A Comprehensive Comparison of PICSI and ICSI Techniques Through a Triple-Blinded Trial: Effects on Embryo Quality, Cumulative Pregnancy Rate, and Live Birth Rate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population
2.3. Sample Size Determination and Study Blinding
2.4. Sperm Sample Collection and Preparation
2.5. Controlled Ovarian Stimulation and Transvaginal Oocyte Retrieval
2.6. Oocyte Microinjection: ICSI vs. PICSI
2.7. Embryo Incubation, Scoring, and Selection
2.8. Pregnancy Determination and Clinical Pregnancy and Live Birth Rates
2.9. Statistical Analysis
3. Results
3.1. Study Population Characteristics
3.2. Embryo Development and Embryo Quality
3.3. Clinical Results: Pregnancy Rate; Miscarriage Rates, and Live Birth Rate
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
ASEBIR | Association for the Study of Reproductive Biology |
ART | Assisted Reproductive Techniques |
CB | Cavitated Blastocyst |
CI | Confidence Interval |
D5 | Day 5 |
D6 | Day 6 |
EB | Expanded Blastocyst |
HA | Hyaluronic Acid |
HB | Hatching Blastocyst |
ICSI | Intracytoplasmic Sperm Injection |
ICM | Inner Cell Mass |
iHB | Initiating Hatching Blastocyst |
IVF | In Vitro Fertilization |
LBR | Live Birth Rate |
m/rw | mean/receiving woman |
MII | Metaphase II |
OR | Odds ratio |
PN | Pronuclei |
p | p-value |
PICSI | Physiological Intracytoplasmic Sperm Selection |
RCT | Randomized Control Trial |
TE | Trophectoderm |
References
- Smeenk, J.; Wyns, C.; De Geyter, C.; Kupka, M.; Bergh, C.; Saiz, I.C.; De Neubourg, D.; Rezabek, K.; Tandler-Schneider, A.; Rugescu, I.; et al. ART in Europe, 2019: Results Generated from European Registries by ESHRE†. Hum. Reprod. 2023, 38, 2321–2338. [Google Scholar] [CrossRef]
- Palermo, G.; Joris, H.; Devroey, P.; Van Steirteghem, A.C. Pregnancies after Intracytoplasmic Injection of Single Spermatozoon into an Oocyte. Lancet 1992, 340, 17–18. [Google Scholar] [CrossRef]
- Asada, Y. Evolution of Intracytoplasmic Sperm Injection: From Initial Challenges to Wider Applications. Reprod. Med. Biol. 2024, 23, e12582. [Google Scholar] [CrossRef] [PubMed]
- Celik-Ozenci, C.; Jakab, A.; Kovacs, T.; Catalanotti, J.; Demir, R.; Bray-Ward, P.; Ward, D.; Huszar, G. Sperm Selection for ICSI: Shape Properties Do Not Predict the Absence or Presence of Numerical Chromosomal Aberrations. Hum. Reprod. 2004, 19, 2052–2059. [Google Scholar] [CrossRef] [PubMed]
- Leung, E.T.Y.; Lee, C.L.; Tian, X.; Lam, K.K.W.; Li, R.H.W.; Ng, E.H.Y.; Yeung, W.S.B.; Chiu, P.C.N. Simulating Nature in Sperm Selection for Assisted Reproduction. Nat. Rev. Urol. 2022, 19, 16–36. [Google Scholar] [CrossRef] [PubMed]
- Intracytoplasmic Sperm Injection (ICSI) for Non-Male Factor Indications: A Committee Opinion. Fertil. Steril. 2020, 114, 239–245. [CrossRef]
