Navigating Neurodegeneration: Integrating Biomarkers, Neuroinflammation, and Imaging in Parkinson’s, Alzheimer’s, and Motor Neuron Disorders
1. Introduction
2. Topical Collection Articles
2.1. Parkinson’s Disease
Thematic Category | References | |
---|---|---|
| ||
| [71] | |
| [72] | |
| [74] | |
| [75] | |
| [76] | |
| ||
| [78] | |
| [79] | |
| [80] | |
| [81] | |
| ||
| [82] | |
| [83] | |
| [84] | |
| ||
| [85] | |
| [86] | |
| ||
| [87] | |
| [88] | |
| [89] |
2.2. Other Movement and Motor Neuron Disorders
2.3. Alzheimer’s Disease and Related Cognitive Disorders
2.4. Neurovascular and Neuroinflammatory Conditions
2.5. Novel Diagnostic, Therapeutic, and Biomarker Approaches
3. Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AD | Alzheimer’s disease |
ALS | amyotrophic lateral sclerosis |
CBD | cannabidiol |
MS | multiple sclerosis |
PDT | percutaneous dilatational tracheostomy |
PET/CT | positron emission tomography/computed tomography |
rTMS | repetitive transcranial magnetic stimulation |
SMA | spinal muscular atrophy |
TBS | theta-burst stimulation |
References
- Ding, C.; Wu, Y.; Chen, X.; Chen, Y.; Wu, Z.; Lin, Z.; Kang, D.; Fang, W.; Chen, F. Global, regional, and national burden and attributable risk factors of neurological disorders: The Global Burden of Disease study 1990–2019. Front. Public Health 2022, 10, 952161. [Google Scholar] [CrossRef]
- Slanzi, A.; Iannoto, G.; Rossi, B.; Zenaro, E.; Constantin, G. In vitro models of neurodegenerative diseases. Front. Cell Dev. Biol. 2020, 8, 328. [Google Scholar] [CrossRef]
- Pramotton, F.M.; Spitz, S.; Kamm, R.D. Challenges and Future Perspectives in Modeling Neurodegenerative Diseases Using Organ-on-a-Chip Technology. Adv. Sci. 2024, 11, 2403892. [Google Scholar] [CrossRef] [PubMed]
- Gan, L.; Cookson, M.R.; Petrucelli, L.; La Spada, A.R. Converging pathways in neurodegeneration, from genetics to mechanisms. Nat. Neurosci. 2018, 21, 1300–1309. [Google Scholar] [CrossRef] [PubMed]
- Nabi, M.; Tabassum, N. Role of environmental toxicants on neurodegenerative disorders. Front. Toxicol. 2022, 4, 837579. [Google Scholar] [CrossRef] [PubMed]
- Gadhave, D.G.; Sugandhi, V.V.; Jha, S.K.; Nangare, S.N.; Gupta, G.; Singh, S.K.; Dua, K.; Cho, H.; Hansbro, P.M.; Paudel, K.R. Neurodegenerative disorders: Mechanisms of degeneration and therapeutic approaches with their clinical relevance. Ageing Res. Rev. 2024, 99, 102357. [Google Scholar] [CrossRef]
- Arora, R.; Baldi, A. Revolutionizing neurological disorder treatment: Integrating innovations in pharmaceutical interventions and advanced therapeutic technologies. Curr. Pharm. Des. 2024, 30, 1459–1471. [Google Scholar] [CrossRef]
- Toader, C.; Tataru, C.P.; Munteanu, O.; Serban, M.; Covache-Busuioc, R.-A.; Ciurea, A.V.; Enyedi, M. Decoding Neurodegeneration: A Review of Molecular Mechanisms and Therapeutic Advances in Alzheimer’s, Parkinson’s, and ALS. Int. J. Mol. Sci. 2024, 25, 12613. [Google Scholar] [CrossRef]
- Bönhof, G.J.; Herder, C.; Strom, A.; Papanas, N.; Roden, M.; Ziegler, D. Emerging biomarkers, tools, and treatments for diabetic polyneuropathy. Endocr. Rev. 2019, 40, 153–192. [Google Scholar] [CrossRef]
- Costa, T.; Manuello, J.; Cauda, F.; Liloia, D. Retrospective Bayesian Evidence of Null Effect in Two Decades of Alzheimer’s Disease Clinical Trials. J. Alzheimers Dis. 2023, 91, 531–535. [Google Scholar] [CrossRef]
