Epigenetic Symphony in Diffuse Large B-Cell Lymphoma: Orchestrating the Tumor Microenvironment
Abstract
:1. Introduction
2. Epigenetic Modifications in DLBCL
2.1. DNA Methylation
2.2. Histones Modifications
2.3. MicroRNAs (miRNAs)
2.4. Chromatin Remodeling
3. Components of the Tumor Microenvironment
3.1. Lymphoid Cells
3.1.1. B-Cells
3.1.2. T-Cells
3.1.3. Natural Killer (NK) Cells
3.2. Myeloid Cells
3.2.1. Dendritic Cells
3.2.2. Tumor-Associated Macrophages (TAMs)
3.2.3. Myeloid-Derived Suppressor Cells (MDSCs)
3.2.4. Tumor-Associated Neutrophils (TANs)
3.2.5. Mast Cells (MCs)
3.3. Cancer-Associated Fibroblasts
3.4. Myofibroblasts (MFs)
3.5. Endothelial Cells (ECs)
3.6. Extracellular Matrix (ECM)
4. Epigenetic Influence on the Tumor Microenvironment
4.1. Epigenetic Modification of the TME
4.2. Epigenetic Modulation of the TME
4.2.1. DNA Methylation and Antigen Presentation Suppression
4.2.2. Histone Modifications and Checkpoint Inhibitor Regulation
4.2.3. ncRNAs and Immune Escape
5. Targeting Epigenetics in DLBCL
5.1. Targeting DNA Methylation
5.2. Targeting Histone Methylation
5.3. Targeting Histone Acetylation
5.4. Targeting miRNAs
5.5. Targeting Chromatin Remodeling
5.6. Immune Checkpoint Inhibitors in DLBCL
5.7. Chimeric Antigen Receptor (CAR) T-Cells
5.8. Bispecific Antibodies
5.9. Antibody-Drug Conjugates (ADCs)
5.10. Rationale for Novel Immunotherapy-Based Combinations in B-Cell Lymphomas
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABC | Activated B-cell |
AML | Acute myeloid leukemia |
APRIL | Proliferation-inducing TNF ligand |
BL | Burkitt lymphoma |
B-NHL | B-cell non-Hodgkin lymphoma |
CAF | Cancer-associated fibroblast |
CHOP | Cyclophosphamide, Doxorubicin, Vincristine, Prednisone |
CLL | Chronic lymphocytic leukemia |
CRR | Complete response rate |
DC | Dendritic cells |
DLBCL | Diffuse large B-cell lymphoma |
DNA | Deoxyribonucleic acid |
DNMTs | DNA methyltransferases |
DP-LME | Depleted lymphoma microenvironment |
EBV | Epstein–Barr virus |
ECM | Extracellular matrix |
FL | Follicular lymphoma |
GCB | Center B-cell subtype |
GC-LME | Germinal center-like lymphoma microenvironment |
HAT | Histone acetyltransferase |
HDAC | Histone deacetylase |
IL-10 | Interleukin-10 |
LME | Lymphoma microenvironment |
LSD1 | Lysine-specific demethylase 1 |
MCL | Mantle cell lymphoma |
MDSC | Myeloid-derived suppressor cell |
MSD | Myelodysplastic syndrome |
NGS | Next-generation sequencing |
NK | Natural killer |
NHLs | Non-Hodgkin lymphomas |
ORR | Overall response rate |
OS | Overall survival |
PD-1 | Programmed cell death protein 1 |
PD-L1 | Programmed death-ligand 1 |
PFS | Progression-free survival |
R-CHOP | Rituximab, Cyclophosphamide, Doxorubicin, Vincristine, Prednisone |
RNA | Ribonucleic acid |
RR-DLBCL | Refractory diffuse large B-cell lymphoma |
TAM | Tumor-associated macrophage |
TAN | Tumor-associated neutrophil |
TILs | Tumor-infiltrating lymphocytes |
Th | T helper |
TME | Tumor microenvironment |
TLA | Three letter acronym |
Treg | T regulatory |
References
- Alaggio, R.; Amador, C.; Anagnostopoulos, I.; Attygalle, A.D.; Araujo, I.B.O.; Berti, E.; Bhagat, G.; Borges, A.M.; Boyer, D.; Calaminici, M.; et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia 2022, 36, 1720–1748. [Google Scholar] [CrossRef]
- Condoluci, A.; Rossi, D. Biology and treatment of Richter transformation. Front. Oncol. 2022, 12, 829983. [Google Scholar] [CrossRef]
- Sehn, L.H.; Salles, G. Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2021, 384, 842–858. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, A.A.; Eisen, M.B.; Davis, R.E.; Ma, C.; Lossos, I.S.; Rosenwald, A.; Boldrick, J.C.; Sabet, H.; Tran, T.; Yu, X.; et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000, 403, 503–511. [Google Scholar] [CrossRef]
- Wang, S.S. Epidemiology and etiology of diffuse large B-cell lymphoma. Semin. Hematol. 2023, 60, 255–266. [Google Scholar] [CrossRef]
- Koumpis, E.; Papoudou-Bai, A.; Papathanasiou, K.; Kolettas, E.; Kanavaros, P.; Hatzimichael, E. Unraveling the Immune Microenvironment in Diffuse Large B-Cell Lymphoma: Prognostic and Potential Therapeutic Implications. Curr. Issues Mol. Biol. 2024, 46, 7048–7064. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Barta, S.K. Diffuse large B-cell lymphoma: 2019 update on diagnosis, risk stratification, and treatment. Am. J. Hematol. 2019, 94, 604–616. [Google Scholar] [CrossRef] [PubMed]
- Susanibar-Adaniya, S.; Barta, S.K. 2021 Update on Diffuse large B cell lymphoma: A review of current data and potential applications on risk stratification and management. Am. J. Hematol. 2021, 96, 617–629. [Google Scholar] [CrossRef]
- Pileri, S.A.; Tripodo, C.; Melle, F.; Motta, G.; Tabanelli, V.; Fiori, S.; Vegliante, M.C.; Mazzara, S.; Ciavarella, S.; Derenzini, E. Predictive and Prognostic Molecular Factors in Diffuse Large B-Cell Lymphomas. Cells 2021, 10, 675. [Google Scholar] [CrossRef]
- Shimkus, G.; Nonaka, T. Molecular classification and therapeutics in diffuse large B-cell lymphoma. Front. Mol. Biosci. 2023, 10, 1124360. [Google Scholar] [CrossRef]
- Chapuy, B.; Stewart, C.; Dunford, A.J.; Kim, J.; Kamburov, A.; Redd, R.A.; Lawrence, M.S.; Roemer, M.G.M.; Li, A.J.; Ziepert, M.; et al. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat. Med. 2018, 24, 679–690. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, R.; Wright, G.W.; Huang, D.W.; Johnson, C.A.; Phelan, J.D.; Wang, J.Q.; Roulland, S.; Kasbekar, M.; Young, R.M.; Shaffer, A.L.; et al. Genetics and Pathogenesis of Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2018, 378, 1396–1407. [Google Scholar] [CrossRef] [PubMed]
- Lacy, S.E.; Barrans, S.L.; Beer, P.A.; Painter, D.; Smith, A.G.; Roman, E.; Cooke, S.L.; Ruiz, C.; Glover, P.; Van Hoppe, S.J.L.; et al. Targeted sequencing in DLBCL, molecular subtypes, and outcomes: A Haematological Malignancy Research Network report. Blood 2020, 135, 1759–1771. [Google Scholar] [CrossRef]
- Wright, G.W.; Huang, D.W.; Phelan, J.D.; Coulibaly, Z.A.; Roulland, S.; Young, R.M.; Wang, J.Q.; Schmitz, R.; Morin, R.D.; Tang, J.; et al. A Probabilistic Classification Tool for Genetic Subtypes of Diffuse Large B Cell Lymphoma with Therapeutic Implications. Cancer Cell 2020, 37, 551–568.e14. [Google Scholar] [CrossRef] [PubMed]
- Harrop, S.; Yannakou, C.K.; Van Der Weyden, C.; Prince, H.M. Epigenetic Modifications in Lymphoma and Their Role in the Classification of Lymphomas. Hemato 2022, 3, 174–187. [Google Scholar] [CrossRef]
- Shaknovich, R.; Cerchietti, L.; Tsikitas, L.; Kormaksson, M.; De, S.; Figueroa, M.E.; Ballon, G.; Yang, S.N.; Weinhold, N.; Reimers, M.; et al. DNA methyltransferase 1 and DNA methylation patterning contribute to germinal center B-cell differentiation. Blood 2011, 118, 3559–3569. [Google Scholar] [CrossRef]
- Marks, D.L.; Olson, R.L.; Fernandez-Zapico, M.E. Epigenetic control of the tumor microenvironment. Epigenomics 2016, 8, 1671–1687. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
- Scott, D.W.; Gascoyne, R.D. The tumour microenvironment in B cell lymphomas. Nature reviews. Cancer 2014, 14, 517–534. [Google Scholar] [CrossRef]