- Jakab, A.; Sakkas, D.; Delpiano, E.; Cayli, S.; Kovanci, E.; Ward, D.; Ravelli, A.; Huszar, G. Intracytoplasmic Sperm Injection: A Novel Selection Method for Sperm with Normal Frequency of Chromosomal Aneuploidies. Fertil Steril. 2005, 84, 1665–1673. [Google Scholar] [CrossRef]
- Huszar, G.; Ozenci, C.C.; Cayli, S.; Zavaczki, Z.; Hansch, E.; Vigue, L. Hyaluronic Acid Binding by Human Sperm Indicates Cellular Maturity, Viability, and Unreacted Acrosomal Status. Fertil Steril. 2003, 79, 1616–1624. [Google Scholar] [CrossRef]
- Mcdowell, S.; Kroon, B.; Ford, E.; Hook, Y.; Glujovsky, D.; Yazdani, A. Advanced Sperm Selection Techniques for Assisted Reproduction. Cochrane Database Syst. Rev. 2014, 2014, CD010461. [Google Scholar] [CrossRef]
- Vaughan, D.A.; Sakkas, D.; Gardner, D.K. Sperm Selection Methods in the 21st Century. Biol. Reprod. 2019, 101, 1076–1082. [Google Scholar] [CrossRef]
- Baldini, D.; Ferri, D.; Baldini, G.M.; Lot, D.; Catino, A.; Vizziello, D.; Vizziello, G. Sperm Selection for ICSI: Do We Have a Winner? Cells 2021, 10, 3566. [Google Scholar] [CrossRef] [PubMed]
- Plouffe, B.D.; Murthy, S.K.; Lewis, L.H. Fundamentals and Application of Magnetic Particles in Cell Isolation and Enrichment: A Review. Rep. Prog. Phys. 2015, 78, 016601. [Google Scholar] [CrossRef] [PubMed]
- Vermes, I.; Haanen, C.; Steffens-Nakken, H.; Reutellingsperger, C. A Novel Assay for Apoptosis Flow Cytometric Detection of Phosphatidylserine Expression on Early Apoptotic Cells Using Fluorescein Labelled Annexin V. J. Immunol. Methods 1995, 184, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Jeyendran, R.S.; Van der Ven, H.H.; Perez-Pelaez, M.; Crabo, B.G.; Zaneveld, L.J. Development of an Assay to Assess the Functional Integrity of the Human Sperm Membrane and Its Relationship to Other Semen Characteristics. J. Reprod. Fertil 1984, 70, 219–228. [Google Scholar] [CrossRef]
- Parmegiani, L.; Cognigni, G.E.; Bernardi, S.; Troilo, E.; Ciampaglia, W.; Filicori, M. “Physiologic ICSI”: Hyaluronic Acid (HA) Favors Selection of Spermatozoa without DNA Fragmentation and with Normal Nucleus, Resulting in Improvement of Embryo Quality. Fertil Steril. 2010, 93, 598–604. [Google Scholar] [CrossRef]
- Martin-Deleon, P.A. Germ-Cell Hyaluronidases: Their Roles in Sperm Function. Int. J. Androl. 2011, 34, e306–e318. [Google Scholar] [CrossRef]
- Liu, Y.; Feenan, K.; Chapple, V.; Roberts, P.; Matson, P. Intracytoplasmic Sperm Injection Using Hyaluronic Acid or Polyvinylpyrrolidone: A Time-Lapse Sibling Oocyte Study. Hum. Fertil 2019, 22, 39–45. [Google Scholar] [CrossRef]