- Costa, T.; Premi, E.; Liloia, D.; Cauda, F.; Manuello, J. Unleashing the Power of Bayesian Re-Analysis: Enhancing Insights into Lecanemab (Clarity AD) Phase III Trial Through Informed t-Test. J. Alzheimers Dis. 2023, 95, 1059–1065. [Google Scholar] [CrossRef] [PubMed]
- Hampel, H.; Vergallo, A.; Caraci, F.; Cuello, A.C.; Lemercier, P.; Vellas, B.; Giudici, K.V.; Baldacci, F.; Hänisch, B.; Haberkamp, M. Future avenues for Alzheimer’s disease detection and therapy: Liquid biopsy, intracellular signaling modulation, systems pharmacology drug discovery. Neuropharmacology 2021, 185, 108081. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Singh, K.K.; Amist, A.D.; Sinha, J.K. Drug Development. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2024, 20, e085882. [Google Scholar] [CrossRef]
- Budd Haeberlein, S.; Harris, T. Promising targets for the treatment of neurodegenerative diseases. Clin. Pharmacol. Ther. 2015, 98, 492–501. [Google Scholar] [CrossRef]
- de Lima, E.P.; Laurindo, L.F.; Catharin, V.C.S.; Direito, R.; Tanaka, M.; Jasmin Santos German, I.; Lamas, C.B.; Guiguer, E.L.; Araújo, A.C.; Fiorini, A.M.R. Polyphenols, Alkaloids, and Terpenoids Against Neurodegeneration: Evaluating the Neuroprotective Effects of Phytocompounds Through a Comprehensive Review of the Current Evidence. Metabolites 2025, 15, 124. [Google Scholar] [CrossRef]
- Pocivavsek, A.; Schwarcz, R.; Erhardt, S. Neuroactive Kynurenines as Pharmacological Targets: New Experimental Tools and Exciting Therapeutic Opportunities. Pharmacol. Rev. 2024, 76, 978–1008. [Google Scholar] [CrossRef]
- van Vliet, E.A.; Aronica, E.; Vezzani, A.; Ravizza, T. Neuroinflammatory pathways as treatment targets and biomarker candidates in epilepsy: Emerging evidence from preclinical and clinical studies. Neuropathol. Appl. Neurobiol. 2018, 44, 91–111. [Google Scholar] [CrossRef]
- Aravindan, N.; Herman, T.; Aravindan, S. Emerging therapeutic targets for neuroblastoma. Expert Opin. Ther. Targets 2020, 24, 899–914. [Google Scholar] [CrossRef]
- Sá, C.M. ‘Interdisciplinary strategies’ in US research universities. High. Educ. 2008, 55, 537–552. [Google Scholar] [CrossRef]
- Lyall, C.; Fletcher, I. Experiments in interdisciplinary capacity-building: The successes and challenges of large-scale interdisciplinary investments. Sci. Public Policy 2013, 40, 1–7. [Google Scholar] [CrossRef]
- Leahey, E.; Barringer, S.N. Universities’ commitment to interdisciplinary research: To what end? Res. Policy 2020, 49, 103910. [Google Scholar] [CrossRef]
- Henley, S.M.; Bates, G.P.; Tabrizi, S.J. Biomarkers for neurodegenerative diseases. Curr. Opin. Neurol. 2005, 18, 698–705. [Google Scholar] [CrossRef] [PubMed]
- Dorsey, E.R.; Papapetropoulos, S.; Xiong, M.; Kieburtz, K. The first frontier: Digital biomarkers for neurodegenerative disorders. Digit. Biomark. 2017, 1, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Cheslow, L.; Snook, A.E.; Waldman, S.A. Biomarkers for managing neurodegenerative diseases. Biomolecules 2024, 14, 398. [Google Scholar] [CrossRef]
- Doroszkiewicz, J.; Groblewska, M.; Mroczko, B. Molecular biomarkers and their implications for the early diagnosis of selected neurodegenerative diseases. Int. J. Mol. Sci. 2022, 23, 4610. [Google Scholar] [CrossRef]
- Olsson, B.; Zetterberg, H.; Hampel, H.; Blennow, K. Biomarker-based dissection of neurodegenerative diseases. Prog. Neurobiol. 2011, 95, 520–534. [Google Scholar] [CrossRef]
