Navigating Sarcopenia Risks in GLP-1RA Therapy for Advanced Heart Failure
Abstract
:1. Introduction
2. Weight Loss with GLP-1RAs
3. Counteracting Muscle Loss During GLP-1RA Use
3.1. Nutritional Support
3.2. Exercise
3.3. Pharmacologic Interventions
4. Gaps in the Literature on Cardiac Cachexia
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Wu, A. Heart Failure. Ann. Intern. Med. 2018, 168, ITC81–ITC96. [Google Scholar] [CrossRef] [PubMed]
- Borlaug, B.; Jensen, M.; Kitzman, D.; Lam, C.; Obokata, M.; Rider, O. Obesity and heart failure with preserved ejection fraction: New insights and pathophysiological targets. Cardiovasc. Res. 2022, 118, 3434–3450. [Google Scholar] [CrossRef] [PubMed]
- Kitzman, D.; Brubaker, P.; Morgan, T.; Haykowsky, M.; Hundley, G.; Kraus, W.; Eggebeen, J.; Nicklas, B. Effect of Caloric Restriction or Aerobic Exercise Training on Peak Oxygen Consumption and Quality of Life in Obese Older Patients with Heart Failure with Preserved Ejection Fraction. J. Am. Med. Assoc. 2016, 315, 36–46. [Google Scholar] [CrossRef]
- Ussher, J.R.; Drucker, D.J. Glucagon-like peptide 1 receptor agonists: Cardiovascular benefits and mechanisms of action. Nat. Rev. Cardiol. 2023, 20, 463–474. [Google Scholar] [CrossRef]
- Nauck, M.A.; Quast, D.R.; Wefers, J.; Meier, J.J. GLP-1 receptor agonists in the treatment of type 2 diabetes—State-of-the-art. Mol. Metab. 2021, 46, 101102. [Google Scholar] [CrossRef] [PubMed]
- Grunvald, E.; Shah, R.; Hernaez, R.; Chandar, A.K.; Pickett-Blakely, O.; Teigen, L.M.; Harindhanavudhi, T.; Sultan, S.; Singh, S.; Davitkov, P.; et al. AGA Clinical Practice Guideline on Pharmacological Interventions for Adults with Obesity. Gastroenterology 2022, 163, 1198–1225. [Google Scholar] [CrossRef]
- Pi-Sunyer, X.; Astrup, A.; Fujioka, K.; Greenway, F.; Halpern, A.; Krempf, M.; Lau, D.C.; le Roux, C.W.; Violante Ortiz, R.; Jensen, C.B.; et al. A Randomized, Controlled Trial of 3.0 mg of Liraglutide in Weight Management. N. Engl. J. Med. 2015, 373, 11–22. [Google Scholar] [CrossRef]
- Wilding, J.P.H.; Batterham, R.L.; Calanna, S.; Davies, M.; Van Gaal, L.F.; Lingvay, I.; McGowan, B.M.; Rosenstock, J.; Tran, M.T.D.; Wadden, T.A.; et al. Once-Weekly Semaglutide in Adults with Overweight or Obesity. N. Engl. J. Med. 2021, 384, 989–1002. [Google Scholar] [CrossRef]
- Jastreboff, A.M.; Aronne, L.J.; Ahmad, N.N.; Wharton, S.; Connery, L.; Alves, B.; Kiyosue, A.; Zhang, S.; Liu, B.; Bunck, M.C.; et al. Tirzepatide Once Weekly for the Treatment of Obesity. N. Engl. J. Med. 2022, 387, 205–216. [Google Scholar] [CrossRef]
- Thanapholsart, J.; Khan, E.; Ismail, T.F.; Lee, G.A. The complex pathophysiology of cardiac cachexia: A review of current pathophysiology and implications for clinical practice. Am. J. Med. Sci. 2023, 365, 9–18. [Google Scholar] [CrossRef]
- Nishioka, S. Current Understanding of Sarcopenia and Malnutrition in Geriatric Rehabilitation. Nutrients 2023, 15, 1426. [Google Scholar] [CrossRef] [PubMed]
