Long COVID and Associated Factors Among Chinese Residents Aged 16 Years and Older in Canada: A Cross-Sectional Online Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Main Outcome Variable—Long COVID
2.3. Long COVID Experience
2.4. Covariates
2.4.1. Background and General Sociodemographic Information
2.4.2. COVID-19 Infection Experiences
2.4.3. Health and Health Behaviors
2.4.4. Vaccination History
2.5. Missing Data
2.6. Statistical Analyses
3. Results
3.1. Participants’ Sociodemographic and Health-Related Characteristics
3.2. Participants’ COVID-Related and Vaccine-Related Characteristics
3.3. Participants’ Long COVID Experience, Duration, Symptoms, and Underlying Diseases
3.4. Participant Characteristics Associated with Long COVID Experience
3.5. Sensitivity Analysis
4. Discussion
4.1. Long COVID Experience, Duration, Symptoms, and Underlying Diseases
4.2. Sociodemographic Characteristics, Health-Related Factors, and Long COVID
4.3. Health Status and Long COVID
4.4. Number of Positive COVID-19 Test Results and Long COVID
4.5. COVID-19 Symptom Severity and Long COVID
4.6. COVID-19 Treatment Received and Long COVID
4.7. Vaccine-Related Factors and Long COVID
4.8. Strengths and Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization [WHO]. Coronavirus Disease (COVID-19) Pandemic|WHO Europe. Available online: https://www.who.int/europe/emergencies/situations/covid-19 (accessed on 3 April 2025).
- WHO. WHO COVID-19 Dashboard|WHO. Available online: https://data.who.int/dashboards/covid19/ (accessed on 8 December 2024).
- Wang, L.; Wang, J.; Fatholahi, S.N.; Chapman, M. Assessing the impact of COVID-19 on human activities in the Greater Toronto Area by nighttime light images and active COVID-19 cases. In Proceedings of the Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17 July 2022. [Google Scholar] [CrossRef]
- Statistics Canada. Chinese New Year and Quality of Life Among Chinese in Canada|StatCan. Available online: https://www.statcan.gc.ca/o1/en/plus/2816-chinese-new-year-and-quality-life-among-chinese-canada (accessed on 8 December 2024).
- Lu, C.; McGinn, M.K.; Xu, X.; Sylvestre, J. Living in two cultures: Chinese Canadians’ perspectives on health. J. Immigr. Minor. Health 2017, 19, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Han, X.; Jiang, N.; Cao, Y.; Alwalid, O.; Gu, J.; Fan, Y.; Zheng, C. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: A descriptive study. Lancet Infect. Dis. 2020, 20, 425–434. [Google Scholar] [CrossRef]
- Azer, S.A. COVID-19: Pathophysiology, diagnosis, complications and investigational therapeutics. New Microbes New Infect. 2020, 37, 100738. [Google Scholar] [CrossRef]
- Crook, H.; Raza, S.; Nowell, J.; Young, M.; Edison, P. Long COVID—Mechanisms, risk factors, and management. BMJ 2021, 374, n1648. [Google Scholar] [CrossRef]
- Mao, L.; Jin, H.; Wang, M.; Hu, Y.; Chen, S.; He, Q.; Chang, J.; Hong, C.; Zhou, Y.; Wang, D.; et al. Neurologic manifestations of hospitalized patients with Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020, 77, 683–690. [Google Scholar] [CrossRef]
- Goldstein, D.S. The possible association between COVID-19 and postural tachycardia syndrome. Heart Rhythm. 2021, 18, 508–509. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Tang, N.; Peluso, M.J.; Iyer, N.S.; Torres, L.; Donatelli, J.L.; Munter, S.E.; Nixon, C.C.; Rutishauser, R.L.; Rodriguez-Barraquer, I.; et al. Characterization and biomarker analyses of post-COVID-19 complications and neurological manifestations. Cells 2021, 10, 386. [Google Scholar] [CrossRef]
- Ledford, H. Do vaccines protect against long COVID? What the data say. Nature 2021, 599, 546–548. [Google Scholar] [CrossRef]
- Astin, R.; Banerjee, A.; Baker, M.R.; Dani, M.; Ford, E.; Hull, J.H.; Lim, P.B.; McNarry, M.; Morten, K.; O’Sullivan, O.; et al. Long COVID: Mechanisms, risk factors and recovery. Exp. Physiol. 2023, 108, 12–27. [Google Scholar] [CrossRef]
- Fernández-de-Las-Peñas, C.; Martín-Guerrero, J.D.; Pellicer-Valero, Ó.J.; Navarro-Pardo, E.; Gómez-Mayordomo, V.; Cuadrado, M.L.; Arias-Navalón, J.A.; Cigarán-Méndez, M.; Hernández-Barrera, V.; Arendt-Nielsen, L. Female sex is a risk factor associated with long-term post-COVID related-symptoms but not with COVID-19 symptoms: The LONG-COVID-EXP-CM multicenter study. J. Clin. Med. 2022, 11, 413. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.; van der Meulen Rodgers, Y. An intersectional analysis of long COVID prevalence. Int. J. Equity Health 2023, 22, 261. [Google Scholar] [CrossRef] [PubMed]
- Ortona, E.; Buonsenso, D.; Carfi, A.; Malorni, W.; Long COVID Kids study group. Long COVID: An estrogen-associated autoimmune disease? Cell Death Discov. 2021, 7, 77. [Google Scholar] [CrossRef]
- Matschke, J.; Lütgehetmann, M.; Hagel, C.; Sperhake, J.P.; Schröder, A.S.; Edler, C.; Mushumba, H.; Fitzek, A.; Allweiss, L.; Dandri, M.; et al. Neuropathology of patients with COVID-19 in Germany: A post-mortem case series. Lancet Neurol. 2020, 19, 919–929. [Google Scholar] [CrossRef]
- Yong, S.J. Long COVID or post-COVID-19 syndrome: Putative pathophysiology, risk factors, and treatments. Infect Dis. 2021, 53, 737–754. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.C.-S.; Huang, J.; Wong, Y.-Y.; Wong, G.L.-H.; Yip, T.C.-F.; Chan, R.N.-Y.; Chau, S.W.-H.; Ng, S.-C.; Wing, Y.-K.; Chan, F.K.-L. Epidemiology, symptomatology, and risk factors for long COVID symptoms: Population-based, multicenter study. JMIR Public Health Surveill 2023, 9, e42315. [Google Scholar] [CrossRef]
- Aiello, R. Canada Locks in Thousands More Early COVID-19 Vaccine Doses|CTV. Available online: https://www.ctvnews.ca/politics/canada-locks-in-thousands-more-early-covid-19-vaccine-doses-1.5231973?cache= (accessed on 10 December 2024).