- Toader, C.; Dobrin, N.; Brehar, F.-M.; Popa, C.; Covache-Busuioc, R.-A.; Glavan, L.A.; Costin, H.P.; Bratu, B.-G.; Corlatescu, A.D.; Popa, A.A. From recognition to remedy: The significance of biomarkers in neurodegenerative disease pathology. Int. J. Mol. Sci. 2023, 24, 16119. [Google Scholar] [CrossRef]
- Agrawal, I.; Tripathi, P.; Biswas, S. Mass spectrometry based protein biomarkers and drug target discovery and clinical diagnosis in Age-Related progressing neurodegenerative diseases. Drug Metab. Rev. 2022, 54, 22–36. [Google Scholar] [CrossRef]
- Trojanowski, J.Q.; Hampel, H. Neurodegenerative disease biomarkers: Guideposts for disease prevention through early diagnosis and intervention. Prog. Neurobiol. 2011, 95, 491. [Google Scholar] [CrossRef]
- Watson, C.N.; Belli, A.; Di Pietro, V. Small non-coding RNAs: New class of biomarkers and potential therapeutic targets in neurodegenerative disease. Front. Genet. 2019, 10, 364. [Google Scholar] [CrossRef]
- Dang, C.; Wang, Y.; Li, Q.; Lu, Y. Neuroimaging modalities in the detection of Alzheimer’s disease-associated biomarkers. Psychoradiology 2023, 3, kkad009. [Google Scholar] [CrossRef] [PubMed]
- Ewers, M.; Sperling, R.A.; Klunk, W.E.; Weiner, M.W.; Hampel, H. Neuroimaging markers for the prediction and early diagnosis of Alzheimer’s disease dementia. Trends Neurosci. 2011, 34, 430–442. [Google Scholar] [CrossRef] [PubMed]
- Márquez, F.; Yassa, M.A. Neuroimaging biomarkers for Alzheimer’s disease. Mol. Neurodegener. 2019, 14, 21. [Google Scholar] [CrossRef] [PubMed]
- Costa, T.; Premi, E.; Borroni, B.; Manuello, J.; Cauda, F.; Duca, S.; Liloia, D. Local functional connectivity abnormalities in mild cognitive impairment and Alzheimer’s disease: A meta-analytic investigation using minimum Bayes factor activation likelihood estimation. Neuroimage 2024, 298, 120798. [Google Scholar] [CrossRef]
- Cauda, F.; Nani, A.; Liloia, D.; Manuello, J.; Premi, E.; Duca, S.; Fox, P.T.; Costa, T. Finding specificity in structural brain alterations through Bayesian reverse inference. Hum. Brain Mapp. 2020, 41, 4155–4172. [Google Scholar] [CrossRef]
- Kurz, C.; Walker, L.; Rauchmann, B.S.; Perneczky, R. Dysfunction of the blood–brain barrier in Alzheimer’s disease: Evidence from human studies. Neuropathol. Appl. Neurobiol. 2022, 48, e12782. [Google Scholar] [CrossRef]
- Custodia, A.; Aramburu-Núñez, M.; Rodríguez-Arrizabalaga, M.; Pías-Peleteiro, J.M.; Vázquez-Vázquez, L.; Camino-Castiñeiras, J.; Aldrey, J.M.; Castillo, J.; Ouro, A.; Sobrino, T. Biomarkers assessing endothelial dysfunction in Alzheimer’s Disease. Cells 2023, 12, 962. [Google Scholar] [CrossRef]
- Zenaro, E.; Piacentino, G.; Constantin, G. The blood-brain barrier in Alzheimer’s disease. Neurobiol. Dis. 2017, 107, 41–56. [Google Scholar] [CrossRef]
- Barbalho, S.M.; Leme Boaro, B.; da Silva Camarinha Oliveira, J.; Patočka, J.; Barbalho Lamas, C.; Tanaka, M.; Laurindo, L.F. Molecular Mechanisms Underlying Neuroinflammation Intervention with Medicinal Plants: A Critical and Narrative Review of the Current Literature. Pharmaceuticals 2025, 18, 133. [Google Scholar] [CrossRef]
- Padrela, B.; Mahroo, A.; Tee, M.; Sneve, M.H.; Moyaert, P.; Geier, O.; Kuijer, J.P.A.; Beun, S.; Nordhøy, W.; Zhu, Y.D.; et al. Developing blood-brain barrier arterial spin labelling as a non-invasive early biomarker of Alzheimer’s disease (DEBBIE-AD): A prospective observational multicohort study protocol. BMJ Open 2024, 14, e081635. [Google Scholar] [CrossRef]
