Heart Rate Variability Time-Domain Analysis Across Glaucoma Subtypes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. Time-Domain Heart Rate Variability
2.3. Other Covariates
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HRV | Heart rate variability |
ANS | Autonomic nervous system |
SDNN | The standard deviation of normal-to-normal intervals |
RMSSD | The square root of the mean of the sum of the squared differences between adjacent normal-to-normal intervals |
CVRR | the coefficient of variation of R-R intervals |
POAG | Primary open-angle glaucoma |
EXG | Exfoliation glaucoma |
NTG | Normal-tension glaucoma |
IOP | Intraocular pressure |
BMI | Body mass index |
BP | Blood pressure |
BCVA | Best-corrected visual acuity |
SERE | Spherical equivalent refraction |
MD | Mean deviation |
LogMAR | Logarithm of the minimum angle of resolution |
CI | Confidence interval |
FDR | False discovery rate |
References
- Kleiger, R.E.; Stein, P.K.; Bigger, J.T., Jr. Heart rate variability: Measurement and clinical utility. Ann. Noninvasive Electrocardiol. 2005, 10, 88–101. [Google Scholar] [CrossRef] [PubMed]
- Karemaker, J.M. How the vagus nerve produces beat-to-beat heart rate variability; experiments in rabbits to mimic in vivo vagal patterns. J. Clin. Transl. Res. 2015, 1, 190–204. [Google Scholar] [PubMed]
- Ernst, G. Heart-Rate Variability-More than Heart Beats? Front. Public Health 2017, 5, 240. [Google Scholar] [CrossRef] [PubMed]
- Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Circulation 1996, 93, 1043–1065. [Google Scholar] [CrossRef]
- Billman, G.E. Heart rate variability—A historical perspective. Front. Physiol. 2011, 2, 86. [Google Scholar] [CrossRef]
- Zeid, S.; Buch, G.; Velmeden, D.; Sohne, J.; Schulz, A.; Schuch, A.; Trobs, S.O.; Heidorn, M.W.; Muller, F.; Strauch, K.; et al. Heart rate variability: Reference values and role for clinical profile and mortality in individuals with heart failure. Clin. Res. Cardiol. 2024, 113, 1317–1330. [Google Scholar] [CrossRef]
- Pop-Busui, R.; Backlund, J.C.; Bebu, I.; Braffett, B.H.; Lorenzi, G.; White, N.H.; Lachin, J.M.; Soliman, E.Z.; DCCT/EDIC Research Group. Utility of using electrocardiogram measures of heart rate variability as a measure of cardiovascular autonomic neuropathy in type 1 diabetes patients. J. Diabetes Investig. 2022, 13, 125–133. [Google Scholar] [CrossRef]
- Phurpa, M.; Ferdousi, S. Short-term Heart Rate Variability: A Technique to Detect Subclinical Cardiac Autonomic Neuropathy in Type 2 Diabetes Mellitus. Mymensingh Med. J. 2021, 30, 447–452. [Google Scholar]
- Alonso, A.; Huang, X.; Mosley, T.H.; Heiss, G.; Chen, H. Heart rate variability and the risk of Parkinson disease: The Atherosclerosis Risk in Communities study. Ann. Neurol. 2015, 77, 877–883. [Google Scholar] [CrossRef]