- Kim, S.J.; Kim, H.; Kim, T.H.; Jeong, J.; Lee, W.S.; Lyu, S.W. Effect of Sperm Selection Using Hyaluronan on Fertilization and Quality of Cleavage-Stage Embryos in Intracytoplasmic Sperm Injection (ICSI) Cycles of Couples with Severe Teratozoospermia. Gynecol. Endocrinol. 2020, 36, 456–459. [Google Scholar] [CrossRef]
- Novoselsky Persky, M.; Hershko-Klement, A.; Solnica, A.; Bdolah, Y.; Hurwitz, A.; Ketzin El Gilad, M.; Nefesh, I.; Esh-Broder, E. Conventional ICSI vs. Physiological Selection of Spermatozoa for ICSI (Picsi) in Sibling Oocytes. Andrology 2021, 9, 873–877. [Google Scholar] [CrossRef]
- Worrilow, K.C.; Eid, S.; Woodhouse, D.; Perloe, M.; Smith, S.; Witmyer, J.; Ivani, K.; Khoury, C.; Ball, G.D.; Elliot, T.; et al. Use of Hyaluronan in the Selection of Sperm for Intracytoplasmic Sperm Injection (ICSI): Significant Improvement in Clinical Outcomes--Multicenter, Double-Blinded and Randomized Controlled Trial. Hum. Reprod. 2013, 28, 306–314. [Google Scholar] [CrossRef]
- Mokánszki, A.; Tóthné, E.V.; Bodnár, B.; Tándor, Z.; Molnár, Z.; Jakab, A.; Ujfalusi, A.; Oláh, É. Is Sperm Hyaluronic Acid Binding Ability Predictive for Clinical Success of Intracytoplasmic Sperm Injection: PICSI vs. ICSI? Syst. Biol. Reprod. Med. 2014, 60, 348–354. [Google Scholar] [CrossRef]
- Erberelli, R.F.; Salgado, R.M.; Pereira, D.H.M.; Wolff, P. Hyaluronan-Binding System for Sperm Selection Enhances Pregnancy Rates in ICSI Cycles Associated with Male Factor Infertility. JBRA Assist. Reprod. 2017, 21, 2–6. [Google Scholar] [CrossRef] [PubMed]
- West, R.; Coomarasamy, A.; Frew, L.; Hutton, R.; Kirkman-Brown, J.; Lawlor, M.; Lewis, S.; Partanen, R.; Payne-Dwyer, A.; Román-Montañana, C.; et al. Sperm Selection with Hyaluronic Acid Improved Live Birth Outcomes among Older Couples and Was Connected to Sperm DNA Quality, Potentially Affecting All Treatment Outcomes. Hum. Reprod. 2022, 37, 1106–1125. [Google Scholar] [CrossRef] [PubMed]
- Tarozzi, N.; Nadalini, M.; Bizzaro, D.; Serrao, L.; Fava, L.; Scaravelli, G.; Borini, A. Sperm-Hyaluronan-Binding Assay: Clinical Value in Conventional IVF under Italian Law. Reprod. Biomed. Online 2009, 19 (Suppl. 3), 35–43. [Google Scholar] [CrossRef] [PubMed]
- Avalos-Durán, G.; Ángel, A.M.E.C.-D.; Rivero-Murillo, J.; Zambrano-Guerrero, J.E.; Carballo-Mondragón, E.; Checa-Vizcaíno, M.Á. Physiological ICSI (PICSI) vs. Conventional ICSI in Couples with Male Factor: A Systematic Review. JBRA Assist. Reprod. 2018, 22, 139–147. [Google Scholar] [CrossRef]
- Miller, D.; Pavitt, S.; Sharma, V.; Forbes, G.; Hooper, R.; Bhattacharya, S.; Kirkman-Brown, J.; Coomarasamy, A.; Lewis, S.; Cutting, R.; et al. Physiological, Hyaluronan-Selected Intracytoplasmic Sperm Injection for Infertility Treatment (HABSelect): A Parallel, Two-Group, Randomised Trial. Lancet 2019, 393, 416–422. [Google Scholar] [CrossRef]