- Wasielewska, J.M.; Szostak, K.; McInnes, L.E.; Quek, H.; Chaves, J.C.S.; Liddell, J.R.; Koistinaho, J.; Oikari, L.E.; Donnelly, P.S.; White, A.R. Patient-Derived Blood-Brain Barrier Model for Screening Copper Bis(thiosemicarbazone) Complexes as Potential Therapeutics in Alzheimer’s Disease. ACS Chem. Neurosci. 2024, 15, 1432–1455. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R.A.; Miners, J.S.; Love, S. Pathological changes within the cerebral vasculature in Alzheimer’s disease: New perspectives. Brain Pathol. 2022, 32, e13061. [Google Scholar] [CrossRef] [PubMed]
- Manuello, J.; Nani, A.; Premi, E.; Borroni, B.; Costa, T.; Tatu, K.; Liloia, D.; Duca, S.; Cauda, F. The Pathoconnectivity Profile of Alzheimer’s Disease: A Morphometric Coalteration Network Analysis. Front. Neurol. 2017, 8, 739. [Google Scholar] [CrossRef]
- Panayides, A.S.; Pattichis, M.S.; Leandrou, S.; Pitris, C.; Constantinidou, A.; Pattichis, C.S. Radiogenomics for Precision Medicine With a Big Data Analytics Perspective. IEEE J. Biomed. Health Inform. 2019, 23, 2063–2079. [Google Scholar] [CrossRef] [PubMed]
- Landi, I.; Glicksberg, B.S.; Lee, H.C.; Cherng, S.; Landi, G.; Danieletto, M.; Dudley, J.T.; Furlanello, C.; Miotto, R. Deep representation learning of electronic health records to unlock patient stratification at scale. NPJ Digit. Med. 2020, 3, 96. [Google Scholar] [CrossRef]
- Costa, T.; Manuello, J.; Premi, E.; Mattioli, I.; Lasagna, L.; Lahoz, C.B.; Cauda, F.; Duca, S.; Liloia, D. Evaluating the robustness of DTI-ALPS in clinical context: A meta-analytic parallel on Alzheimer’s and Parkinson’s diseases. Sci. Rep. 2024, 14, 26381. [Google Scholar] [CrossRef]
- Rehman, A.; Naz, S.; Razzak, I. Leveraging big data analytics in healthcare enhancement: Trends, challenges and opportunities. Multimed. Syst. 2022, 28, 1339–1371. [Google Scholar] [CrossRef]
- Koch, E.; Pardiñas, A.F.; O’Connell, K.S.; Selvaggi, P.; Camacho Collados, J.; Babic, A.; Marshall, S.E.; Van der Eycken, E.; Angulo, C.; Lu, Y.; et al. How Real-World Data Can Facilitate the Development of Precision Medicine Treatment in Psychiatry. Biol. Psychiatry 2024, 96, 543–551. [Google Scholar] [CrossRef]
- Petti, M.; Farina, L. Network medicine for patients’ stratification: From single-layer to multi-omics. WIREs Mech. Dis. 2023, 15, e1623. [Google Scholar] [CrossRef]
- Szabó, Á.; Galla, Z.; Spekker, E.; Szűcs, M.; Martos, D.; Takeda, K.; Ozaki, K.; Inoue, H.; Yamamoto, S.; Toldi, J. Oxidative and Excitatory Neurotoxic Stresses in CRISPR/Cas9-Induced Kynurenine Aminotransferase Knockout Mice: A Novel Model for Despair-Based Depression and Post-Traumatic Stress Disorder. Front. Biosci. Landmark 2025, 30, 25706. [Google Scholar] [CrossRef]
- Tanaka, M. Beyond the boundaries: Transitioning from categorical to dimensional paradigms in mental health diagnostics. Adv. Clin. Exp. Med. 2024, 33, 1295–1301. [Google Scholar] [CrossRef] [PubMed]
- Borges do Nascimento, I.J.; Marcolino, M.S.; Abdulazeem, H.M.; Weerasekara, I.; Azzopardi-Muscat, N.; Gonçalves, M.A.; Novillo-Ortiz, D. Impact of Big Data Analytics on People’s Health: Overview of Systematic Reviews and Recommendations for Future Studies. J. Med. Internet Res. 2021, 23, e27275. [Google Scholar] [CrossRef] [PubMed]
- Panayides, A.S.; Amini, A.; Filipovic, N.D.; Sharma, A.; Tsaftaris, S.A.; Young, A.; Foran, D.; Do, N.; Golemati, S.; Kurc, T.; et al. AI in Medical Imaging Informatics: Current Challenges and Future Directions. IEEE J. Biomed. Health Inform. 2020, 24, 1837–1857. [Google Scholar] [CrossRef] [PubMed]
