Prognostic Significance of Modified Shine and Lal Index in Patients with Non-Small Cell Lung Cancer Undergoing Surgical Resection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Clinical Characteristics
2.3. Statistical Analyses
3. Results
3.1. Clinicopathological Characteristics of the Patients
3.2. Associations of mSLI with Clinical and Laboratory Parameters
3.3. Cox Proportional Hazard Regression Analysis
3.4. Comparison Between mSLI and Baseline Models
3.5. Comparison Between mSLI and Intermediate Models
3.6. Nomogram for Predicting 3- and 5-Year Survival
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ALB | serum albumin |
ALC | absolute lymphocyte count |
AMC | absolute monocyte count |
ANC | absolute neutrophil count |
ASA-PS | American Society of Anesthesiologists Physical Status |
AUC | area under the curve |
BMI | body mass index |
CALLY | CRP–albumin–lymphocyte |
CAR | CRP-to-ALB ratio |
C-index | concordance index |
CLR | CRP-to-lymphocyte ratio |
GAM | Generalized Additive Models |
HB | hemoglobin |
HR | hazard ratio |
IDI | integrated discrimination improvement |
IQR | interquartile range |
LMR | monocyte-to-lymphocyte ratio |
MCV | mean corpuscular volume |
MCH | mean corpuscular hemoglobin |
MCHC | mean corpuscular hemoglobin concentration |
mSLI | modified Shine and Lal index |
NLR | neutrophil-to-lymphocyte ratio |
NSCLC | non-small cell lung cancer |
NUn | Noble and Underwood |
OS | overall survival |
PLR | platelet-to-lymphocyte ratio |
PNI | prognostic nutritional index |
TB | total bilirubin |
TNM | tumor–node–metastasis |
TP | total protein |
VIF | variance inflation factor |
References
- Voorn, M.J.J.; Beukers, K.; Trepels, C.M.M.; Bootsma, G.P.; Bongers, B.C.; Janssen-Heijnen, M.L.G. Associations between pretreatment nutritional assessments and treatment complications in patients with stage I-III non-small cell lung cancer: A systematic review. Clin. Nutr. ESPEN 2022, 47, 152–162. [Google Scholar] [CrossRef]
- Balata, H.; Foden, P.; Edwards, T.; Chaturvedi, A.; Elshafi, M.; Tempowski, A.; Teng, B.; Whittemore, P.; Blyth, K.G.; Kidd, A.; et al. Predicting survival following surgical resection of lung cancer using clinical and pathological variables: The development and validation of the LNC-PATH score. Lung Cancer 2018, 125, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Sato, S.; Sezaki, R.; Shinohara, H. Significance of preoperative evaluation of modified advanced lung cancer inflammation index for patients with resectable non-small cell lung cancer. Gen. Thorac. Cardiovasc. Surg. 2024, 72, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Motono, N.; Mizoguchi, T.; Ishikawa, M.; Iwai, S.; Iijima, Y.; Uramoto, H. Prognostic Impact of Cancer Inflammation Prognostic Index for Non-small Cell Lung Cancer. Lung 2023, 201, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.; Evison, M.; Michael, S.; Obale, E.; Fritsch, N.C.; Abah, U.; Smith, M.; Martin, G.P.; Shackcloth, M.; Granato, F.; et al. Pre-Operative Measures of Systemic Inflammation Predict Survival After Surgery for Primary Lung Cancer. Clin. Lung Cancer 2024, 25, 460–467.e7. [Google Scholar] [CrossRef]
