) | 0.1 | |||||||||||
BMI | 33.04 ± 2.7 | 30.7 ± 3.8 | 0.001 | 36 ± 7.9 | 34.9 ± 7.9 | <0.001 | |||||||||||
No changes in other cytokine expression. IL-17 not detected at all. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thin, L.; Teh, W.L. GLP-1R Agonists and Their Therapeutic Potential in Inflammatory Bowel Disease and Other Immune-Mediated Inflammatory Diseases, a Systematic Review of the Literature. Biomedicines 2025, 13, 1128. https://doi.org/10.3390/biomedicines13051128
Thin L, Teh WL. GLP-1R Agonists and Their Therapeutic Potential in Inflammatory Bowel Disease and Other Immune-Mediated Inflammatory Diseases, a Systematic Review of the Literature. Biomedicines. 2025; 13(5):1128. https://doi.org/10.3390/biomedicines13051128
Chicago/Turabian StyleThin, Lena, and Wei Ling Teh. 2025. "GLP-1R Agonists and Their Therapeutic Potential in Inflammatory Bowel Disease and Other Immune-Mediated Inflammatory Diseases, a Systematic Review of the Literature" Biomedicines 13, no. 5: 1128. https://doi.org/10.3390/biomedicines13051128
APA StyleThin, L., & Teh, W. L. (2025). GLP-1R Agonists and Their Therapeutic Potential in Inflammatory Bowel Disease and Other Immune-Mediated Inflammatory Diseases, a Systematic Review of the Literature. Biomedicines, 13(5), 1128. https://doi.org/10.3390/biomedicines13051128