- García-Domínguez, D.J.; Hontecillas-Prieto, L.; Palazón-Carrión, N.; Jiménez-Cortegana, C.; Sánchez-Margalet, V.; de la Cruz-Merino, L. Tumor Immune Microenvironment in Lymphoma: Focus on Epigenetics. Cancers 2022, 14, 1469. [Google Scholar] [CrossRef]
- Lwin, T.; Zhao, X.; Cheng, F.; Zhang, X.; Huang, A.; Shah, B.; Zhang, Y.; Moscinski, L.C.; Choi, Y.S.; Kozikowski, A.P.; et al. A microenvironment-mediated c-Myc/miR-548m/HDAC6 amplification loop in non-Hodgkin B cell lymphomas. J. Clin. Investig. 2013, 123, 4612–4626. [Google Scholar] [CrossRef]
- Rodríguez-Paredes, M.; Esteller, M. Cancer epigenetics reaches mainstream oncology. Nat. Med. 2011, 17, 330–339. [Google Scholar] [CrossRef]
- Waddington, C.H. The epigenotype. 1942. Int. J. Epidemiol. 2012, 41, 10–13. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Morris, J.R. Genes, genetics, and epigenetics: A correspondence. Science 2001, 293, 1103–1105. [Google Scholar] [CrossRef] [PubMed]
- Zhao, A.; Zhou, H.; Yang, J.; Li, M.; Niu, T. Epigenetic regulation in hematopoiesis and its implications in the targeted therapy of hematologic malignancies. Signal Transduct. Target. Ther. 2023, 8, 71. [Google Scholar] [CrossRef]
- Madakashira, B.P.; Sadler, K.C. DNA methylation, nuclear organization, and cancer. Front. Genet. 2017, 8, 76. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, S.; Yang, Z.; Cui, Z.; Zhang, Y.; Che, F. Epigenetic alterations and advancement of lymphoma treatment. Ann. Hematol. 2024, 103, 1435–1454. [Google Scholar] [CrossRef]
- Hatzi, K.; Melnick, A. Breaking bad in the germinal center: How deregulation of BCL6 contributes to lymphomagenesis. Trends Mol. Med. 2014, 20, 343–352. [Google Scholar] [CrossRef]
- Jiao, J.; Lv, Z.; Zhang, P.; Wang, Y.; Yuan, M.; Yu, X.; Otieno Odhiambo, W.; Zheng, M.; Zhang, H.; Ma, Y.; et al. AID assists DNMT1 to attenuate BCL6 expression through DNA methylation in diffuse large B-cell lymphoma cell lines. Neoplasia 2020, 22, 142–153. [Google Scholar] [CrossRef]
- Frazzi, R.; Zanetti, E.; Pistoni, M.; Tamagnini, I.; Valli, R.; Braglia, L.; Merli, F. Methylation changes of SIRT1, KLF4, DAPK1 and SPG20 in B-lymphocytes derived from follicular and diffuse large B-cell lymphoma. Leuk. Res. 2017, 57, 89–96. [Google Scholar] [CrossRef]
- Frazzi, R. KLF4 is an epigenetically modulated, context-dependent tumor suppressor. Front. Cell Dev. Biol. 2024, 12, 1392391. [Google Scholar] [CrossRef] [PubMed]
- Shawky, S.A.; El-Borai, M.H.; Khaled, H.M.; Guda, I.; Mohanad, M.; Abdellateif, M.S.; Zekri, A.N.; Bahanasy, A.A. The prognostic impact of hypermethylation for a panel of tumor suppressor genes and cell of origin subtype on diffuse large B-cell lymphoma. Mol. Biol. Rep. 2019, 46, 4063–4076. [Google Scholar] [CrossRef] [PubMed]
- Voropaeva, E.N.; Pospelova, T.I.; Voevoda, M.I.; Maksimov, V.N.; Orlov, Y.L.; Seregina, O.B. Clinical aspects of TP53 gene inactivation in diffuse large B-cell lymphoma. BMC Med. Genom. 2019, 12 (Suppl. S2), 35. [Google Scholar] [CrossRef]
- Mohamed, G.; Talima, S.; Li, L.; Wei, W.; Rudzki, Z.; Allam, R.M.; Simmons, W.; Tao, Q.; Murray, P.G. Low Expression and Promoter Hypermethylation of the Tumour Suppressor SLIT2, are Associated with Adverse Patient Outcomes in Diffuse Large B Cell Lymphoma. Pathol. Oncol. Res. POR 2019, 25, 1223–1231. [Google Scholar] [CrossRef]
- Gong, Y.; Zhou, L.; Ding, L.; Zhao, J.; Wang, Z.; Ren, G.; Zhang, J.; Mao, Z.; Zhou, R. KIF23 is a potential biomarker of diffuse large B cell lymphoma: Analysis based on bioinformatics and immunohistochemistry. Medicine 2022, 101, e29312. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Guo, X.; Huang, L.; Wang, B.; Wang, W.; Han, D.; Zhang, W.; Zhong, K. Methylation silencing CDH23 is a poor prognostic marker in diffuse large B-cell lymphoma. Aging 2021, 13, 17768–17788. [Google Scholar] [CrossRef]
- Simonetta, F.; Bertoni, F. An epigenetic signature in CD19-CAR T cells predicts clinical outcome. Trends Cancer 2022, 8, 81–82. [Google Scholar] [CrossRef]
- Kulis, M.; Esteller, M. DNA methylation and cancer. Adv. Genet. 2010, 70, 27–56. [Google Scholar] [CrossRef]
- Lai, A.Y.; Mav, D.; Shah, R.; Grimm, S.A.; Phadke, D.; Hatzi, K.; Melnick, A.; Geigerman, C.; Sobol, S.E.; Jaye, D.L.; et al. DNA methylation profiling in human B cells reveals immune regulatory elements and epigenetic plasticity at Alu elements during B-cell activation. Genome Res. 2013, 23, 2030–2041. [Google Scholar] [CrossRef]
- Loo, S.K.; Ab Hamid, S.S.; Musa, M.; Wong, K.K. DNMT1 is associated with cell cycle and DNA replication gene sets in diffuse large B-cell lymphoma. Pathol. Res. Pract. 2018, 214, 134–143. [Google Scholar] [CrossRef]
- Yang, L.; Rau, R.; Goodell, M.A. DNMT3A in haematological malignancies. Nature reviews. Cancer 2015, 15, 152–165. [Google Scholar] [CrossRef] [PubMed]
- Couronné, L.; Bastard, C.; Bernard, O.A. TET2 and DNMT3A mutations in human T-cell lymphoma. N. Engl. J. Med. 2012, 366, 95–96. [Google Scholar] [CrossRef]
- Poole, C.J.; Zheng, W.; Lodh, A.; Yevtodiyenko, A.; Liefwalker, D.; Li, H.; Felsher, D.W.; van Riggelen, J. DNMT3B overexpression contributes to aberrant DNA methylation and MYC-driven tumor maintenance in T-ALL and Burkitt’s lymphoma. Oncotarget 2017, 8, 76898–76920. [Google Scholar] [CrossRef] [PubMed]
- Robaina, M.C.; Mazzoccoli, L.; Arruda, V.O.; Reis, F.R.; Apa, A.G.; de Rezende, L.M.; Klumb, C.E. Deregulation of DNMT1, DNMT3B and miR-29s in Burkitt lymphoma suggests novel contribution for disease pathogenesis. Exp. Mol. Pathol. 2015, 98, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Amara, K.; Ziadi, S.; Hachana, M.; Soltani, N.; Korbi, S.; Trimeche, M. DNA methyltransferase DNMT3b protein overexpression as a prognostic factor in patients with diffuse large B-cell lymphomas. Cancer Sci. 2010, 101, 1722–1730. [Google Scholar] [CrossRef]
- Hu, W.; Zang, L.; Feng, X.; Zhuang, S.; Chang, L.; Liu, Y.; Huang, J.; Zhang, Y. Advances in epigenetic therapies for B-cell non-hodgkin lymphoma. Ann. Hematol. 2024, 103, 5085–5101. [Google Scholar] [CrossRef]
- Tonon, S.; Mion, F.; Dong, J.; Chang, H.D.; Dalla, E.; Scapini, P.; Perruolo, G.; Zanello, A.; Dugo, M.; Cassatella, M.A.; et al. IL-10-producing B cells are characterized by a specific methylation signature. Eur. J. Immunol. 2019, 49, 1213–1225. [Google Scholar] [CrossRef]
- Zhang, M.Y.; Calin, G.; Deng, M.D.; Au-Yeung, R.K.H.; Wang, L.Q.; Chim, C.S. Epigenetic Silencing of Tumor Suppressor lncRNA NKILA: Implication on NF-κB Signaling in Non-Hodgkin’s Lymphoma. Genes 2022, 13, 128. [Google Scholar] [CrossRef]
- Kubuki, Y.; Yamaji, T.; Hidaka, T.; Kameda, T.; Shide, K.; Sekine, M.; Kamiunten, A.; Akizuki, K.; Shimoda, H.; Tahira, Y.; et al. TET2 mutation in diffuse large B-cell lymphoma. J. Clin. Exp. Hematop. 2017, 56, 145–149. [Google Scholar] [CrossRef]
- Dominguez, P.M.; Ghamlouch, H.; Rosikiewicz, W.; Kumar, P.; Béguelin, W.; Fontán, L.; Rivas, M.A.; Pawlikowska, P.; Armand, M.; Mouly, E.; et al. TET2 deficiency causes germinal center hyperplasia, impairs plasma cell differentiation, and promotes B-cell lymphomagenesis. Cancer Discov. 2018, 8, 1632–1653. [Google Scholar]