- Tan, C.Y.; Chiew, C.J.; Lee, V.J.; Ong, B.; Lye, D.C.; Tan, K.B. Comparative effectiveness of 3 or 4 doses of mRNA and inactivated whole-virus vaccines against COVID-19 infection, hospitalization and severe outcomes among elderly in Singapore. Lancet Reg. Health West Pac. 2022, 29, 100654. [Google Scholar] [CrossRef] [PubMed]
- Kuodi, P.; Gorelik, Y.; Zayyad, H.; Wertheim, O.; Wiegler, K.B.; Jabal, K.A.; Dror, A.A.; Nazzal, S.; Glikman, D.; Edelstein, M. Association between BNT162b2 vaccination and reported incidence of post-COVID-19 symptoms: Cross-sectional study 2020–2021, Israel. NPJ Vaccines 2022, 7, 101. [Google Scholar] [CrossRef]
- Antonelli, M.; Penfold, R.S.; Merino, J.; Sudre, C.H.; Molteni, E.; Berry, S.; Canas, L.S.; Graham, M.S.; Klaser, K.; Modat, M.; et al. Risk factors and disease profile of post-vaccination SARS-CoV-2 infection in UK users of the COVID Symptom Study app: A prospective, community-based, nested, case-control study. Lancet Infect Dis. 2022, 22, 43–55. [Google Scholar] [CrossRef]
- Alah, M.A.; Abdeen, S.; Kehyayan, V. The first few cases and fatalities of Corona Virus Disease 2019 (COVID-19) in the Eastern Mediterranean Region of the World Health Organization: A rapid review. J. Infect Public Health 2020, 13, 1367–1372. [Google Scholar] [CrossRef]
- Hirawat, R.; Jain, N.; Saifi, M.A.; Rachamalla, M.; Godugu, C. Lung fibrosis: Post-COVID-19 complications and evidences. Int. Immunopharmacol. 2023, 116, 109418. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Yang, X.-L.; Wang, X.-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.-R.; Zhu, Y.; Li, B.; Huang, C.-L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Horby, P.W.; Hayden, F.G.; Gao, G.F. A novel coronavirus outbreak of global health concern. Lancet 2020, 395, 470–473. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Yang, B.; Jiang, N.; Fu, W.; He, X.; Zhou, Y.; Ma, W.L.; Wang, X. Three-month follow-up study of survivors of coronavirus disease 2019 after discharge. J. Korean Med. Sci. 2020, 35, e418. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, F.; Shen, Y.; Zhang, X.; Cen, Y.; Wang, B.; Zhao, S.; Zhou, Y.; Baoman Hu, B.; Wang, M. Symptoms and health outcomes among survivors of COVID-19 infection 1 year after discharge from hospitals in Wuhan, China. JAMA Netw. Open 2021, 4, e2127403. [Google Scholar] [CrossRef]
- Global Burden of Disease Long COVID Collaborators; Hanson, S.W.; Abbafati, C.; Aerts, J.G.; Al-Aly, Z.; Ashbaugh, C.; Ballouz, T.; Blyuss, O.; Bobkova, P.; Bonsel, G. Estimated Global Proportions of Individuals With Persistent Fatigue, Cognitive, and Respiratory Symptom Clusters Following Symptomatic COVID-19 in 2020 and 2021. JAMA 2022, 328, 1604–1615. [Google Scholar] [CrossRef]
- Rybkina, J.; Jacob, N.; Colella, B.; Gold, D.; Stewart, D.E.; Ruttan, L.A.; Meusel, L.-A.C.; McAndrews, M.P.; Abbey, S.; Green, R. Self-managing symptoms of Long COVID: An education and strategies research protocol. Front. Public Health 2024, 12, 1106578. [Google Scholar] [CrossRef]
- Statistics Canada. A Statistical Snapshot of Asians in Canada|StatCan. Available online: https://www.statcan.gc.ca/o1/en/plus/6178-statistical-snapshot-asians-canada (accessed on 13 December 2024).