- Emirdar, V.; Karatasli, V.; Tamer, B.; Pala, I.; Gunturkun, F.; Ozbaykus, C.; Işık, A.Z.; Gode, F. Influence of a Hyaluronan-Binding System for Sperm Selection in Intracytoplasmic Sperm Injection Cycles on Embryo Morphokinetic Parameters and in Vitro Fertilization Cycle Outcomes. Arch. Gynecol. Obstet. 2023, 307, 1633–1639. [Google Scholar] [CrossRef]
- Meseguer, F.; Giménez Rodríguez, C.; Rivera Egea, R.; Carrión Sisternas, L.; Remohí, J.A.; Meseguer, M. Can Microfluidics Improve Sperm Quality? A Prospective Functional Study. Biomedicines 2024, 12, 1131. [Google Scholar] [CrossRef]
- Bori, L.; Meseguer, F.; Valera, M.A.; Galan, A.; Remohi, J.; Meseguer, M. The Higher the Score, the Better the Clinical Outcome: Retrospective Evaluation of Automatic Embryo Grading as a Support Tool for Embryo Selection in IVF Laboratories. Hum. Reprod. 2022, 37, 1148–1160. [Google Scholar] [CrossRef]
- Cuevas Saiz, I.; Carme Pons Gatell, M.; Vargas, M.C.; Delgado Mendive, A.; Rives Enedáguila, N.; Moragas Solanes, M.; Carrasco Canal, B.; Teruel López, J.; Busquets Bonet, A.; Hurtado de Mendoza Acosta, M.V. The Embryology Interest Group: Updating ASEBIR’s Morphological Scoring System for Early Embryos, Morulae and Blastocysts. Med. Reprod. Y Embriol. Clínica 2018, 5, 42–54. [Google Scholar] [CrossRef]
- Liperis, G.; Sharma, K.; Ammar, O.F.; Fraire-Zamora, J.J.; da Silva, S.M.; Thomson, A.; Pini, T.; Mincheva, M. #ESHREjc Report: Are Sperm Selection Techniques a Panacea? Indications for the Use of Physiological Intracytoplasmic Sperm Injection (PICSI) in Medically Assisted Reproduction. Hum. Reprod. 2022, 37, 2492–2496. [Google Scholar] [CrossRef] [PubMed]
- Beck-Fruchter, R.; Shalev, E.; Weiss, A. Clinical Benefit Using Sperm Hyaluronic Acid Binding Technique in ICSI Cycles: A Systematic Review and Meta-Analysis. Reprod. Biomed. Online 2016, 32, 286–298. [Google Scholar] [CrossRef] [PubMed]
- Lepine, S.; McDowell, S.; Searle, L.M.; Kroon, B.; Glujovsky, D.; Yazdani, A. Advanced Sperm Selection Techniques for Assisted Reproduction. Cochrane Database Syst. Rev. 2019, 7, CD010461. [Google Scholar] [CrossRef] [PubMed]
- Majumdar, G.; Majumdar, A. A Prospective Randomized Study to Evaluate the Effect of Hyaluronic Acid Sperm Selection on the Intracytoplasmic Sperm Injection Outcome of Patients with Unexplained Infertility Having Normal Semen Parameters. J. Assist. Reprod. Genet. 2013, 30, 1471–1475. [Google Scholar] [CrossRef] [PubMed]
- Hervás, I.; Pacheco, A.; Gil Julia, M.; Rivera-Egea, R.; Navarro-Gomezlechon, A.; Garrido, N. Sperm Deoxyribonucleic Acid Fragmentation (by Terminal Deoxynucleotidyl Transferase Biotin DUTP Nick End Labeling Assay) Does Not Impair Reproductive Success Measured as Cumulative Live Birth Rates per Donor Metaphase II Oocyte Used. Fertil Steril. 2022, 118, 79–89. [Google Scholar] [CrossRef]