- Krysztofiak, H.; Wleklik, M.; Migaj, J.; Dudek, M.; Uchmanowicz, I.; Lisiak, M.; Kubielas, G.; Straburzynska-Migaj, E.; Lesiak, M.; Kaluzna-Oleksy, M. Cardiac Cachexia: A Well-Known but Challenging Complication of Heart Failure. Clin. Interv. Aging 2020, 15, 2041–2051. [Google Scholar] [CrossRef]
- Talha, K.M.; Pandey, A.; Fudim, M.; Butler, J.; Anker, S.D.; Khan, M.S. Frailty and heart failure: State-of-the-art review. J. Cachexia Sarcopenia Muscle 2023, 14, 1959–1972. [Google Scholar] [CrossRef]
- Mohamad Alahmad, M.A.; Acharya, P.; Gibson, C.A.; Wiley, M.; Hockstad, E.; Gupta, K. Cachexia Is Associated with Adverse Outcomes in Patients Admitted with Heart Failure. Am. J. Cardiol. 2023, 186, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Horwich, T.; Fonarow, G.; Clark, A. Obesity and the Obesity Paradox in Heart Failure. Prog. Cardiovasc. Dis. 2018, 61, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Kosiborod, M.; Abildstrøm, S.; Borlaug, B.; Butler, J.; Rasmussen, S.; Davies, M.; Hovingh, G.K.; Kitzman, D.; Lindegaard, M.; Møller, D.; et al. Semaglutide in Patients with Heart Failure with Preserved Ejection Fraction and Obesity. N. Engl. J. Med. 2023, 389, 1069–1084. [Google Scholar] [CrossRef]
- Packer, M.; Zile, M.; Kramer, C.; Baum, S.; Litwin, S.; Menon, V.; Ge, J.; Weerakkody, G.; Ou, Y.; Bunck, M.; et al. Tirzepatide for Heart Failure with Preserved Ejection Fraction and Obesity. N. Engl. J. Med. 2025, 392, 427–437. [Google Scholar] [CrossRef]
- Sharma, A.; Ambrosy, A.; DeVore, A.; Margulies, K.; McNulty, S.; Mentz, R.; Hernandez, A.; Michael Felker, G.; Cooper, L.; Lala, A.; et al. Liraglutide and weight loss among patients with advanced heart failure and a reduced ejection fraction: Insights from the FIGHT trial. ESC Heart Fail. 2018, 5, 1035–1043. [Google Scholar] [CrossRef]
- Lavie, C.; Sharma, A.; Alpert, M.; De Schutter, A.; Lopez-Jimenez, F.; Milani, R.; Ventura, H. Update on Obesity and Obesity Paradox in Heart Failure. Prog. Cardiovasc. Dis. 2016, 58, 393–400. [Google Scholar] [CrossRef]
- Butt, J.H.; Petrie, M.C.; Jhund, P.S.; Sattar, N.; Desai, A.S.; Køber, L.; Rouleau, J.L.; Swedberg, K.; Zile, M.R.; Solomon, S.D.; et al. Anthropometric measures and adverse outcomes in heart failure with reduced ejection fraction: Revisiting the obesity paradox. Eur. Heart J. 2023, 44, 1136–1153. [Google Scholar] [CrossRef]
- Marcks, N.; Aimo, A.; Januzzi, J.; Vergaro, G.; Clerico, A.; Latini, R.; Meessen, J.; Anand, I.; Cohn, J.; Gravning, J.; et al. Re-appraisal of the obesity paradox in heart failure: A meta-analysis of individual data. Clin. Res. Cardiol. 2021, 110, 1280–1291. [Google Scholar] [CrossRef]
- Sheean, P.; Gonzalez, M.C.; Prado, C.M.; McKeever, L.; Hall, A.M.; Braunschweig, C.A. American Society for Parenteral and Enteral Nutrition Clinical Guidelines: The Validity of Body Composition Assessment in Clinical Populations. J. Parenter. Enter. Nutr. 2020, 44, 12–43. [Google Scholar] [CrossRef]