- Carlund, O.; Thörn, E.; Osterman, P.; Fors, M.; Dernstedt, A.; Forsell, M.N.; Erlanson, M.; Landfors, M.; Degerman, S.; Hultdin, M. Semimethylation is a feature of diffuse large B-cell lymphoma, and subgroups with poor prognosis are characterized by global hypomethylation and short telomere length. Clin. Epigenet. 2024, 16, 68. [Google Scholar] [CrossRef]
- Peterson, C.L.; Laniel, M.A. Histones and histone modifications. Curr. Biol. CB 2004, 14, R546–R551. [Google Scholar] [CrossRef]
- Tessarz, P.; Kouzarides, T. Histone core modifications regulating nucleosome structure and dynamics. Nat. Rev. Mol. Cell Biol. 2014, 15, 703–708. [Google Scholar] [CrossRef]
- Yang, A.Y.; Kim, H.; Li, W.; Kong, A.-N.T. Natural compound-derived epigenetic regulators targeting epigenetic readers, writers and erasers. Curr. Top. Med. Chem. 2016, 16, 697–713. [Google Scholar] [CrossRef]
- Li, Y.; Seto, E. HDACs and HDAC Inhibitors in Cancer Development and Therapy. Cold Spring Harb. Perspect. Med. 2016, 6, a026831. [Google Scholar] [CrossRef]
- Lee, S.H.; Yoo, C.; Im, S.; Jung, J.H.; Choi, H.J.; Yoo, J. Expression of histone deacetylases in diffuse large B-cell lymphoma and its clinical significance. Int. J. Med. Sci. 2014, 11, 994–1000. [Google Scholar] [CrossRef]
- Lin, X.J.; Cai, L.M.; Qian, Z.J.; Wang, C.Y.; Sun, N.; Sun, X.H.; Huang, H.; Guo, W.J.; Lin, H.Y.; Yao, R.X. Increased histone deacetylase 6 expression serves as a favorable prognostic factor for diffuse large B-cell lymphoma. OncoTargets Ther. 2017, 10, 5129–5136. [Google Scholar] [CrossRef]
- Karkhanis, V.; Alinari, L.; Ozer, H.G.; Chung, J.; Zhang, X.; Sif, S.; Baiocchi, R.A. Protein arginine methyltransferase 5 represses tumor suppressor miRNAs that down-regulate CYCLIN D1 and c-MYC expression in aggressive B-cell lymphoma. J. Biol. Chem. 2020, 295, 1165–1180. [Google Scholar] [CrossRef]
- Liu, H.; Wei, J.; Sang, N.; Zhong, X.; Zhou, X.; Yang, X.; Zhang, J.; Zuo, Z.; Zhou, Y.; Yang, S.; et al. The novel LSD1 inhibitor ZY0511 suppresses diffuse large B-cell lymphoma proliferation by inducing apoptosis and autophagy. Med. Oncol. 2021, 38, 124. [Google Scholar] [CrossRef]
- Vargas-Ayala, R.C.; Jay, A.; Manara, F.; Maroui, M.A.; Hernandez-Vargas, H.; Diederichs, A.; Robitaille, A.; Sirand, C.; Ceraolo, M.G.; Romero-Medina, M.C.; et al. Interplay between the Epigenetic Enzyme Lysine (K)-Specific Demethylase 2B and Epstein-Barr Virus Infection. J. Virol. 2019, 93, e00273-19. [Google Scholar] [CrossRef]
- De Martino, M.; Nicolau-Neto, P.; Pinto, L.F.R.; Traverse-Glehen, A.; Bachy, E.; Gigantino, V.; De Cecio, R.; Bertoni, F.; Chieffi, P.; Fusco, A.; et al. HMGA1 induces EZH2 overexpression in human B-cell lymphomas. Am. J. Cancer Res. 2021, 11, 2174. [Google Scholar]
- Zhu, Y.; Wang, Z.; Li, Y.; Peng, H.; Liu, J.; Zhang, J.; Xiao, X. The role of CREBBP/EP300 and its therapeutic implications in hematological malignancies. Cancers 2023, 15, 1219. [Google Scholar] [CrossRef]
- Kichi, Z.A.; Dini, N.; Rojhannezhad, M.; Farsani, Z.S. Noncoding RNAs in B cell non-Hodgkins lymphoma. Gene 2024, 917, 148480. [Google Scholar]
- Wei, J.W.; Huang, K.; Yang, C.; Kang, C.S. Non-coding RNAs as regulators in epigenetics. Oncol. Rep. 2017, 37, 3–9. [Google Scholar]
- Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef]
- Lawrie, C.H.; Soneji, S.; Marafioti, T.; Cooper, C.D.O.; Palazzo, S.; Paterson, J.C.; Cattan, H.; Enver, T.; Mager, R.; Boultwood, J.; et al. MicroRNA expression distinguishes between germinal center B cell-like and activated B cell-like subtypes of diffuse large B cell lymphoma. Int. J. Cancer 2007, 121, 1156–1161. [Google Scholar] [CrossRef]
- Song, J.; Shao, Q.; Li, C.; Liu, H.; Li, J.; Wang, Y.; Song, W.; Li, L.; Wang, G.; Shao, Z.; et al. Effects of microRNA-21 on apoptosis by regulating the expression of PTEN in diffuse large B-cell lymphoma. Medicine 2017, 96, e7952. [Google Scholar] [CrossRef]
- Sun, R.; Zhang, P.P.; Weng, X.Q.; Gao, X.D.; Huang, C.X.; Wang, L.; Hu, X.X.; Xu, P.P.; Cheng, L.; Jiang, L.; et al. Therapeutic targeting miR130b counteracts diffuse large B-cell lymphoma progression via OX40/OX40L-mediated interaction with Th17 cells. Signal Transduct. Target. Ther. 2022, 7, 80. [Google Scholar] [CrossRef]
- Zheng, Z.; Sun, R.; Zhao, H.J.; Fu, D.; Zhong, H.J.; Weng, X.Q.; Qu, B.; Zhao, Y.; Wang, L.; Zhao, W.L. MiR155 sensitized B-lymphoma cells to anti-PD-L1 antibody via PD-1/PD-L1-mediated lymphoma cell interaction with CD8+T cells. Mol. Cancer 2019, 18, 54. [Google Scholar] [CrossRef]
- Iqbal, J.; Shen, Y.; Huang, X.; Liu, Y.; Wake, L.; Liu, C.; Deffenbacher, K.; Lachel, C.M.; Wang, C.; Rohr, J.; et al. Global microRNA expression profiling uncovers molecular markers for classification and prognosis in aggressive B-cell lymphoma. Blood 2015, 125, 1137–1145. [Google Scholar] [CrossRef]
- Lenze, D.; Leoncini, L.; Hummel, M.; Volinia, S.; Liu, C.G.; Amato, T.; De Falco, G.; Githanga, J.; Horn, H.; Nyagol, J.; et al. The different epidemiologic subtypes of Burkitt lymphoma share a homogenous micro RNA profile distinct from diffuse large B-cell lymphoma. Leukemia 2011, 25, 1869–1876. [Google Scholar] [CrossRef]
- Zhou, M.; Zhao, H.; Xu, W.; Bao, S.; Cheng, L.; Sun, J. Discovery and validation of immune-associated long non-coding RNA biomarkers associated with clinically molecular subtype and prognosis in diffuse large B cell lymphoma. Mol. Cancer 2017, 16, 16. [Google Scholar] [CrossRef]
- Verma, A.; Jiang, Y.; Du, W.; Fairchild, L.; Melnick, A.; Elemento, O. Transcriptome sequencing reveals thousands of novel long non-coding RNAs in B cell lymphoma. Genome Med. 2015, 7, 110. [Google Scholar] [CrossRef]
- Dahl, M.; Daugaard, I.; Andersen, M.S.; Hansen, T.B.; Grønbæk, K.; Kjems, J.; Kristensen, L.S. Enzyme-free digital counting of endogenous circular RNA molecules in B-cell malignancies. Lab. Investig. A J. Tech. Methods Pathol. 2018, 98, 1657–1669. [Google Scholar] [CrossRef]
- Hu, Y.; Zhao, Y.; Shi, C.; Ren, P.; Wei, B.; Guo, Y.; Ma, J. A circular RNA from APC inhibits the proliferation of diffuse large B-cell lymphoma by inactivating Wnt/β-catenin signaling via interacting with TET1 and miR-888. Aging 2019, 11, 8068–8084. [Google Scholar] [CrossRef]
- Li, W.; Zhang, H.; You, Z.; Guo, B. LncRNAs in immune and stromal cells remodel phenotype of cancer cell and tumor microenvironment. J. Inflamm. Res. 2024, 17, 3173–3185. [Google Scholar] [CrossRef]
- Yu, C.Y.; Kuo, H.C. The emerging roles and functions of circular RNAs and their generation. J. Biomed. Sci. 2019, 26, 29. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, T.; Zhang, X.; Wang, P.; Long, F. The role of circular RNAs in regulating resistance to cancer immunotherapy: Mechanisms and implications. Cell Death Dis. 2024, 15, 312. [Google Scholar] [CrossRef]
- Dong, L.; Huang, J.; Gao, X.; Du, J.; Wang, Y.; Zhao, L. CircPCBP2 promotes the stemness and chemoresistance of DLBCL via targeting miR-33a/b to disinhibit PD-L1. Cancer Sci. 2022, 113, 2888–2903. [Google Scholar]
- Clapier, C.R.; Cairns, B.R. The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 2009, 78, 273–304. [Google Scholar] [CrossRef]