- Tomita, M.; Shimizu, T.; Hara, M.; Ayabe, T.; Onitsuka, T. Preoperative leukocytosis, anemia and thrombocytosis are associated with poor survival in non-small cell lung cancer. Anticancer. Res. 2009, 29, 2687–2690. [Google Scholar]
- Balachandran, V.P.; Gonen, M.; Smith, J.J.; DeMatteo, R.P. Nomograms in oncology: More than meets the eye. Lancet. Oncol. 2015, 16, e173–e180. [Google Scholar] [CrossRef]
- Oñate-Ocaña, L.F.; Aiello-Crocifoglio, V.; Gallardo-Rincón, D.; Herrera-Goepfert, R.; Brom-Valladares, R.; Carrillo, J.F.; Cervera, E.; Mohar-Betancourt, A. Serum albumin as a significant prognostic factor for patients with gastric carcinoma. Ann. Surg. Oncol. 2007, 14, 381–389. [Google Scholar] [CrossRef]
- Liu, X.Y.; Zhang, X.; Zhang, Q.; Ruan, G.T.; Liu, T.; Xie, H.L.; Ge, Y.Z.; Song, M.M.; Deng, L.; Shi, H.P. The value of CRP-albumin-lymphocyte index (CALLY index) as a prognostic biomarker in patients with non-small cell lung cancer. Support. Care Cancer 2023, 31, 533. [Google Scholar] [CrossRef]
- Takada, K.; Takamori, S.; Matsubara, T.; Haratake, N.; Akamine, T.; Kinoshita, F.; Ono, Y.; Wakasu, S.; Tanaka, K.; Oku, Y.; et al. Clinical significance of preoperative inflammatory markers in non-small cell lung cancer patients: A multicenter retrospective study. PLoS ONE 2020, 15, e0241580. [Google Scholar] [CrossRef] [PubMed]
- Pellini, B.; Chaudhuri, A.A. Circulating Tumor DNA Minimal Residual Disease Detection of Non-Small-Cell Lung Cancer Treated With Curative Intent. J. Clin. Oncol. 2022, 40, 567–575. [Google Scholar] [CrossRef]
- Onaitis, M.W.; Furnary, A.P.; Kosinski, A.S.; Kim, S.; Boffa, D.; Tong, B.C.; Cowper, P.; Jacobs, J.P.; Wright, C.D.; Putnam, J.B., Jr.; et al. Prediction of Long-Term Survival After Lung Cancer Surgery for Elderly Patients in The Society of Thoracic Surgeons General Thoracic Surgery Database. Ann. Thorac. Surg. 2018, 105, 309–316. [Google Scholar] [CrossRef]
- Hara, M.; Matsuzaki, Y.; Shimuzu, T.; Tomita, M.; Ayabe, T.; Enomoto, Y.; Onitsuka, T. Preoperative serum C-reactive protein level in non-small cell lung cancer. Anticancer Res. 2007, 27, 3001–3004. [Google Scholar] [PubMed]
- Hara, M.; Yonei, A.; Ayabe, T.; Tomita, M.; Nakamura, K.; Onitsuka, T. Postoperative serum C-reactive protein levels in non-small cell lung cancer patients. Ann. Thorac. Cardiovasc. Surg. 2010, 16, 85–90. [Google Scholar]
- Miura, K.; Hamanaka, K.; Koizumi, T.; Kitaguchi, Y.; Terada, Y.; Nakamura, D.; Kumeda, H.; Agatsuma, H.; Hyogotani, A.; Kawakami, S.; et al. Clinical significance of preoperative serum albumin level for prognosis in surgically resected patients with non-small cell lung cancer: Comparative study of normal lung, emphysema, and pulmonary fibrosis. Lung Cancer 2017, 111, 88–95. [Google Scholar] [CrossRef]