- Locatelli, J.C.; Costa, J.G.; Haynes, A.; Naylor, L.H.; Fegan, P.G.; Yeap, B.B.; Green, D.J. Incretin-Based Weight Loss Pharmacotherapy: Can Resistance Exercise Optimize Changes in Body Composition? Diabetes Care 2024, 47, 1718–1730. [Google Scholar] [CrossRef] [PubMed]
- McCrimmon, R.; Catarig, A.-M.; Frias, J.; Lausvig, N.; le Roux, C.; Thielke, D.; Lingvay, I. Effects of once-weekly semaglutide vs once-daily canagliflozin on body composition in type 2 diabetes: A substudy of the SUSTAIN 8 randomised controlled clinical trial. Diabetologia 2020, 63, 473–485. [Google Scholar] [CrossRef]
- Cohen, S.; Nathan, J.A.; Goldberg, A.L. Muscle wasting in disease: Molecular mechanisms and promising therapies. Nat. Rev. Drug Discov. 2015, 14, 58–74. [Google Scholar] [CrossRef] [PubMed]
- McLeod, M.; Breen, L.; Hamilton, D.L.; Philp, A. Live strong and prosper: The importance of skeletal muscle strength for healthy ageing. Biogerontology 2016, 17, 497–510. [Google Scholar] [CrossRef] [PubMed]
- Goodpaster, B.H.; Park, S.W.; Harris, T.B.; Kritchevsky, S.B.; Nevitt, M.; Schwartz, A.V.; Simonsick, E.M.; Tylavsky, F.A.; Visser, M.; Newman, A.B. The loss of skeletal muscle strength, mass, and quality in older adults: The health, aging and body composition study. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2006, 61, 1059–1064. [Google Scholar] [CrossRef]
- Flynn, M.A.; Nolph, G.B.; Baker, A.S.; Krause, G. Aging in humans: A continuous 20-year study of physiologic and dietary parameters. J. Am. Coll. Nutr. 1992, 11, 660–672. [Google Scholar] [CrossRef]
- Sargeant, J.A.; Henson, J.; King, J.A.; Yates, T.; Khunti, K.; Davies, M.J. A Review of the Effects of Glucagon-Like Peptide-1 Receptor Agonists and Sodium-Glucose Cotransporter 2 Inhibitors on Lean Body Mass in Humans. Endocrinol. Metab. 2019, 34, 247–262. [Google Scholar] [CrossRef]
- Nodari, S.; Triggiani, M.; Campia, U.; Manerba, A.; Milesi, G.; Cesana, B.; Gheorghiade, M.; Dei Cas, L. Effects of n-3 Polyunsaturated Fatty Acids on Left Ventricular Function and Functional Capacity in Patients with Dilated Cardiomyopathy. JACC J. Am. Coll. Cardiol. 2011, 57, 870–879. [Google Scholar] [CrossRef]
- Gissi-Hf investigators. Effect of n-3 polyunsaturated fatty acids in patients with chronic heart failure (the GISSI-HF trial): A randomised, double-blind, placebo-controlled trial. Lancet 2008, 372, 1223–1230. [Google Scholar] [CrossRef] [PubMed]
- von Haehling, S.; Ebner, N.; dos Santos, M.; Springer, J.; Anker, S. Muscle wasting and cachexia in heart failure: Mechanisms and therapies. Nat. Rev. Cardiol. 2017, 14, 323–341. [Google Scholar] [CrossRef]
- Fernández-Pombo, A.; Rodríguez-Carnero, G.; Castro, A.; Cantón-Blanco, A.; Seoane, L.; Casanueva, F.; Crujeiras, A.; Martínez-Olmos, M. Relevance of nutritional assessment and treatment to counteract cardiac cachexia and sarcopenia in chronic heart failure. Clin. Nutr. 2021, 40, 5141–5155. [Google Scholar] [CrossRef] [PubMed]