- Kadoch, C.; Hargreaves, D.C.; Hodges, C.; Elias, L.; Ho, L.; Ranish, J.; Crabtree, G.R. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat. Genet. 2013, 45, 592–601. [Google Scholar] [CrossRef]
- Giulino-Roth, L.; Wang, K.; MacDonald, T.Y.; Mathew, S.; Tam, Y.; Cronin, M.T.; Palmer, G.; Lucena-Silva, N.; Pedrosa, F.; Pedrosa, M.; et al. Targeted genomic sequencing of pediatric Burkitt lymphoma identifies recurrent alterations in antiapoptotic and chromatin-remodeling genes. Blood 2012, 120, 5181–5184. [Google Scholar] [CrossRef]
- Huang, Y.H.; Cai, K.; Xu, P.P.; Wang, L.; Huang, C.X.; Fang, Y.; Cheng, S.; Sun, X.-J.; Liu, F.; Huang, J.-Y.; et al. CREBBP/EP300 mutations promoted tumor progression in diffuse large B-cell lymphoma through altering tumor-associated macrophage polarization via FBXW7-NOTCH-CCL2/CSF1 axis. Signal Transduct. Target. Ther. 2021, 6, 10. [Google Scholar]
- Béguelin, W.; Teater, M.; Meydan, C.; Hoehn, K.B.; Phillip, J.M.; Soshnev, A.A.; Venturutti, L.; Rivas, M.A.; Calvo-Fernández, M.T.; Gutierrez, J.; et al. Mutant EZH2 induces a pre-malignant lymphoma niche by reprogramming the immune response. Cancer Cell 2020, 37, 655–673. [Google Scholar]
- Casey, S.C.; Amedei, A.; Aquilano, K.; Azmi, A.S.; Benencia, F.; Bhakta, D.; Bilsland, A.E.; Boosani, C.S.; Chen, S.; Ciriolo, M.R.; et al. Cancer prevention and therapy through the modulation of the tumor microenvironment. Semin. Cancer Biol. 2015, 35, S199–S223. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, X.; Wang, X. Targeting the tumor microenvironment in B-cell lymphoma: Challenges and opportunities. J. Hematol. Oncol. 2021, 14, 125. [Google Scholar] [CrossRef]
- Rastegar, S.; Kallen, M.; Suster, D.I. Updates in the role of the tumor microenvironment cellular crosstalk and genetic signatures in diffuse large B-cell lymphoma: A narrative review. Chin. Clin. Oncol. 2024, 13, 38. [Google Scholar] [CrossRef]
- Wang, G.; Chow, R.D.; Zhu, L.; Bai, Z.; Ye, L.; Zhang, F.; Renauer, P.A.; Dong, M.B.; Dai, X.; Zhang, X.; et al. CRISPR-GEMM pooled mutagenic screening identifies KMT2D as a major modulator of immune checkpoint blockade. Cancer Discov. 2020, 10, 1912–1933. [Google Scholar]
- Tsagaratou, A.; González-Avalos, E.; Rautio, S.; Scott-Browne, J.P.; Togher, S.; Pastor, W.A.; Rothenberg, E.V.; Chavez, L.; Lähdesmäki, H.; Rao, A. TET proteins regulate the lineage specification and TCR-mediated expansion of i NKT cells. Nat. Immunol. 2017, 18, 45–53. [Google Scholar]
- Carty, S.A.; Gohil, M.; Banks, L.B.; Cotton, R.M.; Johnson, M.E.; Stelekati, E.; Wells, A.D.; Wherry, E.J.; Koretzky, G.A.; Jordan, M.S. The loss of TET2 promotes CD8+ T cell memory differentiation. J. Immunol. 2018, 200, 82–91. [Google Scholar]
- Menter, T.; Tzankov, A. Lymphomas and Their Microenvironment: A Multifaceted Relationship. Pathobiol. J. Immunopathol. Mol. Cell. Biol. 2019, 86, 225–236. [Google Scholar] [CrossRef]
- Yu, T.; Xu-Monette, Z.Y.; Lagoo, A.; Shuai, W.; Wang, B.; Neff, J.; Carrillo, L.F.; Carlsen, E.D.; Pina-Oviedo, S.; Young, K.H. Flow cytometry quantification of tumor-infiltrating lymphocytes to predict the survival of patients with diffuse large B-cell lymphoma. Front. Immunol. 2024, 15, 1335689. [Google Scholar] [CrossRef]
- Xu-Monette, Z.Y.; Li, Y.; Snyder, T.; Yu, T.; Lu, T.; Tzankov, A.; Visco, C.; Bhagat, G.; Qian, W.; Dybkaer, K.; et al. Tumor-Infiltrating Normal B Cells Revealed by Immunoglobulin Repertoire Clonotype Analysis Are Highly Prognostic and Crucial for Antitumor Immune Responses in DLBCL. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2023, 29, 4808–4821. [Google Scholar] [CrossRef]
- Yang, J.; Yu, L.; Man, J.; Chen, H.; Zhou, L.; Zhao, L. Immune scoring model based on immune cell infiltration to predict prognosis in diffuse large B-cell lymphoma. Cancer 2023, 129, 235–244. [Google Scholar] [CrossRef]
- Mulder, T.A.; Wahlin, B.E.; Österborg, A.; Palma, M. Targeting the Immune Microenvironment in Lymphomas of B-Cell Origin: From Biology to Clinical Application. Cancers 2019, 11, 915. [Google Scholar] [CrossRef]
- Ng, W.L.; Ansell, S.M.; Mondello, P. Insights into the tumor microenvironment of B cell lymphoma. J. Exp. Clin. Cancer Res. CR 2022, 41, 362. [Google Scholar] [CrossRef]
- Cha, Z.; Qian, G.; Zang, Y.; Gu, H.; Huang, Y.; Zhu, L.; Li, J.; Liu, Y.; Tu, X.; Song, H.; et al. Circulating CXCR5+CD4+ T cells assist in the survival and growth of primary diffuse large B cell lymphoma cells through interleukin 10 pathway. Exp. Cell Res. 2017, 350, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Goodman, A.; Patel, S.P.; Kurzrock, R. PD-1-PD-L1 immune-checkpoint blockade in B-cell lymphomas. Nature reviews. Clin. Oncol. 2017, 14, 203–220. [Google Scholar] [CrossRef]
- Menter, T.; Tzankov, A. Mechanisms of Immune Evasion and Immune Modulation by Lymphoma Cells. Front. Oncol. 2018, 8, 54. [Google Scholar] [CrossRef]
- Zhong, W.; Liu, X.; Zhu, Z.; Li, Q.; Li, K. High levels of Tim-3+Foxp3+Treg cells in the tumor microenvironment is a prognostic indicator of poor survival of diffuse large B cell lymphoma patients. Int. Immunopharmacol. 2021, 96, 107662. [Google Scholar] [CrossRef]
- Chang, C.; Chen, Y.P.; Medeiros, L.J.; Chen, T.Y.; Chang, K.C. Higher infiltration of intratumoral CD25+ FOXP3+ lymphocytes correlates with a favorable prognosis in patients with diffuse large B-cell lymphoma. Leuk. Lymphoma 2021, 62, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Yang, Y.; Chen, K.; Zhang, Q.; Huang, Y.; Jian, S. Diffuse large B-cell lymphoma: The significance of CD8+ tumor-infiltrating lymphocytes exhaustion mediated by TIM3/Galectin-9 pathway. J. Transl. Med. 2024, 22, 174. [Google Scholar] [CrossRef]
- Li, L.; Sun, R.; Miao, Y.; Tran, T.; Adams, L.; Roscoe, N.; Xu, B.; Manyam, G.C.; Tan, X.; Zhang, H.; et al. PD-1/PD-L1 expression and interaction by automated quantitative immunofluorescent analysis show adverse prognostic impact in patients with diffuse large B-cell lymphoma having T-cell infiltration: A study from the International DLBCL Consortium Program. Mod. Pathol. 2019, 32, 741–754. [Google Scholar] [CrossRef]
- Wu, S.Y.; Fu, T.; Jiang, Y.Z.; Shao, Z.M. Natural killer cells in cancer biology and therapy. Mol. Cancer 2020, 19, 120. [Google Scholar] [CrossRef]
- Vari, F.; Arpon, D.; Keane, C.; Hertzberg, M.S.; Talaulikar, D.; Jain, S.; Cui, Q.; Han, E.; Tobin, J.; Bird, R.; et al. Immune evasion via PD-1/PD-L1 on NK cells and monocyte/macrophages is more prominent in Hodgkin lymphoma than DLBCL. Blood 2018, 131, 1809–1819. [Google Scholar] [CrossRef] [PubMed]
- Cerchietti, L. Genetic mechanisms underlying tumor microenvironment composition and function in diffuse large B-cell lymphoma. Blood 2024, 143, 1101–1111. [Google Scholar] [CrossRef] [PubMed]
- Nam, S.J.; Go, H.; Paik, J.H.; Kim, T.M.; Heo, D.S.; Kim, C.W.; Jeon, Y.K. An increase of M2 macrophages predicts poor prognosis in patients with diffuse large B-cell lymphoma treated with rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone. Leuk. Lymphoma 2014, 55, 2466–2476. [Google Scholar] [CrossRef] [PubMed]