- Hobgood, D.K. Personality traits of aggression-submissiveness and perfectionism associate with ABO blood groups through catecholamine activities. Med. Hypotheses 2011, 77, 294–300. [Google Scholar] [CrossRef]
- Sapra, R.L. How to Calculate Adequate Sample Size? In How to Practice Academic Medicine and Publish from Developing Countries?: A Practical Guide, 1st ed.; Springer: Singapore, 2022; pp. 81–93. [Google Scholar] [CrossRef]
- Chan, A.B.; Cooper, C.; Ma, C. Chinese Canadians|TCE. Available online: https://www.thecanadianencyclopedia.ca/en/article/chinese-canadians (accessed on 3 December 2024).
- Statistics Canada. Immigration and Ethnocultural Diversity: Key Results from the 2016 Census|StatCan. Available online: https://www150.statcan.gc.ca/n1/en/daily-quotidien/171025/dq171025b-eng.pdf?st=rzfC1EiM (accessed on 2 December 2024).
- Zhang, K. Flows of people and the Canada-China relationship in the 21st century. In International Perspectives on Migration: Migration in China and Asia, 1st ed.; Zhang, J., Duncan, H., Eds.; Springer: Dordrecht, The Netherlands, 2014; Volume 10, pp. 22–50. [Google Scholar] [CrossRef]
- Kong, Y.; Shaver, L.G.; Shi, F.; Yang, L.; Zhang, W.; Wei, X.; Zhang, E.; Ozbek, S.; Effiong, A.; Wang, P.P. Knowledge, psychological impacts, and protective behaviours during the first wave of the COVID-19 pandemic among Chinese residents in Canada with dependent school-age children: A cross-sectional online study. BMC Public Health 2023, 23, 2140. [Google Scholar] [CrossRef]
- Na, L.; Yang, L.; Yu, L.; Bolton, K.; Zhang, W.; Wang, P.P. The Appraisal and Endorsement of Individual and Public Preventive Measures to Combat COVID-19 and the Associated Psychological Predictors among Chinese Living in Canada. Open Public Health J. 2021, 14, 592–599. [Google Scholar] [CrossRef]
- Kong, Y.; Shaver, L.G.; Shi, F.; Yang, L.; Zhang, W.; Wei, X.; Zhu, Y.; Wang, Y.; Wang, P.P. Attitudes of Chinese immigrants in Canada towards the use of Traditional Chinese Medicine for prevention and management of COVID-19: A cross-sectional survey during the early stages of the pandemic. BMJ Open 2021, 11, e051499. [Google Scholar] [CrossRef] [PubMed]
- Madley-Dowd, P.; Hughes, R.; Tilling, K.; Heron, J. The proportion of missing data should not be used to guide decisions on multiple imputation. J. Clin. Epidemiol. 2019, 110, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Van Buuren, S.; Brand JP, L.; Groothuis-Oudshoorn CG, M.; Rubin, D.B. Fully conditional specification in multivariate imputation. J. Stat. Comput. Simul. 2006, 76, 1049–1064. [Google Scholar] [CrossRef]
- Wright, S.E.; Walmsley, E.; Harvey, S.E.; Robinson, E.; Ferrando-Vivas, P.; Harrison, D.A.; Canter, R.R.; McColl, E.; Richardson, A.; Richardson, M.; et al. Missing Data and Imputation|NIHR. Available online: https://www.ncbi.nlm.nih.gov/books/NBK333183/ (accessed on 14 December 2024).
- Ranganathan, P.; Pramesh, C.S.; Aggarwal, R. Common pitfalls in statistical analysis: Logistic regression. Perspect. Clin. Res. 2017, 8, 148–151. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lu, F.; Yin, Y. Applying logistic LASSO regression for the diagnosis of atypical Crohn’s disease. Sci. Rep. 2022, 12, 11340. [Google Scholar] [CrossRef]
- International Business Machines. What Is Lasso Regression?|IBM. Available online: https://www.ibm.com/topics/lasso-regression (accessed on 14 December 2024).