- Rozentryt, P.; von Haehling, S.; Lainscak, M.; Nowak, J.; Kalantar-Zadeh, K.; Polonski, L.; Anker, S. The effects of a high-caloric protein-rich oral nutritional supplement in patients with chronic heart failure and cachexia on quality of life, body composition, and inflammation markers: A randomized, double-blind pilot study. J. Cachexia Sarcopenia Muscle 2010, 1, 35–42. [Google Scholar] [CrossRef]
- Herrera-Martínez, A.; Jiménez, C.; Romo, A.; Aguilera, J.; Crespin, M.; Baena, B.; Casado-Díaz, A.; Moreno, M.; Puerta, M.; Roger, A. Nutritional Support Reduces Circulating Cytokines in Patients with Heart Failure. Nutrients 2024, 16, 1637. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Kato, T.; Ji, R.; Zizola, C.; Brunjes, D.; Deng, Y.; Akashi, H.; Armstrong, H.; Kennel, P.; Thomas, T.; et al. Supplementation of l -Alanyl- l -Glutamine and Fish Oil Improves Body Composition and Quality of Life in Patients with Chronic Heart Failure. Circ. Heart Fail. 2015, 8, 1077–1087. [Google Scholar] [CrossRef]
- Holeček, M. Beta-hydroxy-beta-methylbutyrate supplementation and skeletal muscle in healthy and muscle-wasting conditions. J. Cachexia Sarcopenia Muscle 2017, 8, 529–541. [Google Scholar] [CrossRef] [PubMed]
- Tanada, Y.; Shioi, T.; Kato, T.; Kawamoto, A.; Okuda, J.; Kimura, T. Branched-chain amino acids ameliorate heart failure with cardiac cachexia in rats. Life Sci. 2015, 137, 20–27. [Google Scholar] [CrossRef]
- Toneto, A.; Ferreira Ramos, L.; Salomão, E.; Tomasin, R.; Aereas, M.; Gomes-Marcondes, M. Nutritional leucine supplementation attenuates cardiac failure in tumour-bearing cachectic animals. J. Cachexia Sarcopenia Muscle 2016, 7, 577–586. [Google Scholar] [CrossRef]
- Heidenreich, P.; Bozkurt, B.; Aguilar, D.; Allen, L.; Byun, J.; Colvin, M.; Deswal, A.; Drazner, M.; Dunlay, S.; Evers, L.; et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure. J. Am. Coll. Cardiol. 2022, 79, e263–e421. [Google Scholar] [CrossRef]
- Haykowsky, M.J.; Timmons, M.P.; Kruger, C.; McNeely, M.; Taylor, D.A.; Clark, A.M. Meta-Analysis of Aerobic Interval Training on Exercise Capacity and Systolic Function in Patients with Heart Failure and Reduced Ejection Fractions. Am. J. Cardiol. 2013, 111, 1466–1469. [Google Scholar] [CrossRef]
- Forman, D.; Sanderson, B.; Josephson, R.; Raikhelkar, J.; Bittner, V. Heart Failure as a Newly Approved Diagnosis for Cardiac Rehabilitation. J. Am. Coll. Cardiol. 2015, 65, 2652–2659. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, C.; Whellan, D.; Lee, K.; Keteyian, S.; Cooper, L.; Ellis, S.; Leifer, E.; Kraus, W.; Kitzman, D.; Blumenthal, J.; et al. Efficacy and Safety of Exercise Training in Patients with Chronic Heart Failure. J. Am. Med. Assoc. 2009, 301, 1439–1450. [Google Scholar] [CrossRef]
- Loncar, G.; Springer, J.; Anker, M.; Doehner, W.; Lainscak, M. Cardiac cachexia: Hic et nunc. Int. J. Cardiol. 2015, 201, e1–e12. [Google Scholar] [CrossRef]
- Clark, A.; Coats, A.S.; Krum, H.; Katus, H.; Mohacsi, P.; Salekin, D.; Schultz, M.; Packer, M.; Anker, S. Effect of beta-adrenergic blockade with carvedilol on cachexia in severe chronic heart failure: Results from the COPERNICUS trial. J. Cachexia Sarcopenia Muscle 2017, 8, 549–556. [Google Scholar] [CrossRef]