- Nikkarinen, A.; Lokhande, L.; Amini, R.M.; Jerkeman, M.; Porwit, A.; Molin, D.; Enblad, G.; Kolstad, A.; Räty, R.; Hutchings, M.; et al. Soluble CD163 predicts outcome in both chemoimmunotherapy and targeted therapy-treated mantle cell lymphoma. Blood Adv. 2023, 7, 5304–5313. [Google Scholar] [CrossRef]
- Wang, Z.; Jiang, R.; Li, Q.; Wang, H.; Tao, Q.; Zhai, Z. Elevated M-MDSCs in Circulation Are Indicative of Poor Prognosis in Diffuse Large B-Cell Lymphoma Patients. J. Clin. Med. 2021, 10, 1768. [Google Scholar] [CrossRef]
- Jiménez-Cortegana, C.; Palazón-Carrión, N.; Martin Garcia-Sancho, A.; Nogales-Fernandez, E.; Carnicero-González, F.; Ríos-Herranz, E.; de la Cruz-Vicente, F.; Rodríguez-García, G.; Fernández-Álvarez, R.; Rueda Dominguez, A.; et al. Spanish Lymphoma Oncology Group (GOTEL) and the Spanish Group for Immunobiotherapy of Cancer (GÉTICA) Circulating myeloid-derived suppressor cells and regulatory T cells as immunological biomarkers in refractory/relapsed diffuse large B-cell lymphoma: Translational results from the R2-GDP-GOTEL trial. J. Immunother. Cancer 2021, 9, e002323. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, M.; Li, W.; Song, Y. Immune cells in the B-cell lymphoma microenvironment: From basic research to clinical applications. Chin. Med. J. 2024, 137, 776–790. [Google Scholar] [CrossRef]
- Jaillon, S.; Ponzetta, A.; Di Mitri, D.; Santoni, A.; Bonecchi, R.; Mantovani, A. Neutrophil diversity and plasticity in tumour progression and therapy. Nat. Rev. Cancer 2020, 20, 485–503. [Google Scholar] [CrossRef]
- Ng, M.S.F.; Kwok, I.; Tan, L.; Shi, C.; Cerezo-Wallis, D.; Tan, Y.; Leong, K.; Calvo, G.F.; Yang, K.; Zhang, Y.; et al. Deterministic reprogramming of neutrophils within tumors. Science 2024, 383, eadf6493. [Google Scholar] [CrossRef] [PubMed]
- Schwaller, J.; Schneider, P.; Mhawech-Fauceglia, P.; McKee, T.; Myit, S.; Matthes, T.; Tschopp, J.; Donze, O.; Le Gal, F.A.; Huard, B. Neutrophil-derived APRIL concentrated in tumor lesions by proteoglycans correlates with human B-cell lymphoma aggressiveness. Blood 2007, 109, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Hedström, G.; Berglund, M.; Molin, D.; Fischer, M.; Nilsson, G.; Thunberg, U.; Book, M.; Sundström, C.; Rosenquist, R.; Roos, G.; et al. Mast cell infiltration is a favourable prognostic factor in diffuse large B-cell lymphoma. Br. J. Haematol. 2007, 138, 68–71. [Google Scholar] [CrossRef] [PubMed]
- Marinaccio, C.; Ingravallo, G.; Gaudio, F.; Perrone, T.; Nico, B.; Maoirano, E.; Specchia, G.; Ribatti, D. Microvascular density, CD68 and tryptase expression in human diffuse large B-cell lymphoma. Leuk. Res. 2014, 38, 1374–1377. [Google Scholar] [CrossRef]
- Yang, D.; Liu, J.; Qian, H.; Zhuang, Q. Cancer-associated fibroblasts: From basic science to anticancer therapy. Exp. Mol. Med. 2023, 55, 1322–1332. [Google Scholar] [CrossRef]
- Elyada, E.; Bolisetty, M.; Laise, P.; Flynn, W.F.; Courtois, E.T.; Burkhart, R.A.; Teinor, J.A.; Belleau, P.; Biffi, G.; Lucito, M.S.; et al. Cross-Species Single-Cell Analysis of Pancreatic Ductal Adenocarcinoma Reveals Antigen-Presenting Cancer-Associated Fibroblasts. Cancer Discov. 2019, 9, 1102–1123. [Google Scholar] [CrossRef]
- Ribatti, D.; Tamma, R.; Annese, T.; d’Amati, A.; Ingravallo, G.; Specchia, G. Vascular Growth in Lymphomas: Angiogenesis and Alternative Ways. Cancers 2023, 15, 3262. [Google Scholar] [CrossRef]
- Solimando, A.G.; Annese, T.; Tamma, R.; Ingravallo, G.; Maiorano, E.; Vacca, A.; Specchia, G.; Ribatti, D. New Insights into Diffuse Large B-Cell Lymphoma Pathobiology. Cancers 2020, 12, 1869. [Google Scholar] [CrossRef]
- Tamma, R.; Ingravallo, G.; Gaudio, F.; Annese, T.; Albano, F.; Ruggieri, S.; Dicataldo, M.; Maiorano, E.; Specchia, G.; Ribatti, D. STAT3, tumor microenvironment, and microvessel density in diffuse large B cell lymphomas. Leuk. Lymphoma 2020, 61, 567–574. [Google Scholar] [CrossRef]
- Cioroianu, A.I.; Stinga, P.I.; Sticlaru, L.; Cioplea, M.D.; Nichita, L.; Popp, C.; Staniceanu, F. Tumor Microenvironment in Diffuse Large B-Cell Lymphoma: Role and Prognosis. Anal. Cell. Pathol. 2019, 2019, 8586354. [Google Scholar] [CrossRef]
- Lenz, G.; Wright, G.; Dave, S.S.; Xiao, W.; Powell, J.; Zhao, H.; Xu, W.; Tan, B.; Goldschmidt, N.; Iqbal, J.; et al. Lymphoma/Leukemia Molecular Profiling Project Stromal gene signatures in large-B-cell lymphomas. N. Engl. J. Med. 2008, 359, 2313–2323. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Quiros, J.; Mahuron, K.; Pai, C.C.; Ranzani, V.; Young, A.; Silveria, S.; Harwin, T.; Abnousian, A.; Pagani, M.; et al. Targeting EZH2 Reprograms Intratumoral Regulatory T Cells to Enhance Cancer Immunity. Cell Rep. 2018, 23, 3262–3274. [Google Scholar] [CrossRef]
- Schenk, A.; Bloch, W.; Zimmer, P. Natural Killer Cells--An Epigenetic Perspective of Development and Regulation. Int. J. Mol. Sci. 2016, 17, 326. [Google Scholar] [CrossRef] [PubMed]
- Satoh, T.; Takeuchi, O.; Vandenbon, A.; Yasuda, K.; Tanaka, Y.; Kumagai, Y.; Miyake, T.; Matsushita, K.; Okazaki, T.; Saitoh, T.; et al. The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat. Immunol. 2010, 11, 936–944. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wang, X.; Liu, D.; Yu, L.; Xue, B.; Shi, H. Epigenetic regulation of macrophage polarization by DNA methyltransferase 3b. Mol. Endocrinol. 2014, 28, 565–574. [Google Scholar] [CrossRef]
- Yang, Q.; Wei, J.; Zhong, L.; Shi, M.; Zhou, P.; Zuo, S.; Wu, K.; Zhu, M.; Huang, X.; Yu, Y.; et al. Cross talk between histone deacetylase 4 and STAT6 in the transcriptional regulation of arginase 1 during mouse dendritic cell differentiation. Mol. Cell. Biol. 2015, 35, 63–75. [Google Scholar] [CrossRef]
- Cheng, F.; Lienlaf, M.; Perez-Villarroel, P.; Wang, H.W.; Lee, C.; Woan, K.; Woods, D.; Knox, T.; Bergman, J.; Pinilla-Ibarz, J.; et al. Divergent roles of histone deacetylase 6 (HDAC6) and histone deacetylase 11 (HDAC11) on the transcriptional regulation of IL10 in antigen presenting cells. Mol. Immunol. 2014, 60, 44–53. [Google Scholar] [CrossRef]
- Cao, Q.; Rong, S.; Repa, J.J.; St Clair, R.; Parks, J.S.; Mishra, N. Histone deacetylase 9 represses cholesterol efflux and alternatively activated macrophages in atherosclerosis development. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 1871–1879. [Google Scholar] [CrossRef]
- Chen, X.; Barozzi, I.; Termanini, A.; Prosperini, E.; Recchiuti, A.; Dalli, J.; Mietton, F.; Matteoli, G.; Hiebert, S.; Natoli, G. Require-ment for the histone deacetylase Hdac3 for the inflammatory gene expression program in macrophages. Proc. Natl. Acad. Sci. USA 2012, 109, E2865-74. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Orillion, A.; Hashimoto, A.; Damayanti, N.; Shen, L.; Adelaiye-Ogala, R.; Arisa, S.; Chintala, S.; Ordentlich, P.; Kao, C.; Elzey, B.; et al. Entinostat Neutralizes Myeloid-Derived Suppressor Cells and Enhances the Antitumor Effect of PD-1 Inhibition in Murine Models of Lung and Renal Cell Carcinoma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2017, 23, 5187–5201. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, D.; Sarode, A. Neutrophils at the Crossroads: Unraveling the Multifaceted Role in the Tumor Microenvironment. Int. J. Mol. Sci. 2024, 25, 2929. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, P.; Gan, Y.; Xiang, S.; Gu, L.; Zhou, J.; Zhou, X.; Wu, P.; Zhang, B.; Deng, D. Driving effect of P16 methylation on telomerase reverse transcriptase-mediated immortalization and transformation of normal human fibroblasts. Chin. Med. J. 2025, 138, 332–342. [Google Scholar] [CrossRef]