- Hosmer, D.W.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression; John Wiley & Sons: Hoboken, NJ, USA, 2013; ISBN 978-0-470-58247-3. [Google Scholar]
- Sterne, J.A.C.; White, I.R.; Carlin, J.B.; Spratt, M.; Royston, P.; Kenward, M.G.; Wood, A.M.; Carpenter, J.R. Multiple imputation for missing data in epidemiological and clinical research: Potential and pitfalls. BMJ 2009, 338, b2393. [Google Scholar] [CrossRef]
- Woodrow, M.; Carey, C.; Ziauddeen, N.; Thomas, R.; Akrami, A.; Lutje, V.; Greenwood, D.C.; Alwan, N.A. Systematic review of the prevalence of Long COVID. Open Forum. Infect. Dis. 2023, 10, ofad233. [Google Scholar] [CrossRef]
- Kozak, R.; Armstrong, S.M.; Salvant, E.; Ritzker, C.; Feld, J.; Biondi, M.J.; Tsui, H. Recognition of long-COVID-19 patients in a Canadian tertiary hospital setting: A retrospective analysis of their clinical and laboratory characteristics. Pathogens 2021, 10, 1246. [Google Scholar] [CrossRef]
- Chen, C.; Haupert, S.R.; Zimmermann, L.; Shi, X.; Fritsche, L.G.; Mukherjee, B. Global Prevalence of Post-Coronavirus Disease 2019 (COVID-19) Condition or Long COVID: A Meta-Analysis and Systematic Review. J. Infect. Dis. 2022, 226, 1593–1607. [Google Scholar] [CrossRef]
- Sudre, C.H.; Murray, B.; Varsavsky, T.; Graham, M.S.; Penfold, R.S.; Bowyer, R.C.; Pujol, J.C.; Klaser, K.; Antonelli, M.; Canas, L.S. Attributes and predictors of long COVID. Nat. Med. 2021, 27, 626–631. [Google Scholar] [CrossRef]
- Lopez-Leon, S.; Wegman-Ostrosky, T.; Perelman, C.; Sepulveda, R.; Rebolledo, P.A.; Cuapio, A.; Villapol, S. More than 50 long-term effects of COVID-19: A systematic review and meta-analysis. Sci. Rep. 2021, 11, 16144. [Google Scholar] [CrossRef] [PubMed]
- Benoit-Piau, J.; Tremblay, K.; Piché, A.; Dallaire, F.; Bélanger, M.; d’Entremont, M.-A.; Pasquier, J.-C.; Fortin, M.; Bourque, C.; Lapointe, F.; et al. Long-Term Consequences of COVID-19 in Predominantly Immunonaive Patients: A Canadian Prospective Population-Based Study. J. Clin. Med. 2023, 12, 5939. [Google Scholar] [CrossRef] [PubMed]
- Brüssow, H.; Timmis, K. COVID-19: Long COVID and its societal consequences. Environ. Microbiol. 2021, 23, 4077–4091. [Google Scholar] [CrossRef]
- Hacker, K.A.; Briss, P.A.; Richardson, L.; Wright, J.; Petersen, R. Peer reviewed: COVID-19 and chronic disease: The impact now and in the future. Prev. Chronic. Dis. 2021, 18, E62. [Google Scholar] [CrossRef] [PubMed]
- Dutmer, A.L.; Preuper, H.R.S.; Soer, R.; Brouwer, S.; Bültmann, U.; Dijkstra, P.U.; Coppes, M.H.; Stegeman, P.; Buskens, E.; van Asselt, A.D.I.; et al. Personal and societal impact of low back pain: The Groningen spine cohort. Spine 2019, 44, E1443–E1451. [Google Scholar] [CrossRef]
- Battié, M.; Videman, T.; Parent, E. Lumbar Disc Degeneration: Epidemiology and Genetic Influences. Spine 2004, 29, 2679–2690. [Google Scholar] [CrossRef]
- Šagát, P.; Bartík, P.; González, P.P.; Tohănean, D.I.; Knjaz, D. Impact of COVID-19 Quarantine on Low Back Pain Intensity, Prevalence, and Associated Risk Factors among Adult Citizens Residing in Riyadh (Saudi Arabia): A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2020, 17, 7302. [Google Scholar] [CrossRef]
- Subramanian, A.; Nirantharakumar, K.; Hughes, S.; Myles, P.; Williams, T.; Gokhale, K.M.; Taverner, T.; Chandan, J.S.; Brown, K.; Simms-Williams, N.; et al. Symptoms and risk factors for long COVID in non-hospitalized adults. Nat. Med. 2022, 28, 1706–1714. [Google Scholar] [CrossRef]
- Robertson, M.M.; Qasmieh, S.A.; Kulkarni, S.G.; Teasdale, C.A.; Jones, H.E.; McNairy, M.; Borrell, L.N.; Nash, D. The epidemiology of long coronavirus disease in US adults. Clin. Infect. Dis. 2023, 76, 1636–1645. [Google Scholar] [CrossRef]
- David, A.B.; Park, C.L.; Awao, S.; Vega, S.; Zuckerman, M.S.; White, T.F.; Hanna, D. Religiousness in the first year of COVID-19: A systematic review of empirical research. CRESP 2023, 4, 100075. [Google Scholar] [CrossRef]