- Miyazaki, T.; Saji, H.; Nakamura, H.; Nagayasu, T.; Okumura, N.; Tsuchida, M.; Sonobe, M.; Aokage, K.; Nakao, M.; Haruki, T.; et al. The C-reactive protein to albumin ratio is a prognostic factor for stage I non-small cell lung cancer in elderly patients: JACS1303. Surg. Today 2022, 52, 1463–1471. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Noma, D.; Masuda, H.; Masuda, M. Preoperative inflammation-based scores predict early recurrence after lung cancer resection. J. Thorac. Dis. 2021, 13, 2812–2823. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wu, J.; Zhang, F.; Ying, L.; Chen, Y. Prognostic Significance of Pre-Operative Monocyte-to-Lymphocyte Ratio in Lung Cancer Patients Undergoing Radical Surgery. Lab. Med. 2018, 49, e29–e39. [Google Scholar] [CrossRef]
- An, S.; Eo, W.; Kim, D.H.; Lee, S. Prognostic Value of the Noble and Underwood Score in Patients with Non-Small Cell Lung Cancer Undergoing Surgical Resection. J. Cancer 2024, 15, 6185–6195. [Google Scholar] [CrossRef]
- Hwang, J.J.; Hur, J.Y.; Eo, W.; An, S.; Kim, D.H.; Lee, S. Clinical significance of C-Reactive Protein to Lymphocyte Count Ratio as a prognostic factor for Survival in Non-small Cell Lung Cancer Patients undergoing Curative Surgical Resection. J. Cancer 2021, 12, 4497–4504. [Google Scholar] [CrossRef]
- Eo, W.K.; Chang, H.J.; Suh, J.; Ahn, J.; Shin, J.; Hur, J.Y.; Kim, G.Y.; Lee, S.; Park, S.; Lee, S. The Prognostic Nutritional Index Predicts Survival and Identifies Aggressiveness of Gastric Cancer. Nutr. Cancer 2015, 67, 1260–1267. [Google Scholar] [CrossRef] [PubMed]
- Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, inflammation, and cancer. Cell 2010, 140, 883–899. [Google Scholar] [CrossRef]
- Weiss, G.; Goodnough, L.T. Anemia of chronic disease. N. Engl. J. Med. 2005, 352, 1011–1023. [Google Scholar] [CrossRef] [PubMed]
- Gilreath, J.A.; Rodgers, G.M. How I treat cancer-associated anemia. Blood 2020, 136, 801–813. [Google Scholar] [CrossRef]
- Ademuyiwa, F.O.; Johnson, C.S.; White, A.S.; Breen, T.E.; Harvey, J.; Neubauer, M.; Hanna, N.H. Prognostic factors in stage III non-small-cell lung cancer. Clin. Lung Cancer 2007, 8, 478–482. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zhao, G.; Lin, J.; Ye, Q.; Xiang, J.; Yan, B. A combined preoperative red cell distribution width and carcinoembryonic antigen score contribute to prognosis prediction in stage I lung adenocarcinoma. World J. Surg. Oncol. 2023, 21, 56. [Google Scholar] [CrossRef]
- Warwick, R.; Mediratta, N.; Shackcloth, M.; Shaw, M.; McShane, J.; Poullis, M. Preoperative red cell distribution width in patients undergoing pulmonary resections for non-small-cell lung cancer. Eur. J. Cardio-Thorac. Surg. 2014, 45, 108–113. [Google Scholar] [CrossRef]