- Cheng, Y.C.; Huang, Y.C.; Huang, W.L. Heart rate variability in patients with dementia or neurocognitive disorders: A systematic review and meta-analysis. Aust. N. Z. J. Psychiatry 2022, 56, 16–27. [Google Scholar] [CrossRef]
- Tomar, A.; Ahluwalia, H.; Ramkumar, S.; Pattnaik, S.; Nandi, D.; Raturi, P. The interplay of heart rate variability and ventricular repolarization parameters in the obese state: A review. Cardiovasc. Endocrinol. Metab. 2025, 14, e00323. [Google Scholar] [CrossRef] [PubMed]
- Rooney, M.R.; Norby, F.L.; Soliman, E.Z.; Chen, L.Y.; Selvin, E.; Echouffo-Tcheugui, J.B. Duration of diabetes, glycemic control, and low heart rate variability: The Atherosclerosis Risk in Communities (ARIC) study. J. Diabetes Complicat. 2024, 38, 108903. [Google Scholar] [CrossRef]
- Liu, W.; Wang, S.; Gu, H.; Li, R. Heart rate variability, a potential assessment tool for identifying anxiety, depression, and sleep disorders in elderly individuals. Front. Psychiatry 2025, 16, 1485183. [Google Scholar] [CrossRef]
- Riccadonna, M.; Covi, G.; Pancera, P.; Presciuttini, B.; Babighian, S.; Perfetti, S.; Bonomi, L.; Lechi, A. Autonomic system activity and 24-hour blood pressure variations in subjects with normal- and high-tension glaucoma. J. Glaucoma 2003, 12, 156–163. [Google Scholar] [CrossRef]
- Gherghel, D.; Hosking, S.L.; Armstrong, R.; Cunliffe, I.A. Autonomic dysfunction in unselected and untreated primary open angle glaucoma patients: A pilot study. Ophthalmic Physiol. Opt. 2007, 27, 336–341. [Google Scholar] [CrossRef]
- Liu, B.; Zhao, Y.; Zhang, H. The Effect of Autonomic Nervous System Dysfunction on the Progression of Primary Open-Angle Glaucoma. Int. J. Gen. Med. 2022, 15, 4565–4573. [Google Scholar] [CrossRef]
- Park, H.L.; Jung, S.H.; Park, S.H.; Park, C.K. Detecting autonomic dysfunction in patients with glaucoma using dynamic pupillometry. Medicine 2019, 98, e14658. [Google Scholar] [CrossRef]
- McDougal, D.H.; Gamlin, P.D. Autonomic control of the eye. Compr. Physiol. 2015, 5, 439–473. [Google Scholar] [CrossRef]
- Zhao, D.; Cho, J.; Kim, M.H.; Guallar, E. The association of blood pressure and primary open-angle glaucoma: A meta-analysis. Am. J. Ophthalmol. 2014, 158, 615–627.e9. [Google Scholar] [CrossRef]
- Kim, K.E.; Oh, S.; Baek, S.U.; Ahn, S.J.; Park, K.H.; Jeoung, J.W. Ocular Perfusion Pressure and the Risk of Open-Angle Glaucoma: Systematic Review and Meta-analysis. Sci. Rep. 2020, 10, 10056. [Google Scholar] [CrossRef]
- Lee, N.Y.; Shin, D.Y.; Park, C.K. Associations of long-term fluctuation in blood pressure and ocular perfusion pressure with visual field progression in normal-tension glaucoma. BMC Ophthalmol. 2024, 24, 209. [Google Scholar] [CrossRef]
- Kurysheva, N.I.; Ryabova, T.Y.; Shlapak, V.N. Heart rate variability: The comparison between high tension and normal tension glaucoma. EPMA J. 2018, 9, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Kurysheva, N.I.; Shlapak, V.N.; Ryabova, T.Y. Heart rate variability in normal tension glaucoma: A case-control study. Medicine 2018, 97, e9744. [Google Scholar] [CrossRef] [PubMed]