- Linke, M.; Jankowski, K.S. Religiosity and the Spread of COVID-19: A Multinational Comparison. J. Relig. Health 2022, 61, 1641–1656. [Google Scholar] [CrossRef] [PubMed]
- Silberzahn, R.; Uhlmann, E.L.; Martin, D.P.; Anselmi, P.; Aust, F.; Awtrey, E.; Bahník, Š.; Bai, F.; Bannard, C.; Bonnier, E.; et al. Many analysts, one data set: Making transparent how variations in analytic choices affect results. Adv. Methods Pract. Psychol. Sci. 2018, 1, 337–356. [Google Scholar] [CrossRef]
- Shah, D.P.; Thaweethai, T.; Karlson, E.W.; Bonilla, H.; Horne, B.D.; Mullington, J.M.; Wisnivesky, J.P.; Hornig, M.; Shinnick, D.J.; Klein, J.D.; et al. Sex differences in long COVID. JAMA Netw. Open 2025, 8, e2455430. [Google Scholar] [CrossRef] [PubMed]
- Weerahandi, H.; Hochman, K.A.; Simon, E.; Blaum, C.; Chodosh, J.; Duan, E.; Garry, K.; Kahan, T.; Karmen-Tuohy, S.L.; Karpel, H.C.; et al. Post-discharge health status and symptoms in patients with severe COVID-19. J. Gen. Intern. Med. 2021, 36, 738–745. [Google Scholar] [CrossRef]
- Thompson, E.J.; Williams, D.M.; Walker, A.J.; Mitchell, R.E.; Niedzwiedz, C.L.; Yang, T.C.; Huggins, C.F.; Kwong, A.S.F.; Silverwood, R.J.; Di Gessa, G.; et al. Long COVID burden and risk factors in 10 UK longitudinal studies and electronic health records. Nat. Commun. 2022, 13, 3528. [Google Scholar] [CrossRef]
- Haase, N.; Plovsing, R.; Christensen, S.; Poulsen, L.M.; Brøchner, A.C.; Rasmussen, B.S.; Helleberg, M.; Jensen, J.U.S.; Andersen, L.P.K.; Siegel, H.; et al. Characteristics, interventions, and longer term outcomes of COVID-19 ICU patients in Denmark—A nationwide, observational study. Acta Anaesthesiol. Scand. 2021, 65, 68–75. [Google Scholar] [CrossRef]
- Hassen, H.D.; Welde, M.; Menebo, M.M. Understanding determinants of COVID-19 vaccine hesitancy; an emphasis on the role of religious affiliation and individual’s reliance on traditional remedy. BMC Public Health 2022, 22, 1142. [Google Scholar] [CrossRef]
- Noval Rivas, M.; Porritt, R.A.; Cheng, M.H.; Bahar, I.; Arditi, M. Multisystem Inflammatory Syndrome in Children and Long COVID: The SARS-CoV-2 Viral Superantigen Hypothesis. Front. Immunol. 2022, 13, 941009. [Google Scholar] [CrossRef]
- Boufidou, F.; Medić, S.; Lampropoulou, V.; Siafakas, N.; Tsakris, A.; Anastassopoulou, C. SARS-CoV-2 Reinfections and Long COVID in the Post-Omicron Phase of the Pandemic. Int. J. Mol. Sci. 2023, 24, 12962. [Google Scholar] [CrossRef]
- Bowe, B.; Xie, Y.; Al-Aly, Z. Acute and postacute sequelae associated with SARS-CoV-2 reinfection. Nat. Med. 2022, 28, 2398–2405. [Google Scholar] [CrossRef]
- Su, Y.; Yuan, D.; Chen, D.G.; Ng, R.H.; Wang, K.; Choi, J.; Li, S.; Hong, S.; Zhang, R.; Xie, J.; et al. Multiple early factors anticipate post-acute COVID-19 sequelae. Cell 2022, 185, 881–895. [Google Scholar] [CrossRef] [PubMed]
- Sadio, A.J.; Gbeasor-Komlanvi, F.A.; Konu, R.Y.; Bakoubayi, A.W.; Tchankoni, M.K.; Bitty-Anderson, A.M.; Gomez, I.M.; Denadou, C.P.; Anani, J.; Kouanfack, H.R.; et al. Assessment of self-medication practices in the context of the COVID-19 outbreak in Togo. BMC Public Health 2021, 21, 58. [Google Scholar] [CrossRef]
- Quispe-Cañari, J.F.; Fidel-Rosales, E.; Manrique, D.; Mascaró-Zan, J.; Huamán-Castillón, K.M.; Chamorro-Espinoza, S.E.; Garayar-Peceros, H.; Ponce-López, V.L.; Sifuentes-Rosales, J.; Alvarez-Risco, A.; et al. Self-medication practices during the COVID-19 pandemic among the adult population in Peru: A cross-sectional survey. Saudi Pharm. J. 2021, 29, 1–11. [Google Scholar] [CrossRef]
- Onchonga, D.; Omwoyo, J.; Nyamamba, D. Assessing the prevalence of self-medication among healthcare workers before and during the 2019 SARS-CoV-2 (COVID-19) pandemic in Kenya. Saudi Pharm. J. 2020, 28, 1149–1154. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, M.E. Risks of self-medication practices. Curr Drug Saf. 2010, 5, 315–323. [Google Scholar] [CrossRef]