- Song, B.; Shi, P.; Xiao, J.; Song, Y.; Zeng, M.; Cao, Y.; Zhu, X. Utility of red cell distribution width as a diagnostic and prognostic marker in non-small cell lung cancer. Sci. Rep. 2020, 10, 15717. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Y.; Zhou, K.; Li, J.; Che, G. Prognostic value of pre-treatment red blood cell distribution width in lung cancer: A meta-analysis. Biomarkers 2020, 25, 241–247. [Google Scholar] [CrossRef]
- Zhao, W.; Shi, M.; Zhang, J. Preoperative hemoglobin-to-red cell distribution width ratio as a prognostic factor in pulmonary large cell neuroendocrine carcinoma: A retrospective cohort study. Ann. Transl. Med. 2022, 10, 42. [Google Scholar] [CrossRef]
- Coradduzza, D.; Medici, S.; Chessa, C.; Zinellu, A.; Madonia, M.; Angius, A.; Carru, C.; De Miglio, M.R. Assessing the Predictive Power of the Hemoglobin/Red Cell Distribution Width Ratio in Cancer: A Systematic Review and Future Directions. Medicina 2023, 59, 2124. [Google Scholar] [CrossRef]
- Qu, X.; Zhang, T.; Ma, H.; Sui, P.; Du, J. Lower mean corpuscular hemoglobin concentration is associated with unfavorable prognosis of resected lung cancer. Future Oncol. 2014, 10, 2149–2159. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, J. Clinical significance of mean corpuscular volume as a prognostic indicator of radiotherapy for locally advanced lung cancer: A retrospective cohort study. J. Thorac. Dis. 2022, 14, 4916–4924. [Google Scholar] [CrossRef] [PubMed]
- Shine, I.; Lal, S. A strategy to detect beta-thalassaemia minor. Lancet 1977, 1, 692–694. [Google Scholar] [CrossRef]
- Hoffmann, J.J.; Urrechaga, E.; Aguirre, U. Discriminant indices for distinguishing thalassemia and iron deficiency in patients with microcytic anemia: A meta-analysis. Clin. Chem. Lab. Med. CCLM/FESCC 2015, 53, 1883–1894. [Google Scholar] [CrossRef] [PubMed]
- Hans, A.; Atreja, C.B.; Batra, N. Distinguishing Iron Deficiency Anemia From Beta-Thalassemia Trait: Comparative Analysis of CRUISE Index and Other Traditional Diagnostic Indices. Cureus 2024, 16, e64048. [Google Scholar] [CrossRef]
- Travis, W.D. The 2015 WHO classification of lung tumors. Pathologe 2014, 35 (Suppl. S2), 188. [Google Scholar] [CrossRef] [PubMed]
- Detterbeck, F.C.; Boffa, D.J.; Kim, A.W.; Tanoue, L.T. The Eighth Edition Lung Cancer Stage Classification. Chest 2017, 151, 193–203. [Google Scholar] [CrossRef]
- Hermanek, P.; Wittekind, C. The pathologist and the residual tumor (R) classification. Pathol. Res. Pract. 1994, 190, 115–123. [Google Scholar] [CrossRef]
- Nakamura, K.; Seishima, R.; Matsui, S.; Shigeta, K.; Okabayashi, K.; Kitagawa, Y. The prognostic impact of preoperative mean corpuscular volume in colorectal cancer. Jpn. J. Clin. Oncol. 2022, 52, 562–570. [Google Scholar] [CrossRef]
- Kawase, A.; Yoshida, J.; Miyaoka, E.; Asamura, H.; Fujii, Y.; Nakanishi, Y.; Eguchi, K.; Mori, M.; Sawabata, N.; Okumura, M.; et al. Visceral pleural invasion classification in non-small-cell lung cancer in the 7th edition of the tumor, node, metastasis classification for lung cancer: Validation analysis based on a large-scale nationwide database. J. Thorac. Oncol. 2013, 8, 606–611. [Google Scholar] [CrossRef] [PubMed]