- Zhang, S.; Pei, Y.; Lang, F.; Sun, K.; Singh, R.K.; Lamplugh, Z.L.; Saha, A.; Robertson, E.S. EBNA3C facilitates RASSF1A downregulation through ubiquitin-mediated degradation and promoter hypermethylation to drive B-cell proliferation. PLoS Pathog. 2019, 15, e1007514. [Google Scholar] [CrossRef]
- Kehrberg, R.J.; Bhyravbhatla, N.; Batra, S.K.; Kumar, S. Epigenetic regulation of cancer-associated fibroblast heterogeneity. Biochim. Et Biophys. Acta Rev. Cancer 2023, 1878, 188901. [Google Scholar] [CrossRef]
- Basta, M.D.; Petruk, S.; Mazo, A.; Walker, J.L. Fibrosis-the tale of H3K27 histone methyltransferases and demethylases. Front. Cell Dev. Biol. 2023, 11, 1193344. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Xu, M.; Sheng, W. Effects of CAF-Derived MicroRNA on Tumor Biology and Clinical Applications. Cancers 2021, 13, 3160. [Google Scholar] [CrossRef]
- Botti, G.; Scognamiglio, G.; Aquino, G.; Liguori, G.; Cantile, M. LncRNA HOTAIR in Tumor Microenvironment: What Role? Int. J. Mol. Sci. 2019, 20, 2279. [Google Scholar] [CrossRef]
- Yuan, Z.; Li, Y.; Zhang, S.; Wang, X.; Dou, H.; Yu, X.; Zhang, Z.; Yang, S.; Xiao, M. Extracellular matrix remodeling in tumor progression and immune escape: From mechanisms to treatments. Mol. Cancer 2023, 22, 48. [Google Scholar] [CrossRef]
- Balasubramanian, A.; John, T.; Asselin-Labat, M.L. Regulation of the antigen presentation machinery in cancer and its implication for immune surveillance. Biochem. Soc. Trans. 2022, 50, 825–837. [Google Scholar] [CrossRef] [PubMed]
- Kossow, K.W.; Bennett, J.G.; Hoffmann, M.S. Mechanisms of Immune Evasion and Novel Treatments for Relapsed and Refractory Diffuse Large B-cell Lymphoma. Oncol. Adv. 2024, 2, 59–71. [Google Scholar]
- Setiadi, A.F.; Omilusik, K.; David, M.D.; Seipp, R.P.; Hartikainen, J.; Gopaul, R.; Choi, K.B.; Jefferies, W.A. Epigenetic enhancement of antigen processing and presentation promotes immune recognition of tumors. Cancer Res. 2008, 68, 9601–9607. [Google Scholar] [CrossRef] [PubMed]
- Ciesielska-Figlon, K.; Lisowska, K.A. The Role of the CD28 Family Receptors in T-Cell Immunomodulation. Int. J. Mol. Sci. 2024, 25, 1274. [Google Scholar] [CrossRef]
- Saleh, R.; Toor, S.M.; Sasidharan Nair, V.; Elkord, E. Role of Epigenetic Modifications in Inhibitory Immune Checkpoints in Cancer Development and Progression. Front. Immunol. 2020, 11, 1469. [Google Scholar] [CrossRef]
- Ma, X.; Wu, J.; Wang, B.; Liu, C.; Liu, L.; Sun, C. Epigenetic modifications: Critical participants of the PD-L1 regulatory mechanism in solid tumors (Review). Int. J. Oncol. 2022, 61, 134. [Google Scholar] [CrossRef]
- Liang, Y.; Wang, L.; Ma, P.; Ju, D.; Zhao, M.; Shi, Y. Enhancing anti-tumor immune responses through combination therapies: Epigenetic drugs and immune checkpoint inhibitors. Front. Immunol. 2023, 14, 1308264. [Google Scholar] [CrossRef]
- Koumpis, E.; Georgoulis, V.; Papathanasiou, K.; Papoudou-Bai, A.; Kanavaros, P.; Kolettas, E.; Hatzimichael, E. The Role of microRNA-155 as a Biomarker in Diffuse Large B-Cell Lymphoma. Biomedicines 2024, 12, 2658. [Google Scholar] [CrossRef]
- Khanmohammadi, S.; Fallahtafti, P. Long non-coding RNA as a novel biomarker and therapeutic target in aggressive B-cell non-Hodgkin lymphoma: A systematic review. J. Cell. Mol. Med. 2023, 27, 1928–1946. [Google Scholar] [CrossRef]
- Xu, D.; Wang, W.; Wang, D.; Ding, J.; Zhou, Y.; Zhang, W. Long noncoding RNA MALAT-1: A versatile regulator in cancer progression, metastasis, immunity, and therapeutic resistance. Non-Coding RNA Res. 2024, 9, 388–406. [Google Scholar]
- Vogler, W.R.; Miller, D.S.; Keller, J.W. 5-Azacytidine (NSC 102816): A new drug for the treatment of myeloblastic leukemia. Blood 1976, 48, 331–337. [Google Scholar]
- Li, L.H.; Olin, E.J.; Buskirk, H.H.; Reineke, L.M. Cytotoxicity and mode of action of 5-azacytidine on L1210 leukemia. Cancer Res. 1970, 30, 2760–2769. [Google Scholar] [PubMed]
- Pera, B.; Tang, T.; Marullo, R.; Yang, S.N.; Ahn, H.; Patel, J.; Elstrom, R.; Ruan, J.; Furman, R.; Leonard, J.; et al. Combinatorial epigenetic therapy in diffuse large B cell lymphoma pre-clinical models and patients. Clin. Epigenet. 2016, 8, 79. [Google Scholar] [CrossRef]
- Hill, B.; Jagadeesh, D.; Pohlman, B.; Dean, R.; Parameswaran, N.; Chen, J.; Radivoyevitch, T.; Morrison, A.; Fada, S.; Dever, M.; et al. A pilot clinical trial of oral tetrahydrouridine/decitabine for noncytotoxic epigenetic therapy of chemoresistant lymphoid malignancies. Semin. Hematol. 2021, 58, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Martin, P.; Bartlett, N.L.; Chavez, J.C.; Reagan, J.L.; Smith, S.M.; LaCasce, A.S.; Jones, J.; Drew, J.; Wu, C.; Mulvey, E.; et al. Phase 1 study of oral azacitidine (CC-486) plus R-CHOP in previously untreated intermediate- to high-risk DLBCL. Blood 2022, 139, 1147–1159. [Google Scholar] [CrossRef] [PubMed]
- Brem, E.A.; Li, H.; Beaven, A.W.; Caimi, P.F.; Cerchietti, L.; Alizadeh, A.A.; Olin, R.; Henry, N.L.; Dillon, H.; Little, R.F.; et al. SWOG 1918: A phase II/III randomized study of R-miniCHOP with or without oral azacitidine (CC-486) in participants age 75 years or older with newly diagnosed aggressive non-Hodgkin lymphomas—Aiming to improve therapy, outcomes, and validate a prospective frailty tool. J. Geriatr. Oncol. 2022, 13, 258–264. [Google Scholar] [CrossRef]
- Hawkes, E.A.; Phillips, T.; Budde, L.E.; Santoro, A.; Saba, N.S.; Roncolato, F.; Gregory, G.P.; Verhoef, G.; Offner, F.; Quero, C.; et al. Avelumab in Combination Regimens for Relapsed/Refractory DLBCL: Results from the Phase Ib JAVELIN DLBCL Study. Target. Oncol. 2021, 16, 761–771. [Google Scholar] [CrossRef]
- Kong, X.; Zhang, X.; Ding, M.; Feng, X.; Dong, M.; Zhang, L.; Fu, X.; Li, L.; Li, X.; Sun, Z.; et al. Decitabine combined with RDHAP regimen in relapsed/refractory diffuse large B cell lymphoma. Cancer Med. 2023, 12, 8134–8143. [Google Scholar] [CrossRef]
- Song, Y.; Liu, Y.; Li, Z.M.; Li, L.; Su, H.; Jin, Z.; Zuo, X.; Wu, J.; Zhou, H.; Li, K.; et al. SHR2554, an EZH2 inhibitor, in relapsed or refractory mature lymphoid neoplasms: A first-in-human, dose-escalation, dose-expansion, and clinical expansion phase 1 trial. The Lancet. Haematology 2022, 9, e493–e503. [Google Scholar] [CrossRef]
- Izutsu, K.; Makita, S.; Nosaka, K.; Yoshimitsu, M.; Utsunomiya, A.; Kusumoto, S.; Morishima, S.; Tsukasaki, K.; Kawamata, T.; Ono, T.; et al. An open-label, single-arm phase 2 trial of valemetostat for relapsed or refractory adult T-cell leukemia/lymphoma. Blood 2023, 141, 1159–1168. [Google Scholar] [CrossRef]