- Bai, Y.; Tao, X. Comparison of COVID-19 and influenza characteristics. J. Zhejiang Univ. Sci. B. 2021, 22, 87–98. [Google Scholar] [CrossRef]
- Rogers, J.P.; Chesney, E.; Oliver, D.; Pollak, T.A.; McGuire, P.; Fusar-Poli, P.; Zandi, M.S.; Lewis, G.; David, A.S. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: A systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry 2020, 7, 611–627. [Google Scholar] [CrossRef]
- Nordberg, P.; Jonsson, M.; Hollenberg, J.; Ringh, M.; Berggren, R.K.; Hofmann, R.; Svensson, P. Immigrant background and socioeconomic status are associated with severe COVID-19 requiring intensive care. Sci. Rep. 2022, 12, 12133. [Google Scholar] [CrossRef] [PubMed]
- Đoàn, L.N.; Chong, S.K.; Misra, S.; Kwon, S.C.; Yi, S.S. Immigrant communities and COVID-19: Strengthening the public health response. Am. J. Public Health 2021, 111, S224–S231. [Google Scholar] [CrossRef]
- Asadi-Pooya, A.A.; Nemati, M.; Shahisavandi, M.; Nemati, H.; Karimi, A.; Jafari, A.; Nasiri, S.; Mohammadi, S.S.; Rahimian, Z.; Bayat, H.; et al. How does COVID-19 vaccination affect long-COVID symptoms? PLoS ONE 2024, 19, e0296680. [Google Scholar] [CrossRef]
- Byambasuren, O.; Stehlik, P.; Clark, J.; Alcorn, K.; Glasziou, P. Effect of COVID-19 vaccination on long covid: Systematic review. BMJ Med. 2023, 2, e000385. [Google Scholar] [CrossRef] [PubMed]
- Karmakar, M.; Lantz, P.M.; Tipirneni, R. Association of Social and Demographic Factors With COVID-19 Incidence and Death Rates in the US. JAMA Netw. Open 2021, 4, e2036462. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, A.; Fukushima, E.A.; Levine, M.; Zhao, W.; Tanveer, F.; Szpunar, S.M.; Saravolatz, L. Predictors for Severe COVID-19 Infection. Clin. Infect. Dis. 2020, 71, 1962–1968. [Google Scholar] [CrossRef]
- Bonsaksen, T.; Leung, J.; Price, D.; Ruffolo, M.; Lamph, G.; Kabelenga, I.; Thygesen, H.; Geirdal, A.Ø. Self-reported long COVID in the general population: Sociodemographic and health correlates in a cross-national sample. Life 2022, 12, 901. [Google Scholar] [CrossRef] [PubMed]
- Phu, D.H.; Maneerattanasak, S.; Shohaimi, S.; Trang, L.T.T.; Nam, T.T.; Kuning, M.; Like, A.; Torpor, H.; Suwanbamrung, C. Prevalence and factors associated with long COVID and mental health status among recovered COVID-19 patients in southern Thailand. PLoS ONE 2023, 18, e0289382. [Google Scholar] [CrossRef]
- Brogårdh, C.; Ekstrand, E.; Fänge, A.M.; Axen, I.; Stigmar, K.; Hansson, E.E. Self-reported fatigue in people with post-COVID-19: Impact on functioning in daily life, and associated factors–A cross-sectional study. J. Rehabil. Med. 2024, 56, 40811. [Google Scholar] [CrossRef]
Long COVID | ||||
---|---|---|---|---|
Variables | N | Yes (n = 63) | No | p-Value |
Age group | 0.8320 | |||
65 or above | 97 | 12 (19.05) | 85 (19.86) | |
45 to 64 | 296 | 40 (63.49) | 256 (59.81) | |
Under 45 | 98 | 11 (17.46) | 87 (20.33) | |
Missing | - | - | - | |
Gender | 0.0207 | |||
Women | 275 | 44 (69.84) | 231 (54.35) | |
Men | 213 | 19 (30.16) | 194 (45.65) | |
Missing | 3 (0.61) | - | 3 | |
Religiosity | 0.0275 | |||
Religious | 80 | 16 (32.65) | 64 (18.99) | |
Not religious | 306 | 33 (67.35) | 273 (81.01) | |
Missing | 105 (21.38) | 14 | 91 | |
Marital status | 0.4545 | |||
Married/common law | 396 | 53 (84.13) | 343 (80.14) | |
Single/divorced/widowed | 95 | 10 (15.87) | 85 (19.86) | |
Missing | - | - | - | |
Work in health care | 0.1733 | |||
Yes | 53 | 4 (6.35) | 49 (12.22) | |
No | 411 | 59 (93.65) | 352 (87.78) | |
Missing | 27 (5.50) | - | 27 | |
Contact with the public at work | 0.9935 | |||
Yes | 118 | 16 (25.81) | 102 (25.76) | |
No | 340 | 46 (74.19) | 294 (74.24) | |
Missing | 33 (6.72) | 1 | 32 | |
Financial satisfaction | 0.7313 | |||
Satisfied | 199 | 26 (41.27) | 173 (43.58) | |