- Anker, S.; Negassa, A.; Coats, A.; Afzal, R.; Poole-Wilson, P.; Cohn, J.; Yusuf, S. Prognostic importance of weight loss in chronic heart failure and the effect of treatment with angiotensin-converting-enzyme inhibitors: An observational study. Lancet 2003, 361, 1077–1083. [Google Scholar] [CrossRef] [PubMed]
- Malkin, C.; Pugh, P.; West, J.; van Beek, E.R.; Jones, T.H.; Channer, K. Testosterone therapy in men with moderate severity heart failure: A double-blind randomized placebo controlled trial. Eur. Heart J. 2006, 27, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Toma, M.; McAlister, F.; Coglianese, E.; Vidi, V.; Vasaiwala, S.; Bakal, J.; Armstrong, P.; Ezekowitz, J. Testosterone Supplementation in Heart Failure. Circ. Heart Fail. 2012, 5, 315–321. [Google Scholar] [CrossRef]
- Caminiti, G.; Volterrani, M.; Iellamo, F.; Marazzi, G.; Massaro, R.; Miceli, M.; Mammi, C.; Piepoli, M.; Fini, M.; Rosano, G.C. Effect of Long-Acting Testosterone Treatment on Functional Exercise Capacity, Skeletal Muscle Performance, Insulin Resistance, and Baroreflex Sensitivity in Elderly Patients with Chronic Heart Failure. J. Am. Coll. Cardiol. 2009, 54, 919–927. [Google Scholar] [CrossRef]
- dos Santos, M.; Sayegh, A.C.; Bacurau, A.N.; Arap, M.; Brum, P.; Pereira, R.R.; Takayama, L.; Barretto, A.P.; Negrão, C.; Alves, M. Effect of Exercise Training and Testosterone Replacement on Skeletal Muscle Wasting in Patients with Heart Failure with Testosterone Deficiency. Mayo Clin. Proc. 2016, 91, 575–586. [Google Scholar] [CrossRef]
- Nagaya, N.; Moriya, J.; Yasumura, Y.; Uematsu, M.; Ono, F.; Shimizu, W.; Ueno, K.; Kitakaze, M.; Miyatake, K.; Kangawa, K. Effects of Ghrelin Administration on Left Ventricular Function, Exercise Capacity, and Muscle Wasting in Patients with Chronic Heart Failure. Circulation 2004, 110, 3674–3679. [Google Scholar] [CrossRef] [PubMed]
- Harrington, D.; Chua, T.P.; Coats, A.S. The effect of salbutamol on skeletal muscle in chronic heart failure. Int. J. Cardiol. 2000, 73, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Kamalakkannan, G.; Petrilli, C.; George, I.; LaManca, J.; McLaughlin, B.; Shane, E.; Mancini, D.; Maybaum, S. Clenbuterol Increases Lean Muscle Mass but Not Endurance in Patients with Chronic Heart Failure. J. Heart Lung Transplant. 2008, 27, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, G.; Macciò, A.; Madeddu, C.; Serpe, R.; Antoni, G.; Massa, E.; Dessì, M.; Panzone, F. Phase II nonrandomized study of the efficacy and safety of COX-2 inhibitor celecoxib on patients with cancer cachexia. J. Mol. Med. 2009, 88, 85–92. [Google Scholar] [CrossRef]
- Lai, V.; George, J.; Richey, L.; Kim, H.; Cannon, T.; Shores, C.; Couch, M. Results of a pilot study of the effects of celecoxib on cancer cachexia in patients with cancer of the head, neck, and gastrointestinal tract. Head Neck 2007, 30, 67–74. [Google Scholar] [CrossRef]