- Grover, S.; Fishman, G.A.; Anderson, R.J.; Tozatti, M.S.; Heckenlively, J.R.; Weleber, R.G.; Edwards, A.O.; Brown, J., Jr. Visual acuity impairment in patients with retinitis pigmentosa at age 45 years or older. Ophthalmology 1999, 106, 1780–1785. [Google Scholar] [CrossRef]
- Asefa, N.G.; Neustaeter, A.; Jansonius, N.M.; Snieder, H. Autonomic Dysfunction and Blood Pressure in Glaucoma Patients: The Lifelines Cohort Study. Investig. Ophthalmol. Vis. Sci. 2020, 61, 25. [Google Scholar] [CrossRef]
- Praveen, M.R.; Shah, S.K.; Vasavada, A.R.; Diwan, R.P.; Shah, S.M.; Zumkhawala, B.R.; Thomas, R. Pseudoexfoliation as a risk factor for peripheral vascular disease: A case-control study. Eye 2011, 25, 174–179. [Google Scholar] [CrossRef]
- Doudevski, I.; Rostagno, A.; Cowman, M.; Liebmann, J.; Ritch, R.; Ghiso, J. Clusterin and complement activation in exfoliation glaucoma. Investig. Ophthalmol. Vis. Sci. 2014, 55, 2491–2499. [Google Scholar] [CrossRef]
- Tanito, M.; Kaidzu, S.; Takai, Y.; Ohira, A. Status of systemic oxidative stresses in patients with primary open-angle glaucoma and pseudoexfoliation syndrome. PLoS ONE 2012, 7, e49680. [Google Scholar] [CrossRef]
- Goren Sahin, D.; Sahin, A.; Akay, O.M. Comparison of Rotational Thromboelastography Findings in Pseudoexfoliation Syndrome Patients and Healthy Controls. J. Glaucoma 2016, 25, 879–882. [Google Scholar] [CrossRef]
- Visontai, Z.; Horvath, T.; Kollai, M.; Hollo, G. Decreased cardiovagal regulation in exfoliation syndrome. J. Glaucoma 2008, 17, 133–138. [Google Scholar] [CrossRef]
- Guyenet, P.G. The sympathetic control of blood pressure. Nat. Rev. Neurosci. 2006, 7, 335–346. [Google Scholar] [CrossRef] [PubMed]
- Malpas, S.C. Sympathetic nervous system overactivity and its role in the development of cardiovascular disease. Physiol. Rev. 2010, 90, 513–557. [Google Scholar] [CrossRef] [PubMed]
- Hirooka, Y.; Kishi, T.; Ito, K.; Sunagawa, K. Potential clinical application of recently discovered brain mechanisms involved in hypertension. Hypertension 2013, 62, 995–1002. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, L.; Hu, Q.; Gao, Y.; Wei, Y.; Tang, X.; Hu, Y.; Xu, L.; Liu, H.; Wang, Z.; et al. Correlative relationship between body mass index and heart rate variability in psychiatric disorders. Eur. Arch. Psychiatry Clin. Neurosci. 2024, 274, 1–10. [Google Scholar] [CrossRef]
- Sacha, J. Interaction between heart rate and heart rate variability. Ann. Noninvasive Electrocardiol. 2014, 19, 207–216. [Google Scholar] [CrossRef]
- Burr, R.L.; Motzer, S.A.; Chen, W.; Cowan, M.J.; Shulman, R.J.; Heitkemper, M.M. Heart rate variability and 24-hour minimum heart rate. Biol. Res. Nurs. 2006, 7, 256–267. [Google Scholar] [CrossRef]