- Meseguer, M.; Santiso, R.; Garrido, N.; García-Herrero, S.; Remohí, J.; Fernandez, J.L. Effect of Sperm DNA Fragmentation on Pregnancy Outcome Depends on Oocyte Quality. Fertil Steril. 2011, 95, 124–128. [Google Scholar] [CrossRef]
- Barak, Y.; Menezo, Y.; Veiga, A.; Elder, K. A Physiological Replacement for Polyvinylpyrrolidone (PVP) in Assisted Reproductive Technology. Hum. Fertil 2001, 4, 99–103. [Google Scholar] [CrossRef]
- Nasr-Esfahani, M.H.; Razavi, S.; Vahdati, A.A.; Fathi, F.; Tavalaee, M. Evaluation of Sperm Selection Procedure Based on Hyaluronic Acid Binding Ability on ICSI Outcome. J. Assist. Reprod. Genet. 2008, 25, 197–203. [Google Scholar] [CrossRef]
- Parmegiani, L.; Cognigni, G.E.; Bernardi, S.; Troilo, E.; Taraborrelli, S.; Arnone, A.; MacCarini, A.M.; Filicori, M. Comparison of Two Ready-to-Use Systems Designed for Sperm-Hyaluronic Acid Binding Selection before Intracytoplasmic Sperm Injection: PICSI vs. Sperm Slow: A Prospective, Randomized Trial. Fertil Steril. 2012, 98, 632–637. [Google Scholar] [CrossRef]
- Scaruffi, P.; Bovis, F.; Casciano, I.; Maccarini, E.; De Leo, C.; Gazzo, I.; Massarotti, C.; Sozzi, F.; Stigliani, S.; Anserini, P. Hyaluronic Acid-Sperm Selection Significantly Improves the Clinical Outcome of Couples with Previous ICSI Cycles Failure. Andrology 2022, 10, 677–685. [Google Scholar] [CrossRef]
- Ahmadi, A.; Sobhani, A.; Khalili, M.A.; Agha-Rahim, A.; Nabi, A.; Findikli, N. Comparison of the Efficiency of Magnetic-Activated Cell Sorting (MACS) and Physiological Intracytoplasmic Sperm Injection (PICSI) for Sperm Selection in Cases with Unexplained Infertility. J. Reprod. Infertil. 2022, 23, 184. [Google Scholar] [CrossRef] [PubMed]
- Hamadneh, S.; Hamadneh, J. Active and Passive Maternal Smoking During Pregnancy and Birth Outcomes: A Study From a Developing Country. Ann. Glob. Health 2021, 87. [Google Scholar] [CrossRef] [PubMed]
- Rittenberg, V.; Seshadri, S.; Sunkara, S.K.; Sobaleva, S.; Oteng-Ntim, E.; El-Toukhy, T. Effect of Body Mass Index on IVF Treatment Outcome: An Updated Systematic Review and Meta-Analysis. Reprod. Biomed. Online 2011, 23, 421–439. [Google Scholar] [CrossRef] [PubMed]
- Neykova, K.; Tosto, V.; Giardina, I.; Tsibizova, V.; Vakrilov, G. Endometrial Receptivity and Pregnancy Outcome. J. Matern. -Fetal Neonatal Med. 2022, 35, 2591–2605. [Google Scholar] [CrossRef]
- Vitagliano, A.; Paffoni, A.; Viganò, P. Does Maternal Age Affect Assisted Reproduction Technology Success Rates after Euploid Embryo Transfer? A Systematic Review and Meta-Analysis. Fertil Steril. 2023, 120, 251–265. [Google Scholar] [CrossRef]