- Harrison, P.; Goodall, A.H. Studies on Mean Platelet Volume (MPV)—New Editorial Policy. Platelets 2016, 27, 605–606. [Google Scholar] [CrossRef]
- Noris, P.; Melazzini, F.; Balduini, C.L. New roles for mean platelet volume measurement in the clinical practice? Platelets 2016, 27, 607–612. [Google Scholar] [CrossRef] [PubMed]
- Noble, F.; Curtis, N.; Harris, S.; Kelly, J.J.; Bailey, I.S.; Byrne, J.P.; Underwood, T.J. Risk assessment using a novel score to predict anastomotic leak and major complications after oesophageal resection. J. Gastrointest. Surg. 2012, 16, 1083–1095. [Google Scholar] [CrossRef]
- Altman, D.G.; Royston, P. The cost of dichotomising continuous variables. BMJ 2006, 332, 1080. [Google Scholar] [CrossRef] [PubMed]
- Naggara, O.; Raymond, J.; Guilbert, F.; Roy, D.; Weill, A.; Altman, D.G. Analysis by categorizing or dichotomizing continuous variables is inadvisable: An example from the natural history of unruptured aneurysms. AJNR Am. J. Neuroradiol. 2011, 32, 437–440. [Google Scholar] [CrossRef]
- Royston, P.; Altman, D.G.; Sauerbrei, W. Dichotomizing continuous predictors in multiple regression: A bad idea. Stat. Med. 2006, 25, 127–141. [Google Scholar] [CrossRef]
- Yoon, H.J.; Kim, K.; Nam, Y.S.; Yun, J.M.; Park, M. Mean corpuscular volume levels and all-cause and liver cancer mortality. Clin. Chem. Lab. Med. CCLM/FESCC 2016, 54, 1247–1257. [Google Scholar] [CrossRef]
- Borsetto, D.; Polesel, J.; Tirelli, G.; Menegaldo, A.; Baggio, V.; Gava, A.; Nankivell, P.; Pracy, P.; Fussey, J.; Boscolo-Rizzo, P. Pretreatment High MCV as Adverse Prognostic Marker in Nonanemic Patients with Head and Neck Cancer. Laryngoscope 2021, 131, E836–E845. [Google Scholar] [CrossRef]
- Jomrich, G.; Hollenstein, M.; John, M.; Ristl, R.; Paireder, M.; Kristo, I.; Asari, R.; Schoppmann, S.F. High Mean Corpuscular Volume Predicts Poor Outcome for Patients With Gastroesophageal Adenocarcinoma. Ann. Surg. Oncol. 2019, 26, 976–985. [Google Scholar] [CrossRef]
- Watanabe, H.; Kano, K.; Hashimoto, I.; Suematsu, H.; Aoyama, T.; Yamada, T.; Ogata, T.; Rino, Y.; Oshima, T. Clinical Significance of Mean Corpuscular Volume in Patients with Locally Advanced Esophageal Squamous Cell Carcinoma. In Vivo 2022, 36, 2371–2378. [Google Scholar] [CrossRef]
- Yoshida, N.; Sasaki, K.; Kanetaka, K.; Kimura, Y.; Shibata, T.; Ikenoue, M.; Nakashima, Y.; Sadanaga, N.; Eto, K.; Tsuruda, Y.; et al. High Pretreatment Mean Corpuscular Volume Can Predict Worse Prognosis in Patients with Esophageal Squamous Cell Carcinoma who Have Undergone Curative Esophagectomy: A Retrospective Multicenter Cohort Study. Ann. Surg. Open 2022, 3, e165. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.Z.; Dai, S.Q.; Li, W.; Cao, X.; Li, Y.; Zhang, L.J.; Fu, J.H.; Wang, J.Y. Prognostic value of preoperative mean corpuscular volume in esophageal squamous cell carcinoma. World J. Gastroenterol. 2013, 19, 2811–2817. [Google Scholar] [CrossRef] [PubMed]