- Kopil, C.M.; Asis, A.; Campbell, C.; Chowdhury, S.; Dexter, D.T.; Fargo, K.N.; Lee, K.K.; Matthews, H.; Taylor, A.; Xiao, Y.; et al. A Coalition to Advance Treatments for Parkinson’s Disease, Dementia with Lewy Bodies, and Related Disorders. J. Parkinsons Dis. 2024, 14, 1105–1114. [Google Scholar] [CrossRef]
- Kerkemeyer, L.; Claus, I.; Kutscher, M.; von Stülpnagel, V.; Zur Nieden, P.; Huchtemann, T.; Warnecke, T. Strengthening Communication and Collaboration in the Fragmented German Healthcare System: A Mixed-Method Evaluation of an Interdisciplinary Network for Parkinson’s Disease. J. Parkinsons Dis. 2022, 12, 1307–1317. [Google Scholar] [CrossRef]
- Roth, J.; Roth Oam, C.; Goh, A.M. Partners in progress: Advancing dementia research through collaboration. Dementia 2025, 24, 14–22. [Google Scholar] [CrossRef]
- Calabresi, P.; Nigro, P.; Schwarz, H.B. A nurse-led model increases quality of care in Parkinson disease. Neurology 2019, 92, 739–740. [Google Scholar] [CrossRef]
- Lowell, E.R.; Macpherson, C.; Villarreal-Cavazos, K.; Chandrana, A.; Sevitz, J.S.; Veit, K.; Dakin, A.; Quinn, L.; Troche, M.S. An interdisciplinary approach to rehabilitation in Parkinson’s disease: Case series. Neurodegener. Dis. Manag. 2024, 14, 217–226. [Google Scholar] [CrossRef]
- Guo, L.; Normando, E.M.; Shah, P.A.; De Groef, L.; Cordeiro, M.F. Oculo-visual abnormalities in Parkinson’s disease: Possible value as biomarkers. Mov. Disord. 2018, 33, 1390–1406. [Google Scholar] [CrossRef]
- Postuma, R.B.; Berg, D.; Stern, M.; Poewe, W.; Olanow, C.W.; Oertel, W.; Obeso, J.; Marek, K.; Litvan, I.; Lang, A.E.; et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 2015, 30, 1591–1601. [Google Scholar] [CrossRef]
- Koros, C.; Stefanis, L.; Scarmeas, N. Parkinsonism and dementia. J. Neurol. Sci. 2022, 433, 120015. [Google Scholar] [CrossRef] [PubMed]
- Fleisher, J.; Barbosa, W.; Sweeney, M.M.; Oyler, S.E.; Lemen, A.C.; Fazl, A.; Ko, M.; Meisel, T.; Friede, N.; Dacpano, G.; et al. Interdisciplinary Home Visits for Individuals with Advanced Parkinson’s Disease and Related Disorders. J. Am. Geriatr. Soc. 2018, 66, 1226–1232. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.; Chitranshi, N.; Gupta, V.B. Genetic Risk, Inflammation, and Therapeutics: An Editorial Overview of Recent Advances in Aging Brains and Neurodegeneration. Aging Dis. 2024, 15, 1989–1993. [Google Scholar] [CrossRef] [PubMed]
- Grant, M.; van der Waal, M.; Pastrana, T.; Rhee, J.; Teunissen, S. Palliative care interventional research in general practice: A narrative review of factors affecting research conduct. Ann. Palliat. Med. 2024, 13, 869–879. [Google Scholar] [CrossRef]
- Vissers, C.; Ming, G.L.; Song, H. Nanoparticle technology and stem cell therapy team up against neurodegenerative disorders. Adv. Drug Deliv. Rev. 2019, 148, 239–251. [Google Scholar] [CrossRef]
- Strafella, C.; Caputo, V.; Galota, M.R.; Zampatti, S.; Marella, G.; Mauriello, S.; Cascella, R.; Giardina, E. Application of Precision Medicine in Neurodegenerative Diseases. Front. Neurol. 2018, 9, 701. [Google Scholar] [CrossRef]
- Sweeney, P.; Park, H.; Baumann, M.; Dunlop, J.; Frydman, J.; Kopito, R.; McCampbell, A.; Leblanc, G.; Venkateswaran, A.; Nurmi, A.; et al. Protein misfolding in neurodegenerative diseases: Implications and strategies. Transl. Neurodegener. 2017, 6, 6. [Google Scholar] [CrossRef]
- Gontijo, V.S.; Viegas, F.P.D.; Ortiz, C.J.C.; de Freitas Silva, M.; Damasio, C.M.; Rosa, M.C.; Campos, T.G.; Couto, D.S.; Tranches Dias, K.S.; Viegas, C. Molecular Hybridization as a Tool in the Design of Multi-target Directed Drug Candidates for Neurodegenerative Diseases. Curr. Neuropharmacol. 2020, 18, 348–407. [Google Scholar] [CrossRef]