- Hozyen, M.; Hasanen, E.; Elqusi, K.; ElTanbouly, S.; Gamal, S.; Hussin, A.G.; AlKhader, H.; Zaki, H. Reproductive Outcomes of Different Sperm Selection Techniques for ICSI Patients with Abnormal Sperm DNA Fragmentation: A Randomized Controlled Trial. Reprod. Sci. 2022, 29, 220–228. [Google Scholar] [CrossRef]
ICSI (n = 135) | PICSI (n = 142) | ||||
---|---|---|---|---|---|
95% CI | 95% CI | p | |||
Female age (years) (mean) | 40 | 39.38–40.62 | 39.76 | 39.23–40.30 | NS |
Male age (years) (mean) | 41.64 | 40.54–42.73 | 42.12 | 41.17–43.06 | NS |
Donor age (years) (mean) | 25.68 | 24.93–26.42 | 25.54 | 24.81–26.27 | NS |
BMI (kg/m2) (mean) | 22.84 | 22.16–23.51 | 22.24 | 21.78–22.70 | NS |
Oocytes aspirated (mean) | 13.66 | 13.26–14.06 | 13.1 | 12.73–13.48 | NS |
Oocytes MII inseminated by ICSI (mean) | 11.31 | 11.12–11.50 | 11.03 | 10.83–11.23 | NS |
Fertilization Rate (m/rw) 1 | 77.72 | 75.43–80.01 | 68.62 | 65.70–71.09 | NS |
Fertilization Failure (1 PN) (m/rw) 1 | 0.29 | 0.19–0.39 | 0.36 | 0.26–0.45 | NS |
Fertilization Failure (3 PN) (m/rw) 1 | 0.21 | 0.13–0.29 | 0.24 | 0.15–0.34 | NS |
Total fresh sperm (millions) (m/rw) 1 | 86.68 | 73.16–100.2 | 78.91 | 66.58–91.25 | NS |
Fresh sperm concentration (millions/mL) (m/rw) 1 | 46.51 | 42.06–50.97 | 44.45 | 39.26–49.65 | NS |
Fresh sperm motility (%) (m/rw) 1 | 31.22 | 29.57–32.87 | 35.11 | 33.30–36.92 | NS |
Total capacitated sperm (millions) (m/rw) 1 | 1.53 | 1.18–1.88 | 2.16 | 1.4–2.91 | NS |
Embryo rate (vitrificated/transferred) (m/rw) 1 | 4 | 3.9–4.1 | 4 | 3.91–4.09 | NS |
Transferred embryos (m/rw) 1 | 1.61 | 1.57–1.65 | 1.63 | 1.59–1.67 | NS |
PICSI | ICSI | p | ||
---|---|---|---|---|
Pregnancy rate (%) | F | 74.04 | 70.87 | NS |
DF | 51.50 | 50.00 | NS | |
Pregnancy loss rate (miscarriage rate) (%) | F | 21.15 | 13.59 | NS |
DF | 19.40 | 21.00 | NS | |
Biochemical miscarriage rate (%) | F | 8.65 | 1.94 | NS |
DF | 5.10 | 6.09 | NS | |
Clinical miscarriage rate (%) | F | 12.50 | 11.65 | NS |
DF | 14.29 | 12.17 | NS | |
Live birth rate (%) | F | 52.88 | 57.28 | NS |
DF | 30.40 | 26.00 | NS |
PREGNANCY | MISCARRIAGE | LIVE BIRTH | ||||
---|---|---|---|---|---|---|
OR | 95%CI | OR | 95%CI | OR | 95%CI | |
F | 1.099 | 0.603–2.002 | 1.527 | 0.763–3.058 | 0.833 | 0.486–1.425 |
DF | 1.529 | 0.769–3.037 | 1.039 | 0.451–2.394 | 1.564 | 0.706–3.464 |
PREGNANCY | ||||
---|---|---|---|---|
OR | IC95% | OR | IC95% | |
PICSI/ICSI | 1.620 | 0.769–3.413 | 1.576 | 0.733–3.389 |
Patient age | 1.070 | 0.938–1.221 | 1.071 | 0.945–1.213 |
Donor age | 0.989 | 0.920–1.063 | 0.998 | 0.916–1.087 |
BMI | 1.014 | 0.932–1.104 | 1.103 | 0.998–1.220 |
Day transfer | 1.043 | 0.944–1.151 | 1.031 | 0.946–1.125 |
Total embryos obtained | 0.951 | 0.251–3.608 | 1.982 | 0.917–4.283 |
Total fresh sperm | 0.997 | 0.991–1.003 | 1.003 | 0.995–1.011 |