- Nagai, H.; Yuasa, N.; Takeuchi, E.; Miyake, H.; Yoshioka, Y.; Miyata, K. The mean corpuscular volume as a prognostic factor for colorectal cancer. Surg. Today 2018, 48, 186–194. [Google Scholar] [CrossRef]
- Liang, L.; Liu, F.; Yang, W.; Yang, W.; Chen, L.; He, Y.; Liu, Z.; Zhang, L.; Zhang, F.; Cai, F.; et al. Combined Mean Corpuscular Hemoglobin, Fibrinogen, and Albumin (MF-A) Is a Novel Prognostic Marker in Patients with Resectable Esophageal Squamous Cell Carcinoma. Ann. Surg. Oncol. 2022, 29, 5626–5633. [Google Scholar] [CrossRef] [PubMed]
- Savage, D.G.; Ogundipe, A.; Allen, R.H.; Stabler, S.P.; Lindenbaum, J. Etiology and diagnostic evaluation of macrocytosis. Am. J. Med. Sci. 2000, 319, 343–352. [Google Scholar] [CrossRef]
- Wakabayashi, I. Relationships of Habitual Alcohol Intake with Erythrocyte-Related Indices in Middle-Aged Japanese Men. Acta Haematol. 2019, 142, 154–161. [Google Scholar] [CrossRef]
- Maruyama, S.; Hirayama, C.; Yamamoto, S.; Koda, M.; Udagawa, A.; Kadowaki, Y.; Inoue, M.; Sagayama, A.; Umeki, K. Red blood cell status in alcoholic and non-alcoholic liver disease. J. Lab. Clin. Med. 2001, 138, 332–337. [Google Scholar] [CrossRef]
- Li, T.H.S.; Chik, Y.K.J.; Ng, K.Y.; Wong, W.S. Changes in Red Cell Morphology and Haematological Laboratory Parameters Associated with Alectinib. J. Clin. Lab. Anal. 2024, 38, e25089. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Hamdan, H.; Singh, V. Clinical utility of serum folate measurement in tertiary care patients: Argument for revising reference range for serum folate from 3.0 ng/mL to 13.0 ng/mL. Pract. Lab. Med. 2015, 1, 35–41. [Google Scholar] [CrossRef]
- Zhou, S.; Sun, J.; Zhu, W.; Yang, Z.; Wang, P.; Zeng, Y. Hypoxia studies in non-small cell lung cancer: Pathogenesis and clinical implications (Review). Oncol. Rep. 2025, 53, 29. [Google Scholar] [CrossRef] [PubMed]
- Robles-Oteíza, C.; Hastings, K.; Choi, J.; Sirois, I.; Ravi, A.; Expósito, F.; de Miguel, F.; Knight, J.R.; López-Giráldez, F.; Choi, H.; et al. Hypoxia is linked to acquired resistance to immune checkpoint inhibitors in lung cancer. J. Exp. Med. 2025, 222, e20231106. [Google Scholar] [CrossRef] [PubMed]
- Gardenghi, S.; Renaud, T.M.; Meloni, A.; Casu, C.; Crielaard, B.J.; Bystrom, L.M.; Greenberg-Kushnir, N.; Sasu, B.J.; Cooke, K.S.; Rivella, S. Distinct roles for hepcidin and interleukin-6 in the recovery from anemia in mice injected with heat-killed Brucella abortus. Blood 2014, 123, 1137–1145. [Google Scholar] [CrossRef] [PubMed]
- Yacoub, M.F.; Ferwiz, H.F.; Said, F. Effect of Interleukin and Hepcidin in Anemia of Chronic Diseases. Anemia 2020, 2020, 3041738. [Google Scholar] [CrossRef]
- Elisia, I.; Lam, V.; Cho, B.; Hay, M.; Li, M.Y.; Yeung, M.; Bu, L.; Jia, W.; Norton, N.; Lam, S.; et al. The effect of smoking on chronic inflammation, immune function and blood cell composition. Sci. Rep. 2020, 10, 19480. [Google Scholar] [CrossRef]
