Ocular Surface Microbiota and Corneal Transplant Outcome: Is There a Link?
Abstract
:1. Introduction
2. The Ocular Surface Microbiota: Composition and Function
3. Methodologies for OSM Identification and Quantification
4. Microbial Diversity: A Key Indicator of OSM Health
5. Lessons from the Gut Microbiota
6. Parallels Between Gut and Ocular Surface Microbiota in Transplantation
7. Corneal Transplantation: Causes of Graft Failure and the Role of Microbiota
8. Dysbiosis and Corneal Transplantation: A Plausible Connection?
9. Ocular Surface Diseases and Their Link to Microbial Dysbiosis
10. The Ocular Surface Microbiota in Keratoconus: Emerging Insights
11. Current Knowledge Gaps
12. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Aragona, P.; Baudouin, C.; Benitez Del Castillo, J.M.; Messmer, E.; Barabino, S.; Merayo-Lloves, J.; Brignole-Baudouin, F.; Inferrera, L.; Rolando, M.; Mencucci, R.; et al. The Ocular Microbiome and Microbiota and Their Effects on Ocular Surface Pathophysiology and Disorders. Surv. Ophthalmol. 2021, 66, 907–925. [Google Scholar] [CrossRef] [PubMed]
- Antman, G.; Ritzer, L.; Galor, A.; Verticchio Vercellin, A.; Siesky, B.A.; Alabi, D.; Vayner, J.; Segev, F.; Harris, A. The Relationship between Dry Eye Disease and Human Microbiota: A Review of the Science. Exp. Eye Res. 2024, 245, 109951. [Google Scholar] [CrossRef]
- Chang, C.-C.J.; Winn, B.J. Perturbations of the Ocular Surface Microbiome and Their Effect on Host Immune Function. Curr. Opin. Ophthalmol. 2023, 34, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Wang, Y.; Wang, W.; Lin, P.; Huang, Y. Composition and Diversity of Bacterial Community on the Ocular Surface of Patients With Meibomian Gland Dysfunction. Invest. Ophthalmol. Vis. Sci. 2019, 60, 4774–4783. [Google Scholar] [CrossRef] [PubMed]
- Dong, K.; Pu, J.; Yang, J.; Zhou, G.; Ji, X.; Kang, Z.; Li, J.; Yuan, M.; Ning, X.; Zhang, Z.; et al. The Species-Level Microbiota of Healthy Eyes Revealed by the Integration of Metataxonomics with Culturomics and Genome Analysis. Front. Microbiol. 2022, 13, 950591. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, H.; Xia, T.; Huang, Y. Characterization of Fungal Microbiota on Normal Ocular Surface of Humans. Clin. Microbiol. Infect. 2020, 26, e9–e123. [Google Scholar] [CrossRef]
- Ge, C.; Wei, C.; Yang, B.-X.; Cheng, J.; Huang, Y.-S. Conjunctival Microbiome Changes Associated with Fungal Keratitis: Metagenomic Analysis. Int. J. Ophthalmol. 2019, 12, 194–200. [Google Scholar] [CrossRef]
- Shivaji, S.; Jayasudha, R.; Sai Prashanthi, G.; Kalyana Chakravarthy, S.; Sharma, S. The Human Ocular Surface Fungal Microbiome. Invest. Ophthalmol. Vis. Sci. 2019, 60, 451–459. [Google Scholar] [CrossRef]
- Doan, T.; Akileswaran, L.; Andersen, D.; Johnson, B.; Ko, N.; Shrestha, A.; Shestopalov, V.; Lee, C.S.; Lee, A.Y.; Van Gelder, R.N. Paucibacterial Microbiome and Resident DNA Virome of the Healthy Conjunctiva. Invest. Ophthalmol. Vis. Sci. 2016, 57, 5116–5126. [Google Scholar] [CrossRef]
- Clougher, S.B.; Foschi, C.; Moramarco, A.; Fontana, L.; Lazzarotto, T.; Marangoni, A.; Versura, P. Critical Insights into the Ocular Surface Microbiome: The Need to Standardize. New Microbiol. 2024, 47, 201–216. [Google Scholar]
- Ozkan, J.; Willcox, M.D. The Ocular Microbiome: Molecular Characterisation of a Unique and Low Microbial Environment. Curr. Eye Res. 2019, 44, 685–694. [Google Scholar] [CrossRef] [PubMed]