Total selected sperm | 0.983 | 0.862–1.121 | 0.932 | 0.754–1.152 |
Number of transferred embryos | 1.384 | 0.673–2.848 | 0.611 | 0.263–1.418 |
MISCARRIAGE | ||||
OR | IC95% | OR | IC95% | |
PICSI/ICSI | 1.109 | 0.465–2.645 | 1.089 | 0.434–2.730 |
Patient age | 1.098 | 0.933–1.292 | 1.179 (*) | 1.009–1.378 |
Donor age | 0.997 | 0.917–1.084 | 0.934 | 0.840–1.039 |
BMI | 1.033 | 0.934–1.142 | 1.045 | 0.936–1.166 |
Day transfer | 1.039 | 0.929–1.162 | 0.975 | 0.886–1.073 |
Total embryos obtained | 2.476 | 0.305–20.076 | 0.907 | 0.366–2.248 |
Total fresh sperm | 0.996 | 0.989–1.004 | 1.001 | 0.991–1.010 |
Total selected sperm | 1.004 | 0.880–1.146 | 0.977 | 0.762–1.253 |
Number of transferred embryos | 0.757 | 0.311–1.840 | 0.633 | 0.242–1.655 |
LIVE BIRTH | ||||
OR | IC95% | OR | IC95% | |
PICSI/ICSI | 0.755 | 0.425–1.340 | 1.587 | 0.658–3.828 |
Patient age | 0.959 | 0.868–1.060 | 0.930 | 0.803–1.078 |
Donor age | 0.997 | 0.941–1.056 | 1.070 | 0.96–1.1180 |
BMI | 0.981 | 0.916–1.050 | 1.032 | 0.923–1.154 |
Day transfer | 0.929 | 0.851–1.016 | 1.062 | 0.969–1.164 |
Total embryos obtained | 1.065 | 0.383–2.963 | 2.363 | 0.908–6.153 |
Total fresh sperm | 1.000 | 0.996–1.004 | 1.003 | 0.994–1.012 |
Total selected sperm | 1.066 | 0.945–1.204 | 0.956 | 0.765–1.195 |
Number of transferred embryos | 0.579 | 0.324–1.034 | 0.780 | 0.303–2.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alegre, L.; Carrión-Sisternas, L.; Bori, L.; Hervás, I.; Remohí, J.; Garrido, N.; Meseguer, M. A Comprehensive Comparison of PICSI and ICSI Techniques Through a Triple-Blinded Trial: Effects on Embryo Quality, Cumulative Pregnancy Rate, and Live Birth Rate. Biomedicines 2025, 13, 1104. https://doi.org/10.3390/biomedicines13051104
Alegre L, Carrión-Sisternas L, Bori L, Hervás I, Remohí J, Garrido N, Meseguer M. A Comprehensive Comparison of PICSI and ICSI Techniques Through a Triple-Blinded Trial: Effects on Embryo Quality, Cumulative Pregnancy Rate, and Live Birth Rate. Biomedicines. 2025; 13(5):1104. https://doi.org/10.3390/biomedicines13051104
Chicago/Turabian StyleAlegre, Lucia, Laura Carrión-Sisternas, Lorena Bori, Irene Hervás, Jose Remohí, Nicolás Garrido, and Marcos Meseguer. 2025. "A Comprehensive Comparison of PICSI and ICSI Techniques Through a Triple-Blinded Trial: Effects on Embryo Quality, Cumulative Pregnancy Rate, and Live Birth Rate" Biomedicines 13, no. 5: 1104. https://doi.org/10.3390/biomedicines13051104
APA StyleAlegre, L., Carrión-Sisternas, L., Bori, L., Hervás, I., Remohí, J., Garrido, N., & Meseguer, M. (2025). A Comprehensive Comparison of PICSI and ICSI Techniques Through a Triple-Blinded Trial: Effects on Embryo Quality, Cumulative Pregnancy Rate, and Live Birth Rate. Biomedicines, 13(5), 1104. https://doi.org/10.3390/biomedicines13051104