Not satisfied | 261 | 37 (58.73) | 224 (56.42) | |
Missing | 31 (6.31) | - | 31 | |
Province of residence | 0.1087 | |||
Ontario | 409 | 57 (90.48) | 352 (82.44) | |
Others | 81 | 6 (9.52) | 75 (17.56) | |
Missing | 1 (0.20) | - | 1 | |
Children (aged ≤ 16) in house | 0.1302 | |||
Yes–two or more | 53 | 12 (19.05) | 41 (10.35) | |
Yes–one | 93 | 11 (17.46) | 82 (20.71) | |
No | 313 | 40 (63.49) | 273 (68.94) | |
Missing | 32 (6.52) | - | 32 | |
Elderly (aged ≥ 65) in house | 0.9986 | |||
Yes–two or more | 81 | 11 (17.46) | 70 (16.55) | |
Yes–one | 66 | 9 (14.29) | 57 (13.48) | |
No | 339 | 43 (68.25) | 296 (69.97) | |
Missing | 5 (1.02) | - | 5 | |
Positive COVID-19 test results | <0.0001 | |||
Two or more | 16 | 9 (14.29) | 7 (1.79) | |
One | 218 | 46 (73.02) | 172 (44.10) | |
None/not sure | 219 | 8 (12.70) | 211 (54.10) | |
Missing | 38 (7.74) | - | 38 | |
COVID-19 symptom severity | 0.0011 | |||
Very serious/serious | 74 | 29 (46.03) | 45 (22.50) | |
Mild | 135 | 21 (33.33) | 114 (57.00) | |
Asymptomatic/very mild | 54 | 13 (20.64) | 41 (20.50) | |
Missing | - | - | - | |
COVID-19 treatment received | 0.0046 | |||
Prescription medicine | 22 | 7 (11.11) | 15 (7.65) | |
Over-the-counter medicine | 82 | 20 (31.75) | 62 (31.63) | |
Traditional Chinese medicine | 32 | 15 (23.81) | 17 (8.67) | |
No treatment | 123 | 21 (33.33) | 102 (52.04) | |
Missing | 4 (1.52) | - | 4 | |
Health status | <0.0001 | |||
Very good/good | 309 | 28 (45.90) | 281 (74.73) | |
Fair/poor/very poor | 128 | 33 (54.10) | 95 (25.27) | |
Missing | 54 (11.00) | 2 | 52 | |
Underlying diseases | 0.0116 | |||
One or more | 232 | 42 (70.00) | 190 (52.49) | |
None | 190 | 18 (30.00) | 172 (47.51) | |
Missing | 69 (14.05) | 3 | 66 | |
Smoking status | 1.0000 a | |||
Smoker | 15 | 2 (3.28) | 13 (3.47) | |
Nonsmoker | 421 | 59 (96.72) | 362 (96.53) | |
Missing | 55 (11.20) | 2 | 53 | |
Regular alcohol consumption | 1.0000 a | |||
Yes | 34 | 4 (6.56) | 30 (8.00) | |
No | 402 | 57 (93.44) | 345 (92.00) | |
Missing | 55 (11.20) | 2 | 53 | |
COVID-19 vaccination history | 0.1703 a | |||
Three or more | 325 | 39 (63.93) | 286 (73.71) | |
Vaccinated twice | 109 | 20 (32.79) | 89 (22.94) | |
Vaccinated once | 3 | 1 (1.64) | 2 (0.52) | |
Never vaccinated | 12 | 1 (1.64) | 11 (2.84) | |
Missing | 42 (8.55) | 2 | 40 | |
COVID-19 vaccine side effects | 0.0016 | |||
Yes | 146 | 31 (51.67) | 115 (30.91) | |
No/not sure | 286 | 29 (48.33) | 257 (69.09) | |
Missing | 47 (9.81) | 3 | 44 | |
Received Influenza vaccine | 0.4664 | |||
Yes | 192 | 24 (39.34) | 168 (44.33) | |
No | 248 | 37 (60.66) | 211 (55.67) | |
Missing | 51 (10.39) | 2 | 49 |
Variables | Long COVID | p-Value | |
---|---|---|---|
OR | 95% CI | ||
Age group | |||
65 or above | 0.949 | 0.485–1.860 | 0.8799 |
45 to 64 | 1.168 | 0.675–2.021 | 0.5777 |
Under 45 | ref | ||
Gender | |||
Women | 1.945 | 1.099–3.442 | 0.0224 |
Men | ref | ||
Religiosity | |||
Religious | 2.068 | 1.073–3.986 | 0.0300 |
Not religious | ref | ||
Marital status | |||
Married/common law | 1.313 | 0.642–2.688 | 0.4558 |
Single/divorced/widowed | ref | ||
Work in health care | |||
Yes | 0.487 | 0.169–1.400 | 0.1817 |
No | ref | ||
Contact with the public at work | |||
Yes | 1.003 | 0.544–1.849 | 0.9935 |
No | ref | ||
Financial satisfaction | |||
Satisfied | 0.910 | 0.531–1.560 | 0.7314 |
Not satisfied | ref | ||
Children or elderly in house | |||
Yes | 1.074 | 0.629–1.833 | 0.7937 |
No | ref | ||
Positive COVID-19 test results | |||
Two or more | 33.907 | 10.070–114.171 | <0.0001 |
One | 7.054 | 3.242–15.346 | <0.0001 |
None/not sure | ref | ||
COVID-19 symptom severity | |||
Very serious/serious | 6.809 | 3.793–12.223 | <0.0001 |
Mild | 1.377 | 0.782–2.426 | 0.2675 |
Asymptomatic/very mild | ref | ||
COVID-19 treatment received | |||
Prescription medicine | 3.442 | 1.345–8.808 | 0.0099 |