- Yan, H.; Coughlin, C.; Smolin, L.; Wang, J. Unraveling the Complexity of Parkinson’s Disease: Insights into Pathogenesis and Precision Interventions. Adv. Sci. 2024, 11, 2405309. [Google Scholar] [CrossRef]
- Raza, C.; Anjum, R. Parkinson’s disease: Mechanisms, translational models and management strategies. Life Sci. 2019, 226, 77–90. [Google Scholar] [CrossRef]
- Sian-Hulsmann, J.; Riederer, P.; Michel, T.M. Metabolic Dysfunction in Parkinson’s Disease: Unraveling the Glucose-Lipid Connection. Biomedicines 2024, 12, 2841. [Google Scholar] [CrossRef] [PubMed]
- Piterà, P.; Cremascoli, R.; Bianchi, L.; Borghesi, F.; Verme, F.; Cattaldo, S.; Prina, E.; Mai, S.; Cipresso, P.; Galli, F.; et al. Autonomic Modulation in Parkinson’s Disease Using Whole-Body Cryostimulation: A Pilot Study. Biomedicines 2024, 12, 2467. [Google Scholar] [CrossRef] [PubMed]
- Battaglia, S.; Nazzi, C.; Lonsdorf, T.B.; Thayer, J.F. Neuropsychobiology of fear-induced bradycardia in humans: Progress and pitfalls. Mol. Psychiatry 2024, 29, 3826–3840. [Google Scholar] [CrossRef] [PubMed]
- Rose, O.; Huber, S.; Trinka, E.; Pachmayr, J.; Clemens, S. Treatment of Parkinson’s Disease Psychosis-A Systematic Review and Multi-Methods Approach. Biomedicines 2024, 12, 2317. [Google Scholar] [CrossRef]
- Paulėkas, E.; Vanagas, T.; Lagunavičius, S.; Pajėdienė, E.; Petrikonis, K.; Rastenytė, D. Navigating the Neurobiology of Parkinson’s: The Impact and Potential of α-Synuclein. Biomedicines 2024, 12, 2121. [Google Scholar] [CrossRef]
- Inchiosa, M.A., Jr. Beta(2)-Adrenergic Suppression of Neuroinflammation in Treatment of Parkinsonism, with Relevance for Neurodegenerative and Neoplastic Disorders. Biomedicines 2024, 12, 1720. [Google Scholar] [CrossRef]
- Tanaka, M.; Vécsei, L. Revolutionizing our understanding of Parkinson’s disease: Dr. Heinz Reichmann’s pioneering research and future research direction. J. Neural Transm. 2024, 131, 1367–1387. [Google Scholar] [CrossRef]
- Cavaloiu, B.; Simina, I.E.; Vilciu, C.; Trăilă, I.A.; Puiu, M. Nusinersen Improves Motor Function in Type 2 and 3 Spinal Muscular Atrophy Patients across Time. Biomedicines 2024, 12, 1782. [Google Scholar] [CrossRef]
- Dell’Angelica, D.; Singh, K.; Colwell, C.S.; Ghiani, C.A. Circadian Interventions in Preclinical Models of Huntington’s Disease: A Narrative Review. Biomedicines 2024, 12, 1777. [Google Scholar] [CrossRef]
- Yoo, J.K.; Kwon, S.H.; Yoon, S.H.; Lee, J.E.; Jeon, J.E.; Chung, J.H.; Lee, S.Y. Preservation of Vocal Function in Amyotrophic Lateral Sclerosis (ALS) Patients Following Percutaneous Dilatational Tracheostomy (PDT) and Adjuvant Therapies. Biomedicines 2024, 12, 1734. [Google Scholar] [CrossRef]
- Parvanovova, P.; Evinova, A.; Grofik, M.; Hnilicova, P.; Tatarkova, Z.; Turcanova-Koprusakova, M. Mitochondrial Dysfunction in Sporadic Amyotrophic Lateral Sclerosis Patients: Insights from High-Resolution Respirometry. Biomedicines 2024, 12, 1294. [Google Scholar] [CrossRef] [PubMed]
- Lo, H.K.; Fong, T.K.; Cheung, T.; Ngan, S.J.; Lui, W.V.; Chan, W.C.; Wong, C.S.; Wong, T.K.; Cheng, C.P. Enhanced Cognition and Modulation of Brain Connectivity in Mild Neurocognitive Disorder: The Promise of Transcranial Pulse Stimulation. Biomedicines 2024, 12, 2081. [Google Scholar] [CrossRef] [PubMed]