- Kouchaki, B.; Janbabai, G.; Alipour, A.; Ala, S.; Borhani, S.; Salehifar, E. Randomized double-blind clinical trial of combined treatment with megestrol acetate plus celecoxib versus megestrol acetate alone in cachexia-anorexia syndrome induced by GI cancers. Support. Care Cancer 2018, 26, 2479–2489. [Google Scholar] [CrossRef] [PubMed]
- von Haehling, S.; Stepney, R.; Anker, S. Advances in understanding and treating cardiac cachexia: Highlights from the 5th Cachexia Conference. Int. J. Cardiol. 2010, 144, 347–349. [Google Scholar] [CrossRef]
- Mann, D.; McMurray, J.V.; Packer, M.; Swedberg, K.; Borer, J.; Colucci, W.; Djian, J.; Drexler, H.; Feldman, A.; Kober, L.; et al. Targeted Anticytokine Therapy in Patients with Chronic Heart Failure. Circulation 2004, 109, 1594–1602. [Google Scholar] [CrossRef]
- Chung, E.; Packer, M.; Lo, K.; Fasanmade, A.; Willerson, J. Randomized, Double-Blind, Placebo-Controlled, Pilot Trial of Infliximab, a Chimeric Monoclonal Antibody to Tumor Necrosis Factor-α, in Patients with Moderate-to-Severe Heart Failure. Circulation 2003, 107, 3133–3140. [Google Scholar] [CrossRef]
- Gullestad, L.; Ueland, T.; Fjeld, J.; Holt, E.; Gundersen, T.; Breivik, K.; Følling, M.; Hodt, A.; Skårdal, R.; Kjekshus, J.; et al. Effect of Thalidomide on Cardiac Remodeling in Chronic Heart Failure. Circulation 2005, 112, 3408–3414. [Google Scholar] [CrossRef]
- da Fonseca, G.; Sato, R.; de Nazaré Nunes Alves, M.; von Haehling, S. Current advancements in pharmacotherapy for cancer cachexia. Expert Opin. Pharmacother. 2023, 24, 629–639. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-J.; Jung, D.-W.; Williams, D. Age Is Just a Number: Progress and Obstacles in the Discovery of New Candidate Drugs for Sarcopenia. Cells 2023, 12, 2608. [Google Scholar] [CrossRef] [PubMed]
- Roeland, E.; Bohlke, K.; Baracos, V.; Bruera, E.; del Fabbro, E.; Dixon, S.; Fallon, M.; Herrstedt, J.; Lau, H.; Platek, M.; et al. Management of Cancer Cachexia: ASCO Guideline. J. Clin. Oncol. 2020, 38, 2438–2453. [Google Scholar] [CrossRef] [PubMed]
- Rolland, Y.; Dray, C.; Vellas, B.; Barreto, P. Current and investigational medications for the treatment of sarcopenia. Metabolism 2023, 149, 155597. [Google Scholar] [CrossRef]
- Kanbay, M.; Siriopol, D.; Copur, S.; Hasbal, N.; Güldan, M.; Kalantar-Zadeh, K.; Garfias-Veitl, T.; von Haehling, S. Effect of Bimagrumab on body composition: A systematic review and meta-analysis. Aging Clin. Exp. Res. 2024, 36, 185. [Google Scholar] [CrossRef]
- Ilonze, O.; Parsly Read-Button, L.; Cogswell, R.; Hackman, A.; Breathett, K.; Saltzman, E.; Vest, A. Controversies and Conundrums in Cardiac Cachexia. JACC Heart Fail. 2024, 12, 1645–1660. [Google Scholar] [CrossRef]
- Huixing, L.; Di, F.; Daoquan, P. Effect of Glucagon-like Peptide-1 Receptor Agonists on Prognosis of Heart Failure and Cardiac Function: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Clin. Ther. 2023, 45, 17–30. [Google Scholar] [CrossRef]