Over-the-counter medicine | 2.746 | 1.515–4.978 | 0.0009 |
Traditional Chinese medicine | 7.555 | 3.548–16.090 | <0.0001 |
No treatment | ref | ||
Health status | |||
Very good/good | 0.287 | 0.165–0.500 | <0.0001 |
Fair/poor/very poor | ref | ||
Underlying diseases | |||
One or more | 2.112 | 1.172–3.808 | 0.0129 |
None | ref | ||
Smoking status | |||
Smoker | 0.944 | 0.208–4.290 | 0.9405 |
Nonsmoker | ref | ||
Regular alcohol consumption | |||
Yes | 0.807 | 0.274–2.377 | 0.6974 |
No | ref | ||
COVID-19 vaccine side effects | |||
Yes | 2.389 | 1.375–4.149 | 0.0020 |
No/not sure | ref | ||
Received Influenza vaccine | |||
Yes | 0.815 | 0.469–1.415 | 0.4669 |
No | ref |
Variables | Complete Cases Analysis | Imputed Cases Analysis | ||||
---|---|---|---|---|---|---|
OR | 95% CI | p-Value | OR | 95% CI | p-Value | |
Gender | ||||||
Women | 1.431 | 0.590–3.470 | 0.4272 | 1.291 | 0.633–2.634 | 0.4820 |
Men | ref | ref | ||||
Religiosity | ||||||
Religious | 2.611 | 1.010–6.751 | 0.0477 | 2.257 | 0.993–5.128 | 0.0519 |
Not religious | ref | ref | ||||
Work in health care | ||||||
Yes | 0.300 | 0.049–1.818 | 0.1902 | 0.256 | 0.063–1.042 | 0.0570 |
No | ref | ref | ||||
Financial satisfaction | ||||||
Satisfied | 1.426 | 0.614–3.316 | 0.4091 | 1.500 | 0.747–3.013 | 0.2548 |
Not satisfied | ref | ref | ||||
Positive COVID-19 test results | ||||||
Two or more | 53.912 | 6.901–421.189 | 0.0001 | 23.725 | 5.098–110.398 | <0.0001 |
One | 7.328 | 2.063–26.028 | 0.0021 | 4.286 | 1.504–12.216 | 0.0065 |
None/not sure | ref | ref | ||||
COVID-19 symptom severity | ||||||
Very serious/serious | 2.739 | 0.840–8.924 | 0.0946 | 3.177 | 1.160–8.702 | 0.0246 |
Mild | 0.344 | 0.097–1.222 | 0.0990 | 0.860 | 0.302–2.447 | 0.7758 |
Asymptomatic/very mild | ref | ref | ||||
COVID-19 treatment received | ||||||
Prescription medicine | 3.274 | 0.725–14.775 | 0.1229 | 2.969 | 0.868–10.156 | 0.0828 |
Over-the-counter medicine | 1.956 | 0.682–5.608 | 0.2118 | 2.473 | 1.035–5.909 | 0.0416 |
Traditional Chinese medicine | 14.781 | 4.006–54.542 | <0.0001 | 8.259 | 3.016–22.620 | <0.0001 |
No treatment | ref | ref | ||||
Health status | ||||||
Very good/good | 0.144 | 0.055–0.378 | <0.0001 | 0.247 | 0.112–0.544 | 0.0005 |
Fair/poor/very poor | ref | ref | ||||
Underlying diseases | ||||||
One or more | 1.426 | 0.560–3.629 | 0.4570 | 1.609 | 0.751–3.445 | 0.2207 |
None | ref | ref | ||||
COVID-19 vaccine side effects | ||||||
Yes | 1.663 | 0.728–3.801 | 0.2275 | 1.738 | 0.823–3.668 | 0.1465 |
No/not sure | ref | ref |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shariati, M.; Gill, K.L.; Peddle, M.; Cao, Y.; Xie, F.; Han, X.; Lei, N.; Prowse, R.; Shan, D.; Fang, L.; et al. Long COVID and Associated Factors Among Chinese Residents Aged 16 Years and Older in Canada: A Cross-Sectional Online Study. Biomedicines 2025, 13, 953. https://doi.org/10.3390/biomedicines13040953
Shariati M, Gill KL, Peddle M, Cao Y, Xie F, Han X, Lei N, Prowse R, Shan D, Fang L, et al. Long COVID and Associated Factors Among Chinese Residents Aged 16 Years and Older in Canada: A Cross-Sectional Online Study. Biomedicines. 2025; 13(4):953. https://doi.org/10.3390/biomedicines13040953
Chicago/Turabian StyleShariati, Matin, Kieran Luke Gill, Mark Peddle, Ying Cao, Fangli Xie, Xiao Han, Nan Lei, Rachel Prowse, Desai Shan, Lisa Fang, and et al. 2025. "Long COVID and Associated Factors Among Chinese Residents Aged 16 Years and Older in Canada: A Cross-Sectional Online Study" Biomedicines 13, no. 4: 953. https://doi.org/10.3390/biomedicines13040953
APA StyleShariati, M., Gill, K. L., Peddle, M., Cao, Y., Xie, F., Han, X., Lei, N., Prowse, R., Shan, D., Fang, L., Huang, V., Ding, A., & Wang, P. (2025). Long COVID and Associated Factors Among Chinese Residents Aged 16 Years and Older in Canada: A Cross-Sectional Online Study. Biomedicines, 13(4), 953. https://doi.org/10.3390/biomedicines13040953