- Zhang, R.; Kyriss, T.; Dippon, J.; Hansen, M.; Boedeker, E.; Friedel, G. American Society of Anesthesiologists physical status facilitates risk stratification of elderly patients undergoing thoracoscopic lobectomy. Eur. J. Cardio-Thorac. Surg. 2018, 53, 973–979. [Google Scholar] [CrossRef]
Variables | n | % or Median (IQR) | Variables | n | % or Median (IQR) |
---|---|---|---|---|---|
Age, years | 437 | 69.0 (62.0–74.0) | Perineural invasion | ||
Sex | No | 430 | 98.4% | ||
Men | 257 | 58.8% | Yes | 7 | 1.6% |
Women | 180 | 41.2% | TNM Stage | ||
Smoker | IA/IB | 300 | 68.6% | ||
Never | 247 | 56.5% | IIA/IIB | 79 | 18.1% |
Current/Past | 190 | 43.5% | IIIA | 58 | 13.3% |
Alcohol consumption | WBC, per μL | 437 | 6290 (5280–7400) | ||
No | 325 | 74.4% | RBC, ×106 per μL | 437 | 4.3 (3.9–4.6) |
Yes | 112 | 25.6% | Hemoglobin, g/dL | 437 | 13.2 (12.1–14.1) |
ASA-PS | mSLI | 437 | 25.8 (23.9–28.4) | ||
I/II | 360 | 82.4% | MCV, fL | 437 | 91.4 (88.8–94.4) |
III/IV | 77 | 17.6% | MCH, pg | 437 | 30.8 (29.9–32.1) |
BMI, kg/m2 | 437 | 23.8 (21.8–26.0) | MCHC, g/dL | 437 | 33.7 (33.1–34.4) |
Histology | Platelet, ×103 per μL | 437 | 236 (200–277) | ||
Squamous | 95 | 21.7% | LMR | 437 | 3.8 (2.9–4.9) |
Non-squamous | 342 | 78.3% | NLR | 437 | 2.0 (1.5–2.8) |
Type of surgery | PLR | 437 | 130.3 (102.4–161.2) | ||
Segmentectomy | 143 | 32.7% | Total protein, g/dL | 437 | 7.2 (6.8–7.5) |
Lobectomy | 288 | 65.9% | Albumin, g/dL | 437 | 4.2 (3.9–4.4) |
Pneumonectomy | 6 | 1.4% | Bilirubin, mg/dL | 437 | 0.5 (0.4–0.7) |
Size, cm | 437 | 2.5 (1.7–3.5) | AST, U/L | 437 | 22.0 (19.0–27.0) |
Pleural invasion | ALT, U/L | 437 | 16.0 (12.0–23.0) | ||
0 | 340 | 77.8% | CRP, mg/dL | 437 | 0.1 (0.1–0.3) |
≥1 | 97 | 22.2% | CAR | 437 | 0.03 (0.02–0.08) |
Vascular invasion | PNI | 437 | 51.2 (47.7–53.7) | ||
No | 413 | 94.5% | CLR | 437 | 0.6 (0.4–1.8) |
Yes | 24 | 5.5% | CALLY index | 437 | 6.7 (2.3–11.2) |
Lymphatic invasion | NUn score | 437 | 5.4 (5.0–5.8) | ||
No | 381 | 87.2% | |||
Yes | 56 | 12.8% |
Variables * | HR (95% CI) | p Value |
---|---|---|
Age, years | 1.09 (1.06–1.12) | <0.001 |
Sex (women vs. men) | 0.39 (0.23–0.68) | <0.001 |
Smoker (current/former vs. never) | 2.59 (1.58–4.23) | <0.001 |
Alcohol consumption (present vs. absent) | 0.88 (0.52–1.50) | 0.644 |
ASA-PS (III/IV vs. I/II) | 3.11 (1.93–5.01) | <0.001 |
BMI, kg/m2 | 0.99 (0.92–1.06) | 0.823 |
Histology (squamous vs. non-squamous) | 3.87 (2.45–6.11) | <0.001 |
Tumor size, cm | 1.31 (1.19–1.44) | <0.001 |
Pleural invasion ** | 1.95 (1.54–2.46) | <0.001 |
Vascular invasion (present vs. absent) | 2.43 (1.21–4.89) | 0.013 |
Lymphatic invasion (present vs. absent) | 2.00 (1.15–3.49) | 0.014 |
Perineural invasion (present vs. absent) | 3.54 (1.11–11.29) | 0.033 |
TNM stage (II/IIIA vs. I) | 5.11 (3.14–8.33) | <0.001 |
WBC, per μL | 1.00 (1.00–1.00) | 0.001 |
Anemia (present vs. absent) | 1.33 (0.83–2.12) | 0.233 |
Modified Shine and Lal Index | 1.06 (1.01–1.12) | 0.027 |
MCV, fL | 1.05 (1.00–1.10) | 0.068 |