- Strobel, J.; Yousefzadeh-Nowshahr, E.; Deininger, K.; Bohn, K.P.; von Arnim, C.A.F.; Otto, M.; Solbach, C.; Anderl-Straub, S.; Polivka, D.; Fissler, P.; et al. Exploratory Tau PET/CT with [11C]PBB3 in Patients with Suspected Alzheimer’s Disease and Frontotemporal Lobar Degeneration: A Pilot Study on Correlation with PET Imaging and Cerebrospinal Fluid Biomarkers. Biomedicines 2024, 12, 1460. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, K.; Tsuji, M.; Oguchi, T.; Momma, Y.; Ohashi, H.; Ito, N.; Nohara, T.; Nakanishi, T.; Ishida, A.; Hosonuma, M.; et al. Comparison of Protective Effects of Antidepressants Mediated by Serotonin Receptor in Aβ-Oligomer-Induced Neurotoxicity. Biomedicines 2024, 12, 1158. [Google Scholar] [CrossRef]
- Hayden, M.R. Cerebral Microbleeds Associate with Brain Endothelial Cell Activation-Dysfunction and Blood-Brain Barrier Dysfunction/Disruption with Increased Risk of Hemorrhagic and Ischemic Stroke. Biomedicines 2024, 12, 1463. [Google Scholar] [CrossRef]
- Frodella, C.M.; Pruett, S.B.; Kaplan, B.L.F. Mild Disease Course of Experimental Autoimmune Encephalomyelitis without Pertussis Toxin: Brain Transcriptome Analysis Reveals Similar Signaling to Active Lesions in Multiple Sclerosis. Biomedicines 2024, 12, 1215. [Google Scholar] [CrossRef]
- Jesus, J.; Ambrósio, J.; Meira, D.; Rodriguez-Uña, I.; Beirão, J.M. Blinded by the Mind: Exploring the Hidden Psychiatric Burden in Glaucoma Patients. Biomedicines 2025, 13, 116. [Google Scholar] [CrossRef]
- Sharbafshaaer, M.; Cirillo, G.; Esposito, F.; Tedeschi, G.; Trojsi, F. Harnessing Brain Plasticity: The Therapeutic Power of Repetitive Transcranial Magnetic Stimulation (rTMS) and Theta Burst Stimulation (TBS) in Neurotransmitter Modulation, Receptor Dynamics, and Neuroimaging for Neurological Innovations. Biomedicines 2024, 12, 2506. [Google Scholar] [CrossRef]
- Frodella, C.M.; Pruett, S.B.; Ross, M.K.; Kaplan, B.L.F. Oxytocin and Vasopressin Gene Expression in the Brain as Potential Biomarkers for Cannabidiol Therapeutic Efficacy. Biomedicines 2024, 12, 1273. [Google Scholar] [CrossRef]
- Vita, G.; Vita, G.L.; Musumeci, O.; Rodolico, C.; Messina, S. Genetic neuromuscular disorders: Living the era of a therapeutic revolution. Part 2: Diseases of motor neuron and skeletal muscle. Neurol. Sci. 2019, 40, 671–681. [Google Scholar] [CrossRef]
- Robert, P.; Manera, V.; Derreumaux, A.; Ferrandez, Y.; Montesino, M.; Leone, E.; Fabre, R.; Bourgeois, J. Efficacy of a web app for cognitive training (MeMo) regarding cognitive and behavioral performance in people with neurocognitive disorders: Randomized controlled trial. J. Med. Internet Res. 2020, 22, e17167. [Google Scholar] [CrossRef] [PubMed]
- Battaglia, S.; Avenanti, A.; Vécsei, L.; Tanaka, M. Neural correlates and molecular mechanisms of memory and learning. Int. J. Mol. Sci. 2024, 25, 2724. [Google Scholar] [CrossRef] [PubMed]
- Barbalho, S.M.; Laurindo, L.F.; de Oliveira Zanuso, B.; da Silva, R.M.S.; Gallerani Caglioni, L.; Nunes Junqueira de Moraes, V.B.F.; Fornari Laurindo, L.; Dogani Rodrigues, V.; da Silva Camarinha Oliveira, J.; Beluce, M.E. AdipoRon’s Impact on Alzheimer’s Disease—A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2025, 26, 484. [Google Scholar] [CrossRef] [PubMed]
- Nunes, Y.C.; Mendes, N.M.; Pereira de Lima, E.; Chehadi, A.C.; Lamas, C.B.; Haber, J.F.; dos Santos Bueno, M.; Araújo, A.C.; Catharin, V.C.S.; Detregiachi, C.R.P. Curcumin: A golden approach to healthy aging: A systematic review of the evidence. Nutrients 2024, 16, 2721. [Google Scholar] [CrossRef]