- Speer, K.E.; Koenig, J.; Telford, R.M.; Olive, L.S.; Mara, J.K.; Semple, S.; Naumovski, N.; Telford, R.D.; McKune, A.J. Relationship between heart rate variability and body mass index: A cross-sectional study of preschool children. Prev. Med. Rep. 2021, 24, 101638. [Google Scholar] [CrossRef]
- Jensen-Urstad, K.; Storck, N.; Bouvier, F.; Ericson, M.; Lindblad, L.E.; Jensen-Urstad, M. Heart rate variability in healthy subjects is related to age and gender. Acta Physiol. Scand. 1997, 160, 235–241. [Google Scholar] [CrossRef]
- Voss, A.; Schulz, S.; Schroeder, R.; Baumert, M.; Caminal, P. Methods derived from nonlinear dynamics for analysing heart rate variability. Philos. Trans. A Math. Phys. Eng. Sci. 2009, 367, 277–296. [Google Scholar] [CrossRef]
- Pikkujamsa, S.M.; Makikallio, T.H.; Sourander, L.B.; Raiha, I.J.; Puukka, P.; Skytta, J.; Peng, C.K.; Goldberger, A.L.; Huikuri, H.V. Cardiac interbeat interval dynamics from childhood to senescence: Comparison of conventional and new measures based on fractals and chaos theory. Circulation 1999, 100, 393–399. [Google Scholar] [CrossRef]
- Goldberger, A.L. Non-linear dynamics for clinicians: Chaos theory, fractals, and complexity at the bedside. Lancet 1996, 347, 1312–1314. [Google Scholar] [CrossRef] [PubMed]
- Gribbin, B.; Pickering, T.G.; Sleight, P.; Peto, R. Effect of age and high blood pressure on baroreflex sensitivity in man. Circ. Res. 1971, 29, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Piepoli, M.; Radaelli, A.; Ponikowski, P.; Adamopoulos, S.; Bemardi, L.; Sleight, P.; Coats, A.J. Reproducibility of heart rate variability indices during exercise stress testing and inotrope infusion in chronic heart failure patients. Clin. Sci. 1996, 91, 87–88. [Google Scholar] [CrossRef] [PubMed]
Parameters | Control (n = 96) | POAG (n = 522) | EXG (n = 191) | p Value |
---|---|---|---|---|
Age, years | 59.9 ± 18.8 | 66.0 ± 12.7 | 75.8 ± 8.7 | <0.001 |
Age group, % | ||||
<65 | 40 (41.7%) | 204 (39.1%) | 19 (9.9%) | <0.001 |
65−74 | 40 (41.7%) | 188 (36.0%) | 67 (35.1%) | |
≥75 | 16 16.7%) | 130 (24.9%) | 105 (55.0%) | |
Female, % | 41 (42.7%) | 237 (45.4%) | 87 (45.5%) | 0.880 |
Left eye, % | 30 (31.3%) | 182 (34.9%) | 86 (45.0%) | 0.022 |
Body mass index, kg/m², SD | 23.2 ± 4.4 | 22.7 ± 3.3 | 22.8 ± 3.2 | 0.857 |
Systolic blood pressure, mmHg, SD | 141.2 ± 23.4 | 140.8 ± 20.8 | 148.2 ± 20.2 | <0.001 |
Diastolic blood pressure, mmHg, SD | 79.5 ± 14.3 | 80.8 ± 13.1 | 80.3 ± 14.1 | 0.591 |
Heart rate, beats/minute, SD | 75.1 ± 12.5 | 68.2 ± 11.4 | 68.8 ± 12.3 | <0.001 |
BCVA, LogMAR, SD | −0.01 ± 0.1 | 0.15 ± 0.4 | 0.44 ± 0.8 | <0.001 |
SERE, D, SD | −1.85 ± 3.3 | −3.41 ± 3.7 | −1.70 ± 2.8 | <0.001 |
MD, dB, SD | −1.37 ± 2.8 | −6.37 ± 7.2 | −7.05 ± 7.4 | <0.001 |
IOP (current), mmHg, SD | 15.1 ± 3.6 | 15.4 ± 6.2 | 19.3 ± 9.9 | <0.001 |
IOP (highest recorded), mmHg, SD | 16.5 ± 3.5 | 22.4 ± 9.7 | 28.1 ± 10.5 | <0.001 |
Pseudophakia, % | 28 (29.1%) | 257 (49.2%) | 147 (77.0%) | <0.001 |
Hypertension, % | 28 (29.1%) | 225 (43.1%) | 96 (50.3%) | 0.003 |