- Peter, V.G.; Morandi, S.C.; Herzog, E.L.; Zinkernagel, M.S.; Zysset-Burri, D.C. Investigating the Ocular Surface Microbiome: What Can It Tell Us? Clin. Ophthalmol. 2023, 17, 259–271. [Google Scholar] [CrossRef] [PubMed]
- Tong, L.; Constancias, F.; Hou, A.; Chua, S.L.; Drautz-Moses, D.I.; Schuster, S.C.; Yang, L.; Williams, R.B.H.; Kjelleberg, S. Shotgun Metagenomic Sequencing Analysis of Ocular Surface Microbiome in Singapore Residents with Mild Dry Eye. Front. Med. 2022, 9, 1034131. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.-R.; Shin, J.; Guevarra, R.; Lee, J.H.; Kim, D.W.; Seol, K.-H.; Lee, J.-H.; Kim, H.B.; Isaacson, R. Deciphering Diversity Indices for a Better Understanding of Microbial Communities. J. Microbiol. Biotechnol. 2017, 27, 2089–2093. [Google Scholar] [CrossRef]
- Petersen, C.; Round, J.L. Defining Dysbiosis and Its Influence on Host Immunity and Disease. Cell. Microbiol. 2014, 16, 1024–1033. [Google Scholar] [CrossRef]
- Medina, C.K.; Aykut, B. Gut Microbial Dysbiosis and Implications in Solid Organ Transplantation. Biomedicines 2024, 12, 2792. [Google Scholar] [CrossRef]
- Hou, Z.; Zhang, T.; Ding, Z.; Qian, T.; Wang, P.; Wu, B.; Pan, X.; Li, X. Analysis on the Change of Gut Microbiota and Metabolome in Lung Transplant Patients. Microbiol. Spectr. 2024, 12, e0314223. [Google Scholar] [CrossRef]
- Annavajhala, M.K.; Gomez-Simmonds, A.; Macesic, N.; Sullivan, S.B.; Kress, A.; Khan, S.D.; Giddins, M.J.; Stump, S.; Kim, G.I.; Narain, R.; et al. Colonizing Multidrug-Resistant Bacteria and the Longitudinal Evolution of the Intestinal Microbiome after Liver Transplantation. Nat. Commun. 2019, 10, 4715. [Google Scholar] [CrossRef]
- Swarte, J.C.; Douwes, R.M.; Hu, S.; Vich Vila, A.; Eisenga, M.F.; van Londen, M.; Gomes-Neto, A.W.; Weersma, R.K.; Harmsen, H.J.M.; Bakker, S.J.L. Characteristics and Dysbiosis of the Gut Microbiome in Renal Transplant Recipients. J. Clin. Med. 2020, 9, 386. [Google Scholar] [CrossRef]
- Kim, J.E.; Kim, H.-E.; Cho, H.; Park, J.I.; Kwak, M.-J.; Kim, B.-Y.; Yang, S.H.; Lee, J.P.; Kim, D.K.; Joo, K.W.; et al. Effect of the Similarity of Gut Microbiota Composition between Donor and Recipient on Graft Function after Living Donor Kidney Transplantation. Sci. Rep. 2020, 10, 18881. [Google Scholar] [CrossRef]
- Lee, J.R.; Muthukumar, T.; Dadhania, D.; Toussaint, N.C.; Ling, L.; Pamer, E.; Suthanthiran, M. Gut Microbial Community Structure and Complications after Kidney Transplantation: A Pilot Study. Transplantation 2014, 98, 697–705. [Google Scholar] [CrossRef] [PubMed]
- Schirmer, M.; Smeekens, S.P.; Vlamakis, H.; Jaeger, M.; Oosting, M.; Franzosa, E.A.; Ter Horst, R.; Jansen, T.; Jacobs, L.; Bonder, M.J.; et al. Linking the Human Gut Microbiome to Inflammatory Cytokine Production Capacity. Cell 2016, 167, 1125–1136.e8. [Google Scholar] [CrossRef]
- Swarte, J.C.; Li, Y.; Hu, S.; Björk, J.R.; Gacesa, R.; Vich Vila, A.; Douwes, R.M.; Collij, V.; Kurilshikov, A.; Post, A.; et al. Gut Microbiome Dysbiosis Is Associated with Increased Mortality after Solid Organ Transplantation. Sci Transl Med 2022, 14, eabn7566. [Google Scholar] [CrossRef] [PubMed]
- Kato, K.; Nagao, M.; Miyamoto, K.; Oka, K.; Takahashi, M.; Yamamoto, M.; Matsumura, Y.; Kaido, T.; Uemoto, S.; Ichiyama, S. Longitudinal Analysis of the Intestinal Microbiota in Liver Transplantation. Transplant. Direct 2017, 3, e144. [Google Scholar] [CrossRef] [PubMed]