- de Lima, E.; Tanaka, M.; Lamas, C.; Quesada, K.; Detregiachi, C.; Araújo, A.; Guiguer, E.; Catharin, V.; de Castro, M.; Junior, E. Vascular Impairment, Muscle Atrophy, and Cognitive Decline: Critical Age-Related Conditions. Biomedicines 2024, 12, 2096. [Google Scholar] [CrossRef]
- Battaglia, S.; Nazzi, C.; Fullana, M.A.; di Pellegrino, G.; Borgomaneri, S. ‘Nip it in the bud’: Low-frequency rTMS of the prefrontal cortex disrupts threat memory consolidation in humans. Behav. Res. Ther. 2024, 178, 104548. [Google Scholar] [CrossRef]
- Battaglia, S.; Avenanti, A.; Vécsei, L.; Tanaka, M. Neurodegeneration in cognitive impairment and mood disorders for experimental, clinical and translational neuropsychiatry. Biomedicines 2024, 12, 574. [Google Scholar] [CrossRef]
- Tanaka, M.; Szabó, Á.; Vécsei, L. Redefining roles: A paradigm shift in tryptophan–kynurenine metabolism for innovative clinical applications. Int. J. Mol. Sci. 2024, 25, 12767. [Google Scholar] [CrossRef]
- Liloia, D.; Zamfira, D.A.; Tanaka, M.; Manuello, J.; Crocetta, A.; Keller, R.; Cozzolino, M.; Duca, S.; Cauda, F.; Costa, T. Disentangling the role of gray matter volume and concentration in autism spectrum disorder: A meta-analytic investigation of 25 years of voxel-based morphometry research. Neurosci. Biobehav. Rev. 2024, 164, 105791. [Google Scholar] [CrossRef]
- Kosel, M.; Perroud, N. Neurodevelopmental disorders: From pathophysiology to novel therapeutic approaches. Biomedicines 2022, 10, 623. [Google Scholar] [CrossRef]
- Hampel, H.; Vergallo, A.; Aguilar, L.F.; Benda, N.; Broich, K.; Cuello, A.C.; Cummings, J.; Dubois, B.; Federoff, H.J.; Fiandaca, M. Precision pharmacology for Alzheimer’s disease. Pharmacol. Res. 2018, 130, 331–365. [Google Scholar] [CrossRef] [PubMed]
- McDermott, R. On the scientific study of small samples: Challenges confronting quantitative and qualitative methodologies. Leadersh. Q. 2023, 34, 101675. [Google Scholar] [CrossRef]
- Cao, Y.; Chen, R.C.; Katz, A.J. Why is a small sample size not enough? Oncologist 2024, 29, 761–763. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Battaglia, S.; Giménez-Llort, L.; Chen, C.; Hepsomali, P.; Avenanti, A.; Vécsei, L. Innovation at the intersection: Emerging translational research in neurology and psychiatry. Cells 2024, 13, 790. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanaka, M.; Battaglia, S.; Liloia, D. Navigating Neurodegeneration: Integrating Biomarkers, Neuroinflammation, and Imaging in Parkinson’s, Alzheimer’s, and Motor Neuron Disorders. Biomedicines 2025, 13, 1045. https://doi.org/10.3390/biomedicines13051045
Tanaka M, Battaglia S, Liloia D. Navigating Neurodegeneration: Integrating Biomarkers, Neuroinflammation, and Imaging in Parkinson’s, Alzheimer’s, and Motor Neuron Disorders. Biomedicines. 2025; 13(5):1045. https://doi.org/10.3390/biomedicines13051045
Chicago/Turabian StyleTanaka, Masaru, Simone Battaglia, and Donato Liloia. 2025. "Navigating Neurodegeneration: Integrating Biomarkers, Neuroinflammation, and Imaging in Parkinson’s, Alzheimer’s, and Motor Neuron Disorders" Biomedicines 13, no. 5: 1045. https://doi.org/10.3390/biomedicines13051045
APA StyleTanaka, M., Battaglia, S., & Liloia, D. (2025). Navigating Neurodegeneration: Integrating Biomarkers, Neuroinflammation, and Imaging in Parkinson’s, Alzheimer’s, and Motor Neuron Disorders. Biomedicines, 13(5), 1045. https://doi.org/10.3390/biomedicines13051045