Therapy | Study Duration | % Reduction in Fat Mass (FM) | % Reduction in Lean Mass (LM) | Key Findings |
---|---|---|---|---|
Semaglutide | 68 weeks | 24.7% | 13.9% | Significant weight reduction but concurrent muscle loss |
Tirzepatide | 72 weeks | 33.9% | 10.9% | Higher FM reduction but also notable LM loss |
Intervention | Study Design | Population | Key Outcomes |
---|---|---|---|
High-calorie, high-protein supplement | Clinical trial, 18 weeks | HF patients | ↑ Body weight, ↓ TNF-α, ↑ Quality of life |
Slow-release carbohydrates, fiber, fatty acids | Clinical trial, 6 months | HF patients | ↑ Body weight, ↓ Inflammatory markers |
L-alanyl-L-glutamine + PUFAs | Clinical trial, 3 months | HF patients | ↑ Lean body mass, ↑ Quality of life |
Therapy | Target Mechanism | Key Outcomes | Limitations |
---|---|---|---|
Carvedilol | SNS overactivation | Reduced cachexia prevalence | Not specific to cachexia |
Enalapril | RAAS modulation | Reduced significant weight loss hazard (19%) | General HF benefit, not specific |
Testosterone therapy | Anabolic agent | ↑ Exercise capacity, ↑ Muscle strength | Cardiovascular health concerns |
Ghrelin agonists | Appetite enhancement | ↑ Lean body mass | Limited HF-specific data |
Celecoxib | Anti-inflammatory | ↑ Quality of life | Lack of direct HF cachexia trials |
Research Gap | Current Limitations | Future Directions |
---|---|---|
Lack of standardized diagnostic criteria | Heterogeneity in clinical trials | Develop and validate unified criteria |
Limited studies on GLP-1 agonists | Uncertain effects on muscle wasting in HF patients | Conduct HF-specific RCTs on sarcopenia mitigation |
Preventive strategies for CC | Reliance on general HF guidelines | Tailor strategies specific to patients with cachexia |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Green, D.; Ibrahim, R.; Abdelnabi, M.; Pham, H.N.; Forst, B.; Allam, M.; Sarkis, P.; Bcharah, G.; Farina, J.; et al. Navigating Sarcopenia Risks in GLP-1RA Therapy for Advanced Heart Failure. Biomedicines 2025, 13, 1108. https://doi.org/10.3390/biomedicines13051108
Wang W, Green D, Ibrahim R, Abdelnabi M, Pham HN, Forst B, Allam M, Sarkis P, Bcharah G, Farina J, et al. Navigating Sarcopenia Risks in GLP-1RA Therapy for Advanced Heart Failure. Biomedicines. 2025; 13(5):1108. https://doi.org/10.3390/biomedicines13051108
Chicago/Turabian StyleWang, Winston, Danielle Green, Ramzi Ibrahim, Mahmoud Abdelnabi, Hoang Nhat Pham, Beani Forst, Mohamed Allam, Patrick Sarkis, George Bcharah, Juan Farina, and et al. 2025. "Navigating Sarcopenia Risks in GLP-1RA Therapy for Advanced Heart Failure" Biomedicines 13, no. 5: 1108. https://doi.org/10.3390/biomedicines13051108
APA StyleWang, W., Green, D., Ibrahim, R., Abdelnabi, M., Pham, H. N., Forst, B., Allam, M., Sarkis, P., Bcharah, G., Farina, J., Ayoub, C., Sorajja, D., & Arsanjani, R. (2025). Navigating Sarcopenia Risks in GLP-1RA Therapy for Advanced Heart Failure. Biomedicines, 13(5), 1108. https://doi.org/10.3390/biomedicines13051108