MCH, pg | 1.10 (0.98–1.24) | 0.111 |
MCHC, g/dL | 1.02 (0.81–1.29) | 0.840 |
Platelet, ×103 per μL | 1.00 (1.00–1.00) | 0.860 |
LMR | 0.75 (0.64–0.89) | <0.001 |
NLR | 1.34 (1.17–1.55) | <0.001 |
PLR | 1.00 (1.00–1.01) | 0.170 |
Albumin, g/dL | 0.15 (0.08–0.29) | <0.001 |
CRP, mg/dL | 1.17 (1.11–1.22) | <0.001 |
CAR | 1.73 (1.45–2.07) | <0.001 |
PNI | 0.88 (0.84–0.92) | <0.001 |
CLR | 1.02 (1.01–1.03) | <0.001 |
CALLY | 0.90 (0.86–0.94) | <0.001 |
NUn score | 2.33 (1.84–2.96) | <0.001 |
Variables * | mSLI Model (HR, 95% CI) | p Value | MCV Model (HR, 95% CI) | p Value | MCH Model (HR, 95% CI) | p Value |
---|---|---|---|---|---|---|
Age, years | 1.07 (1.03–1.10) | <0.001 | 1.06 (1.03–1.10) | <0.001 | 1.06 (1.03–1.10) | <0.001 |
ASA-PS (III/IV vs. I/II) | 1.92 (1.18–3.15) | 0.009 | 2.01 (1.23–3.28) | 0.005 | 1.85 (1.12–3.04) | 0.016 |
Pleural invasion ** | 1.45 (1.14–1.84) | 0.002 | 1.44 (1.14–1.83) | 0.002 | 1.45 (1.14–1.84) | 0.002 |
TNM stage (II/IIIA vs. I) | 3.37 (2.01–5.66) | <0.001 | 3.39 (2.02–5.69) | <0.001 | 3.38 (2.01–5.68) | <0.001 |
NUn score | 1.96 (1.50–2.58) | <0.001 | 1.92 (1.47–2.52) | <0.001 | 1.99 (1.51–2.62) | <0.001 |
mSLI | 1.08 (1.03–1.14) | 0.003 | - | - | - | - |
MCV, fL | - | - | 1.06 (1.01–1.12) | 0.012 | - | - |
MCH, pg | - | - | - | - | 1.18 (1.05–1.34) | 0.007 |
Metrics | mSLI Model (MM) | Intermediate Model (IM) | Baseline Model (BM) | MM vs. BM (Difference) | p Value | MM vs. IM (Difference) | p Value |
---|---|---|---|---|---|---|---|
C-index | 0.840 (0.023) | 0.835 (0.021) | 0.708 (0.028) | 0.135 (0.021) | <0.001 | 0.006 (0.009) | 0.554 |
AUC 3Y | 0.878 (0.027) | 0.873 (0.026) | 0.734 (0.034) | 0.143 (0.024) | <0.001 | 0.005 (0.010) | 0.614 |
AUC 5Y | 0.850 (0.033) | 0.846 (0.032) | 0.708 (0.036) | 0.143 (0.029) | <0.001 | 0.004 (0.010) | 0.662 |
IDI 3Y | 0.241 (0.043) | <0.001 | 0.047 (0.026) | 0.008 | |||
IDI 5Y | 0.218 (0.043) | <0.001 | 0.029 (0.021) | 0.020 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, S.; Eo, W.; Lee, S. Prognostic Significance of Modified Shine and Lal Index in Patients with Non-Small Cell Lung Cancer Undergoing Surgical Resection. Biomedicines 2025, 13, 937. https://doi.org/10.3390/biomedicines13040937
An S, Eo W, Lee S. Prognostic Significance of Modified Shine and Lal Index in Patients with Non-Small Cell Lung Cancer Undergoing Surgical Resection. Biomedicines. 2025; 13(4):937. https://doi.org/10.3390/biomedicines13040937
Chicago/Turabian StyleAn, Soomin, Wankyu Eo, and Sookyung Lee. 2025. "Prognostic Significance of Modified Shine and Lal Index in Patients with Non-Small Cell Lung Cancer Undergoing Surgical Resection" Biomedicines 13, no. 4: 937. https://doi.org/10.3390/biomedicines13040937
APA StyleAn, S., Eo, W., & Lee, S. (2025). Prognostic Significance of Modified Shine and Lal Index in Patients with Non-Small Cell Lung Cancer Undergoing Surgical Resection. Biomedicines, 13(4), 937. https://doi.org/10.3390/biomedicines13040937