- Watzenboeck, M.L.; Gorki, A.-D.; Quattrone, F.; Gawish, R.; Schwarz, S.; Lambers, C.; Jaksch, P.; Lakovits, K.; Zahalka, S.; Rahimi, N.; et al. Multi-Omics Profiling Predicts Allograft Function after Lung Transplantation. Eur. Respir. J. 2022, 59, 2003292. [Google Scholar] [CrossRef]
- Zhang, S.; Swarte, J.C.; Gacesa, R.; Knobbe, T.J.; Kremer, D.; Jansen, B.H.; de Borst, M.H.; Transplant Lines Investigators Harmsen, H.J.M.; Erasmus, M.E.; Verschuuren, E.A.M.; et al. The Gut Microbiome in End-Stage Lung Disease and Lung Transplantation. mSystems 2024, 9, e0131223. [Google Scholar] [CrossRef]
- McIntosh, C.M.; Chen, L.; Shaiber, A.; Eren, A.M.; Alegre, M.-L. Gut Microbes Contribute to Variation in Solid Organ Transplant Outcomes in Mice. Microbiome 2018, 6, 96. [Google Scholar] [CrossRef]
- Yu, F.S.; Hazlett, L.D. Toll-like receptors and the eye. Investig. Ophthalmol. Vis. Sci. 2006, 47, 1255–1263. [Google Scholar] [CrossRef]
- McDermott, A.J.; Huffnagle, G.B. The microbiome and regulation of mucosal immunity. Immunology 2014, 142, 24–31. [Google Scholar] [CrossRef]
- Galletti, J.G.; Guzmán, M.; Giordano, M.N. Mucosal Immune Tolerance at the Ocular Surface in Health and Disease. Immunology 2017, 150, 397–407. [Google Scholar] [CrossRef]
- Simmons, K.T.; Xiao, Y.; Pflugfelder, S.C.; de Paiva, C.S. Inflammatory Response to Lipopolysaccharide on the Ocular Surface in a Murine Dry Eye Model. Investig. Ophthalmol. Vis. Sci. 2016, 57, 2443–2451. [Google Scholar] [CrossRef] [PubMed]
- Kespohl, M.; Vachharajani, N.; Luu, M.; Harb, H.; Pautz, S.; Wolff, S.; Sillner, N.; Walker, A.; Schmitt-Kopplin, P.; Boettger, T.; et al. The Microbial Metabolite Butyrate Induces Expression of Th1-Associated Factors in CD4+ T Cells. Front. Immunol. 2017, 8, 1036. [Google Scholar] [CrossRef] [PubMed]
- Wrzosek, L.; Miquel, S.; Noordine, M.-L.; Bouet, S.; Joncquel Chevalier-Curt, M.; Robert, V.; Philippe, C.; Bridonneau, C.; Cherbuy, C.; Robbe-Masselot, C.; et al. Bacteroides Thetaiotaomicron and FaecalibacteriumPrausnitzii Influence the Production of Mucus Glycans and the Development of Goblet Cells in the Colonic Epithelium of a Gnotobiotic Model Rodent. BMC Biol. 2013, 11, 61. [Google Scholar] [CrossRef] [PubMed]
- Shi, N.; Li, N.; Duan, X.; Niu, H. Interaction between the Gut Microbiome and Mucosal Immune System. Mil. Med. Res. 2017, 4, 14. [Google Scholar] [CrossRef]
- Wang, E.Y.; Kong, X.; Wolle, M.; Gasquet, N.; Ssekasanvu, J.; Mariotti, S.P.; Bourne, R.; Taylor, H.; Resnikoff, S.; West, S. Global Trends in Blindness and Vision Impairment Resulting from Corneal Opacity 1984–2020. Ophthalmology 2023, 130, 863–871. [Google Scholar] [CrossRef]
- Flaxman, S.R.; Bourne, R.R.A.; Resnikoff, S.; Ackland, P.; Braithwaite, T.; Cicinelli, M.V.; Das, A.; Jonas, J.B.; Keeffe, J.; Kempen, J.H.; et al. Global Causes of Blindness and Distance Vision Impairment 1990–2020: A Systematic Review and Meta-Analysis. Lancet Glob. Health 2017, 5, e1221–e1234. [Google Scholar] [CrossRef]
- DeMatteo, J. 2023 Eye Banking Statistical Report—Executive Summary. Eye Bank. Corneal Transplant. 2024, 3, e0034. [Google Scholar]
- Gómez-Benlloch, A.; Montesel, A.; Pareja-Aricò, L.; Mingo-Botín, D.; Michael, R.; Barraquer, R.I.; Alió, J. Causes of Corneal Transplant Failure: A Multicentric Study. Acta Ophthalmol. 2021, 99, e922–e928. [Google Scholar] [CrossRef]