Diabetes, % | 20 (20.8%) | 69 (13.2%) | 31 (16.2%) | 0.128 |
Smoking, % | 12 (16.3%) | 56 (11.3%) | 21 (11.3%) | 0.375 |
Unadjusted Model | Model 1 | Model 2 | ||||
---|---|---|---|---|---|---|
Coef (95% CI) | p Value | Coef (95% CI) | p Value | Coef (95% CI) | p Value | |
Age | ||||||
<65 | Ref | − | Ref | − | Ref | − |
65−74 | −1.83 (−5.09, 1.43) | 0.271 | −2.03 (−5.44, 1.38) | 0.243 | −1.96 (−5.37, 1.45) | 0.259 |
≥ 75 | −3.35 (−6.74, 0.04) | 0.053 | −4.11 (−8.03, −0.19) | 0.040 | −3.98 (−7.90, −0.05) | 0.047 |
Sex | ||||||
Male | Ref | − | Ref | − | Ref | − |
Female | −0.28 (−3.00, 2.44) | 0.842 | 0.78 (−2.02, 3.59) | 0.583 | 0.96 (−1.85, 3.78) | 0.502 |
Glaucoma type | ||||||
Control | Ref | − | Ref | − | Ref | − |
POAG | 1.76 (−2.50, 6.03) | 0.417 | −1.03 (−5.28, 3.23) | 0.636 | −1.80 (−6.15, 2.54) | 0.415 |
EXG | −1.55 (−6.35, 3.26) | 0.528 | −2.66 (−7.61, 2.29) | 0.292 | −3.62 (−8.79, 1.55) | 0.170 |
sBP | −0.08 (−0.15, −0.02) | 0.013 | 0.001 (−0.09, 0.10) | 0.988 | −0.002 (−0.10, 0.09) | 0.964 |
dBP | −0.09 (−0.19, 0.02) | 0.103 | 0.01 (−0.14, 0.15) | 0.940 | 0.01 (−0.13, 0.16) | 0.862 |
Heart rate | −0.51 (−0.61, −0.41) | 0.000 | −0.52 (−0.62, −0.41) | 0.000 | −0.52 (−0.63, −0.42) | 0.000 |
IOP (current) | 0.08 (−0.11, 0.26) | 0.423 | 0.15 (−0.04, 0.34) | 0.119 | − | − |
IOP (highest recorded) | 0.08 (−0.06, 0.21) | 0.251 | − | − | 0.14 (−0.01, 0.28) | 0.060 |
Body mass index | −0.57 (−0.98, −0.17) | 0.006 | −0.45 (−0.85, −0.05) | 0.029 | −0.41 (−0.81, −0.01) | 0.045 |
Diabetes | −3.16 (−6.96, 0.64) | 0.103 | −0.44 (−4.27, 3.39) | 0.822 | −0.49 (−4.32, 3.34) | 0.801 |
Smoking | 0.10 (−4.18, 4.38) | 0.963 | 0.42 (−3.84, 4.68) | 0.847 | 0.32 (−3.93, 4.57) | 0.882 |
Unadjusted Model | Model 1 | Model 2 | ||||
---|---|---|---|---|---|---|
Coef (95% CI) | p Value | Coef (95% CI) | p Value | Coef (95% CI) | p Value | |
Age | ||||||
<65 | Ref | − | Ref | − | Ref | − |
65−74 | 4.09 (−0.46, 8.65) | 0.078 | 3.51 (−1.27, 8.30) | 0.149 | 3.62 (−1.16, 8.40) | 0.137 |
≥75 | 6.32 (1.58, 11.1) | 0.009 | 4.76 (−0.73, 10.3) | 0.089 | 5.00 (−0.51, 10.5) | 0.075 |
Sex | ||||||
Male | Ref | − | Ref | − | Ref | − |
Female | −1.78 (−5.58, 2.03) | 0.360 | 0.36 (−3.57, 4.30) | 0.855 | 0.61 (−3.33, 4.56) | 0.761 |
Glaucoma type | ||||||
Control | Ref | − | Ref | − | Ref | − |
POAG | 4.49 (−1.50, 10.5) | 0.141 | 0.17 (−5.79, 6.13) | 0.955 | −0.87 (−6.95, 5.21) | 0.779 |
EXG | 4.03 (−2.71, 10.8) | 0.241 | −0.83 (−7.77, 6.11) | 0.814 | −2.37 (−9.61, 4.86) | 0.520 |
Systolic BP | −0.07 (−0.16, 0.03) | 0.156 | −0.01 (−0.14, 0.13) | 0.937 | −0.01 (−0.14, 0.12) | 0.892 |
Diastolic BP | −0.15 (−0.30, −0.01) | 0.042 | −0.01 (−0.21, 0.20) | 0.953 | 0.001 (−0.20, 0.21) | 0.989 |
Heart rate | −0.72 (−0.86, −0.58) | 0.000 | −0.70 (−0.85, −0.56) | 0.000 | −0.71 (−0.86, −0.56) | 0.000 |
IOP (current) | 0.09 (−0.18, 0.35) | 0.515 | 0.13 (−0.13, 0.40) | 0.320 | − | − |
IOP (highest recorded) | 0.14 (−0.04, 0.33) | 0.135 | − | − | 0.18 (−0.02, 0.38) | 0.080 |
Body mass index | −0.83 (−1.40, −0.26) | 0.004 | −0.62 (−1.19, −0.06) | 0.031 | −0.58 (−1.15, −0.02) | 0.042 |
Diabetes | 0.40 (−4.94, 5.73) | 0.885 | 2.57 (−2.80, 7.93) | 0.348 | 2.47 (−2.89, 7.83) | 0.366 |
Smoking | 2.86 (−3.12, 8.84) | 0.349 | 5.38 (−0.59, 11.3) | 0.077 | 5.30 (−0.65, 11.3) | 0.081 |
Unadjusted Model | Model 1 | Model 2 | ||||
---|---|---|---|---|---|---|
Coef (95% CI) | p Value | Coef (95% CI) | p Value | Coef (95% CI) | p Value | |
Age | ||||||
<65 | Ref | − | Ref | − | Ref | − |
65−74 | −0.48 (−0.80, −0.16) | 0.003 | −0.41 (−0.76, −0.06) | 0.023 | −0.40 (−0.75, −0.05) | 0.025 |
≥75 | −0.64 (−0.97, −0.30) | 0.000 | −0.63 (−1.04, −0.23) | 0.002 | −0.62 (−1.02, −0.22) | 0.003 |
Sex | ||||||
Male | Ref | − | Ref | − | Ref | − |
Female | 0.09 (−0.18, 0.36) | 0.505 | 0.09 (−0.19, 0.38) | 0.518 | 0.11 (−0.18, 0.40) | 0.439 |
Glaucoma type | ||||||
Control | Ref | − | Ref | − | Ref | − |
POAG | −0.19 (−0.61, 0.23) | 0.383 | −0.29 (−0.72, 0.15) | 0.197 | −0.37 (−0.82, 0.08) | 0.103 |
EXG | −0.48 (−0.95, −0.003) | 0.048 | −0.40 (−0.91, 0.11) | 0.125 | −0.50 (−1.03, −0.03) | 0.065 |
Systolic BP | −0.01 (−0.02, −0.002) | 0.007 | −0.002 (−0.01, 0.01) | 0.689 | −0.002 (−0.01, 0.01) | 0.643 |
Diastolic BP | −0.01 (−0.02, 0.003) | 0.176 | 0.0002 (−0.02, 0.01) | 0.981 | 0.0001 (−0.01, 0.02) | 0.936 |
Heart rate | −0.02 (−0.03, −0.01) | 0.000 | −0.02 (−0.03, −0.01) | 0.000 | −0.02 (−0.03, −0.01) | 0.000 |
IOP (current) | 0.01 (−0.01, 0.03) | 0.223 | 0.02 (−0.003, 0.04) | 0.095 | − | − |
IOP (highest recorded) | 0.01 (−0.01, 0.02) | 0.222 | − | − | 0.01 (0.001, 0.03) | 0.050 |
Body mass index | −0.05 (−0.09, −0.01) | 0.011 | −0.05 (−0.09, −0.01) | 0.024 | −0.04 (−0.08, −0.002) | 0.038 |
Diabetes | −0.28 (−0.66, 0.09) | 0.138 | −0.11 (−0.49, 0.30) | 0.646 | −0.10 (−0.49, 0.30) | 0.627 |
Smoking | −0.06 (−0.48, 0.36) | 0.772 | −0.11 (−0.54, 0.33) | 0.631 | −0.12 (−0.55, 0.32) | 0.597 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoshida, Y.; Takei, H.; Ukisu, M.; Takagi, K.; Tanito, M. Heart Rate Variability Time-Domain Analysis Across Glaucoma Subtypes. Biomedicines 2025, 13, 893. https://doi.org/10.3390/biomedicines13040893
Yoshida Y, Takei H, Ukisu M, Takagi K, Tanito M. Heart Rate Variability Time-Domain Analysis Across Glaucoma Subtypes. Biomedicines. 2025; 13(4):893. https://doi.org/10.3390/biomedicines13040893
Chicago/Turabian StyleYoshida, Yuto, Hinako Takei, Misaki Ukisu, Keigo Takagi, and Masaki Tanito. 2025. "Heart Rate Variability Time-Domain Analysis Across Glaucoma Subtypes" Biomedicines 13, no. 4: 893. https://doi.org/10.3390/biomedicines13040893
APA StyleYoshida, Y., Takei, H., Ukisu, M., Takagi, K., & Tanito, M. (2025). Heart Rate Variability Time-Domain Analysis Across Glaucoma Subtypes. Biomedicines, 13(4), 893. https://doi.org/10.3390/biomedicines13040893