- Taylor, A.W. Ocular Immune Privilege. Eye 2009, 23, 1885–1889. [Google Scholar] [CrossRef]
- Treacy, O.; Fahy, G.; Ritter, T.; O’Flynn, L. Corneal Immunosuppressive Mechanisms, Anterior Chamber-Associated Immune Deviation (ACAID) and Their Role in Allograft Rejection. Methods Mol. Biol. 2016, 1371, 205–214. [Google Scholar] [CrossRef]
- Hamrah, P.; Liu, Y.; Zhang, Q.; Dana, M.R. Alterations in Corneal Stromal Dendritic Cell Phenotype and Distribution in Inflammation. Arch. Ophthalmol. 2003, 121, 1132–1140. [Google Scholar] [CrossRef] [PubMed]
- Ozkan, J.; Majzoub, M.E.; Coroneo, M.; Thomas, T.; Willcox, M. Ocular Microbiome Changes in Dry Eye Disease and Meibomian Gland Dysfunction. Exp. Eye Res. 2023, 235, 109615. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.; Li, J.; Zou, Y.; Hu, X.; Deng, X.; Zou, B.; Liu, Y.; Wei, L.; Liang, L.; Wen, X. Metagenomic Analysis Reveals the Heterogeneity of Conjunctival Microbiota Dysbiosis in Dry Eye Disease. Front. Cell Dev. Biol. 2021, 9, 731867. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.; Li, J.; Zhang, S.; Liao, Y.; Guo, S.; Liang, J.; Deng, X.; Liu, Y.; Zou, B.; Wen, X.; et al. Characterization of Conjunctival Microbiome Dysbiosis Associated with Allergic Conjunctivitis. Allergy 2021, 76, 596–600. [Google Scholar] [CrossRef]
- Leonardi, A.; Modugno, R.L.; Cavarzeran, F.; Rosani, U. Metagenomic Analysis of the Conjunctival Bacterial and Fungal Microbiome in Vernal Keratoconjunctivitis. Allergy 2021, 76, 3215–3217. [Google Scholar] [CrossRef]
- Shivaji, S.; Jayasudha, R.; Chakravarthy, S.K.; SaiAbhilash, C.R.; Sai Prashanthi, G.; Sharma, S.; Garg, P.; Murthy, S.I. Alterations in the Conjunctival Surface Bacterial Microbiome in Bacterial Keratitis Patients. Exp. Eye Res. 2021, 203, 108418. [Google Scholar] [CrossRef]
- Rocha-de-Lossada, C.; Mazzotta, C.; Gabrielli, F.; Papa, F.T.; Gómez-Huertas, C.; García-López, C.; Urbinati, F.; Rachwani-Anil, R.; García-Lorente, M.; Sánchez-González, J.-M.; et al. Ocular Surface Microbiota in Naïve Keratoconus: A Multicenter Validation Study. J. Clin. Med. 2023, 12, 6354. [Google Scholar] [CrossRef]
- Rescigno, M.; Penna, G. Postbiotic-Based Composition for Treatment of Ocular Inflammation. International Patent Application WO2018/024833 A1, 8 February 2018. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Potenza, M.; Moramarco, A.; Astolfi, A.; Ciavarella, C.; Fontana, L.; Versura, P. Ocular Surface Microbiota and Corneal Transplant Outcome: Is There a Link? Biomedicines 2025, 13, 972. https://doi.org/10.3390/biomedicines13040972
Potenza M, Moramarco A, Astolfi A, Ciavarella C, Fontana L, Versura P. Ocular Surface Microbiota and Corneal Transplant Outcome: Is There a Link? Biomedicines. 2025; 13(4):972. https://doi.org/10.3390/biomedicines13040972
Chicago/Turabian StylePotenza, Michele, Antonio Moramarco, Annalisa Astolfi, Carmen Ciavarella, Luigi Fontana, and Piera Versura. 2025. "Ocular Surface Microbiota and Corneal Transplant Outcome: Is There a Link?" Biomedicines 13, no. 4: 972. https://doi.org/10.3390/biomedicines13040972
APA StylePotenza, M., Moramarco, A., Astolfi, A., Ciavarella, C., Fontana, L., & Versura, P. (2025). Ocular Surface Microbiota and Corneal Transplant Outcome: Is There a Link? Biomedicines, 13(4), 972. https://doi.org/10.3390/biomedicines13040972