- Dominguez-Gomez, G.; Cortez-Pedroza, D.; Chavez-Blanco, A.; Taja-Chayeb, L.; Hidalgo-Miranda, A.; Cedro-Tanda, A.; Beltran-Anaya, F.; Diaz-Chavez, J.; Schcolnik-Cabrera, A.; Gonzalez-Fierro, A.; et al. Growth inhibition and transcriptional effects of ribavirin in lymphoma. Oncol. Rep. 2019, 42, 1248–1256. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Weisberg, E.L.; Qi, S.; Ni, W.; Mei, H.; Wang, Z.; Meng, C.; Zhang, S.; Hou, M.; Qi, Z.; et al. Inhibition of the deubiquitinating enzyme USP47 as a novel targeted therapy for hematologic malignancies expressing mutant EZH2. Leukemia 2022, 36, 1048–1057. [Google Scholar] [CrossRef] [PubMed]
- Italiano, A.; Soria, J.C.; Toulmonde, M.; Michot, J.M.; Lucchesi, C.; Varga, A.; Coindre, J.M.; Blakemore, S.J.; Clawson, A.; Suttle, B.; et al. Tazemetostat, an EZH2 inhibitor, in relapsed or refractory B-cell non-Hodgkin lymphoma and advanced solid tumours: A first-in-human, open-label, phase 1 study. The Lancet. Oncology 2018, 19, 649–659. [Google Scholar] [CrossRef]
- Munakata, W.; Shirasugi, Y.; Tobinai, K.; Onizuka, M.; Makita, S.; Suzuki, R.; Maruyama, D.; Kawai, H.; Izutsu, K.; Nakanishi, T.; et al. Phase 1 study of tazemetostat in Japanese patients with relapsed or refractory B-cell lymphoma. Cancer Sci. 2021, 112, 1123–1131. [Google Scholar] [CrossRef]
- Morschhauser, F.; Tilly, H.; Chaidos, A.; McKay, P.; Phillips, T.; Assouline, S.; Batlevi, C.L.; Campbell, P.; Ribrag, V.; Damaj, G.L.; et al. Tazemetostat for patients with relapsed or refractory follicular lymphoma: An open-label, single-arm, multicentre, phase 2 trial. The Lancet. Oncology 2020, 21, 1433–1442. [Google Scholar] [CrossRef] [PubMed]
- Palomba, M.L.; Cartron, G.; Popplewell, L.; Ribrag, V.; Westin, J.; Huw, L.Y.; Agarwal, S.; Shivhare, M.; Hong, W.J.; Raval, A.; et al. Combination of Atezolizumab and Tazemetostat in Patients With Relapsed/Refractory Diffuse Large B-Cell Lymphoma: Results from a Phase Ib Study. Clin. Lymphoma Myeloma Leuk. 2022, 22, 504–512. [Google Scholar] [CrossRef]
- Sarkozy, C.; Morschhauser, F.; Dubois, S.; Molina, T.; Michot, J.M.; Cullières-Dartigues, P.; Suttle, B.; Karlin, L.; Le Gouill, S.; Picquenot, J.M.; et al. A LYSA Phase Ib Study of Tazemetostat (EPZ-6438) plus R-CHOP in Patients with Newly Diagnosed Diffuse Large B-Cell Lymphoma (DLBCL) with Poor Prognosis Features. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2020, 26, 3145–3153. [Google Scholar] [CrossRef]
- Ververis, K.; Hiong, A.; Karagiannis, T.C.; Licciardi, P.V. Histone deacetylase inhibitors (HDACIs): Multitargeted anticancer agents. Biol. Targets Ther. 2013, 7, 47–60. [Google Scholar] [CrossRef]
- Mensah, A.A.; Spriano, F.; Sartori, G.; Priebe, V.; Cascione, L.; Gaudio, E.; Tarantelli, C.; Civanelli, E.; Aresu, L.; Rinaldi, A.; et al. Study of the antilymphoma activity of pracinostat reveals different sensitivities of DLBCL cells to HDAC inhibitors. Blood Adv. 2021, 5, 2467–2480. [Google Scholar] [CrossRef]
- Drott, K.; Hagberg, H.; Papworth, K.; Relander, T.; Jerkeman, M. Valproate in combination with rituximab and CHOP as first-line therapy in diffuse large B-cell lymphoma (VALFRID). Blood Adv. 2018, 2, 1386–1392. [Google Scholar] [CrossRef]
- Straus, D.J.; Hamlin, P.A.; Matasar, M.J.; Lia Palomba, M.; Drullinsky, P.R.; Zelenetz, A.D.; Gerecitano, J.F.; Noy, A.; Hamilton, A.M.; Elstrom, R.; et al. Phase I/II trial of vorinostat with rituximab, cyclophosphamide, etoposide and prednisone as palliative treatment for elderly patients with relapsed or refractory diffuse large B-cell lymphoma not eligible for autologous stem cell transplantation. Br. J. Haematol. 2015, 168, 663–670. [Google Scholar] [CrossRef]
- Guan, X.W.; Wang, H.Q.; Ban, W.W.; Chang, Z.; Chen, H.Z.; Jia, L.; Liu, F.T. Novel HDAC inhibitor Chidamide synergizes with Rituximab to inhibit diffuse large B-cell lymphoma tumour growth by upregulating CD20. Cell Death Dis. 2020, 11, 20. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.C.; Fang, Y.; Wang, L.; Cheng, S.; Fu, D.; He, Y.; Zhao, Y.; Wang, C.F.; Jiang, X.F.; Song, Q.; et al. Clinical efficacy and molecular biomarkers in a phase II study of tucidinostat plus R-CHOP in elderly patients with newly diagnosed diffuse large B-cell lymphoma. Clin. Epigenet. 2020, 12, 160. [Google Scholar] [CrossRef]
- Zhang, H.; Chi, F.; Qin, K.; Mu, X.; Wang, L.; Yang, B.; Wang, Y.; Bai, M.; Li, Z.; Su, L.; et al. Chidamide induces apoptosis in DLBCL cells by suppressing the HDACs/STAT3/Bcl-2 pathway. Mol. Med. Rep. 2021, 23, 308. [Google Scholar] [CrossRef]
- Qualls, D.; Noy, A.; Straus, D.; Matasar, M.; Moskowitz, C.; Seshan, V.; Dogan, A.; Salles, G.; Younes, A.; Zelenetz, A.D.; et al. Molecularly targeted epigenetic therapy with mocetinostat in relapsed and refractory non-Hodgkin lymphoma with CREBBP or EP300 mutations: An open label phase II study. Leuk. Lymphoma 2023, 64, 738–741. [Google Scholar] [PubMed]
- Wang, R.; Shen, J.; Wang, Q.; Zhang, M. Bortezomib inhibited the progression of diffuse large B-cell lymphoma via targeting miR-198. Biomed. Pharmacother. = Biomed. Pharmacother. 2018, 108, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Anastasiadou, E.; Seto, A.G.; Beatty, X.; Hermreck, M.; Gilles, M.E.; Stroopinsky, D.; Pinter-Brown, L.C.; Pestano, L.; Marchese, C.; Avigan, D.; et al. Cobomarsen, an Oligonucleotide Inhibitor of miR-155, Slows DLBCL Tumor Cell Growth In Vitro and In Vivo. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2021, 27, 1139–1149. [Google Scholar] [CrossRef]
- Bai, H.; Wei, J.; Deng, C.; Yang, X.; Wang, C.; Xu, R. MicroRNA-21 regulates the sensitivity of diffuse large B-cell lymphoma cells to the CHOP chemotherapy regimen. Int. J. Hematol. 2013, 97, 223–231. [Google Scholar] [CrossRef]
- Chen, L.; Zhan, C.Z.; Wang, T.; You, H.; Yao, R. Curcumin Inhibits the Proliferation, Migration, Invasion, and Apoptosis of Diffuse Large B-Cell Lymphoma Cell Line by Regulating MiR-21/VHL Axis. Yonsei Med. J. 2020, 61, 20–29. [Google Scholar] [CrossRef]
- Hong, D.S.; Kang, Y.K.; Borad, M.; Sachdev, J.; Ejadi, S.; Lim, H.Y.; Brenner, A.J.; Park, K.; Lee, J.L.; Kim, T.Y.; et al. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br. J. Cancer 2020, 122, 1630–1637. [Google Scholar] [CrossRef]
- Agarwal, R.; Chan, Y.C.; Tam, C.S.; Hunter, T.; Vassiliadis, D.; Teh, C.E.; Thijssen, R.; Yeh, P.; Wong, S.Q.; Ftouni, S.; et al. Dynamic molecular monitoring reveals that SWI-SNF mutations mediate resistance to ibrutinib plus venetoclax in mantle cell lymphoma. Nat. Med. 2019, 25, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Baliñas-Gavira, C.; Rodríguez, M.I.; Andrades, A.; Cuadros, M.; Álvarez-Pérez, J.C.; Álvarez-Prado, Á.F.; de Yébenes, V.G.; Sánchez-Hernández, S.; Fernández-Vigo, E.; Muñoz, J.; et al. Frequent mutations in the amino-terminal domain of BCL7A impair its tumor suppressor role in DLBCL. Leukemia 2020, 34, 2722–2735. [Google Scholar] [CrossRef]
- Jabłońska, E.; Białopiotrowicz, E.; Szydłowski, M.; Prochorec-Sobieszek, M.; Juszczyński, P.; Szumera-Ciećkiewicz, A. DEPTOR is a microRNA-155 target regulating migration and cytokine production in diffuse large B-cell lymphoma cells. Exp. Hematol. 2020, 88, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Ribatti, D.; Cazzato, G.; Tamma, R.; Annese, T.; Ingravallo, G.; Specchia, G. Immune checkpoint inhibitors targeting PD-1/PD-L1 in the treatment of human lymphomas. Front. Oncol. 2024, 14, 1420920. [Google Scholar] [CrossRef]
- Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 2012, 12, 252–264. [Google Scholar] [CrossRef] [PubMed]
- Reiss, K.A.; Forde, P.M.; Brahmer, J.R. Harnessing the power of the immune system via blockade of PD-1 and PD-L1: A promising new anticancer strategy. Immunotherapy 2014, 6, 459–475. [Google Scholar] [CrossRef]
- Ameli, F.; Shajareh, E.; Mokhtari, M.; Kosari, F. Expression of PD1 and PDL1 as immune-checkpoint inhibitors in mantle cell lymphoma. BMC Cancer 2022, 22, 848. [Google Scholar] [CrossRef]
- Menter, T.; Bodmer-Haecki, A.; Dirnhofer, S.; Tzankov, A. Evaluation of the diagnostic and prognostic value of PDL1 expression in Hodgkin and B-cell lymphomas. Hum. Pathol. 2016, 54, 17–24. [Google Scholar] [CrossRef]
- Lesokhin, A.M.; Ansell, S.M.; Armand, P.; Scott, E.C.; Halwani, A.; Gutierrez, M.; Millenson, M.M.; Cohen, A.D.; Schuster, S.J.; Lebovic, D.; et al. Nivolumab in patients with relapsed or refractory hematologic malignancy: Preliminary results of a phase Ib study. J. Clin. Oncol. 2016, 34, 2698–2704. [Google Scholar] [CrossRef]
- Ansell, S.M.; Minnema, M.C.; Johnson, P.; Timmerman, J.M.; Armand, P.; Shipp, M.A.; Rodig, S.J.; Ligon, A.H.; Roemer, M.G.; Reddy, N.; et al. Nivolumab for relapsed/refractory diffuse large B-cell lymphoma in patients ineligible for or having failed autologous transplantation: A single-arm, phase II study. J. Clin. Oncol. 2019, 37, 481–489. [Google Scholar] [CrossRef]
- Xu-Monette, Z.Y.; Zhou, J.; Young, K.H. PD-1 expression and clinical PD-1 blockade in B-cell lymphomas. Blood J. Am. Soc. Hematol. 2018, 131, 68–83. [Google Scholar] [CrossRef] [PubMed]
- Frigault, M.J.; Armand, P.; Redd, R.A.; Jeter, E.; Merryman, R.W.; Coleman, K.C.; Herrera, A.F.; Dahi, P.; Nieto, Y.; LaCasce, A.S.; et al. PD-1 blockade for diffuse large B-cell lymphoma after autologous stem cell transplantation. Blood Adv. 2020, 4, 122–126. [Google Scholar] [CrossRef]
- Katz, B.Z.; Herishanu, Y. Therapeutic targeting of CD19 in hematological malignancies: Past, present, future and beyond. Leuk. Lymphoma 2014, 55, 999–1006. [Google Scholar] [CrossRef] [PubMed]
- Jurczak, W.; Zinzani, P.L.; Hess, G.; Gaidano, G.; Provencio, M.; Nagy, Z.; Robak, T.; Maddocks, K.J.; Buske, C.; Ambarkhane, S.; et al. A phase IIa, open-label, multicenter study of single-agent tafasitamab (MOR208), an Fc-optimized anti-CD19 antibody, in patients with relapsed or refractory B-cell non-Hodgkin’s lymphoma: Long-term follow-up, final analysis. Blood 2019, 134, 4078. [Google Scholar] [CrossRef]
- Salles, G.; Duell, J.; Barca, E.G.; Tournilhac, O.; Jurczak, W.; Liberati, A.M.; Nagy, Z.; Obr, A.; Gaidano, G.; André, M.; et al. Tafasitamab plus lenalidomide in relapsed or refractory diffuse large B-cell lymphoma (L-MIND): A multicentre, prospective, single-arm, phase 2 study. Lancet Oncol. 2020, 21, 978–988. [Google Scholar] [CrossRef]
- Ansell, S.M.; Lin, Y. Immunotherapy of lymphomas. J. Clin. Investig. 2020, 130, 1576–1585. [Google Scholar]
- Crump, M.; Neelapu, S.S.; Farooq, U.; Van Den Neste, E.; Kuruvilla, J.; Westin, J.; Link, B.K.; Hay, A.; Cerhan, J.R.; Zhu, L.; et al. Outcomes in refractory diffuse large B-cell lymphoma: Results from the international SCHOLAR-1 study. Blood J. Am. Soc. Hematol. 2017, 130, 1800–1808. [Google Scholar]
- Locke, F.L.; Ghobadi, A.; Jacobson, C.A.; Miklos, D.B.; Lekakis, L.J.; Oluwole, O.O.; Lin, Y.; Braunschweig, I.; Hill, B.T.; Timmerman, J.M.; et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): A single-arm, multicentre, phase 1–2 trial. Lancet Oncol. 2019, 20, 31–42. [Google Scholar] [CrossRef]
- Neelapu, S.S.; Dickinson, M.; Ulrickson, M.L.; Oluwole, O.O.; Herrera, A.F.; Thieblemont, C.; Ujjani, C.S.; Lin, Y.; Riedell, P.A.; Kekre, N.; et al. Interim analysis of ZUMA-12: A phase 2 study of axicabtagene ciloleucel (Axi-Cel) as first-line therapy in patients (Pts) with high-risk large B cell lymphoma (LBCL). Blood 2020, 136, 49. [Google Scholar] [CrossRef]
- Abramson, J.S.; Palomba, M.L.; Gordon, L.I.; Lunning, M.A.; Wang, M.; Arnason, J.; Mehta, A.; Purev, E.; Maloney, D.G.; Andreadis, C.; et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): A multicentre seamless design study. Lancet 2020, 396, 839–852. [Google Scholar]
- Schuster, S.J.; Bishop, M.R.; Tam, C.S.; Waller, E.K.; Borchmann, P.; McGuirk, J.P.; Jäger, U.; Jaglowski, S.; Andreadis, C.; Westin, J.R.; et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N. Engl. J. Med. 2019, 380, 45–56. [Google Scholar] [PubMed]
- Goebeler, M.E.; Knop, S.; Viardot, A.; Kufer, P.; Topp, M.S.; Einsele, H.; Noppeney, R.; Hess, G.; Kallert, S.; Mackensen, A.; et al. Bispecific T-cell engager (BiTE) antibody construct blinatumomab for the treatment of patients with relapsed/refractory non-Hodgkin lymphoma: Final results from a phase I study. J. Clin. Oncol. 2016, 34, 1104–1111. [Google Scholar] [PubMed]
- Hutchings, M.; Mous, R.; Clausen, M.R.; Johnson, P.; Linton, K.M.; Chamuleau, M.E.; Lewis, D.J.; Balari, A.S.; Cunningham, D.; Oliveri, R.S.; et al. Subcutaneous epcoritamab induces complete responses with an encouraging safety profile across relapsed/refractory B-cell non-Hodgkin lymphoma subtypes, including patients with prior CAR-T therapy: Updated dose escalation data. Blood 2020, 136, 45–46. [Google Scholar]
- Budde, L.E.; Sehn, L.H.; Assouline, S.; Flinn, I.W.; Isufi, I.; Yoon, S.S.; Kim, W.-S.; Matasar, M.J.; Nastoupil, L.J.; Santiago, R.; et al. Mosunetuzumab, a full-length bispecific CD20/CD3 antibody, displays clinical activity in relapsed/refractory B-cell non-Hodgkin lymphoma (NHL): Interim safety and efficacy results from a phase 1 study. Blood 2018, 132, 399. [Google Scholar]
- Olszewski, A.J.; Avigdor, A.; Babu, S.; Levi, I.; Abadi, U.; Holmes, H.; McKinney, M.; McCord, R.; Xie, Y.; Chen, C.; et al. Single-agent mosunetuzumab is a promising safe and efficacious chemotherapy-free regimen for elderly/unfit patients with previously untreated diffuse large B-cell lymphoma. Blood 2020, 136, 43–45. [Google Scholar]
- Bannerji, R.; Allan, J.N.; Arnason, J.E.; Brown, J.R.; Advani, R.; Ansell, S.M.; O’Brien, S.M.; Duell, J.; Martin, P.; Joyce, R.M.; et al. Odronextamab (REGN1979), a human CD20 x CD3 bispecific antibody, induces durable, complete responses in patients with highly refractory B-cell non-Hodgkin lymphoma, including patients refractory to CAR T therapy. Blood 2020, 136, 42–43. [Google Scholar]
- Sehn, L.H.; Hertzberg, M.; Opat, S.; Herrera, A.F.; Assouline, S.; Flowers, C.R.; Kim, T.M.; McMillan, A.; Ozcan, M.; Safar, V.; et al. Polatuzumab vedotin plus bendamustine and rituximab in relapsed/refractory DLBCL: Survival update and new extension cohort data. Blood Adv. 2022, 6, 533–543. [Google Scholar] [CrossRef]
- Francisco, J.A.; Cerveny, C.G.; Meyer, D.L.; Mixan, B.J.; Klussman, K.; Chace, D.F.; Rejniak, S.X.; Gordon, K.A.; DeBlanc, R.; Toki, B.E.; et al. cAC10-vcMMAE, an anti-CD30-monomethyl auristatin E conjugate with potent and selective antitumor activity. Blood 2003, 102, 1458–1465. [Google Scholar] [CrossRef]
- Shanthi, D.; Vinotha, S. A Comprehensive Review of Polatuzumab vedotin: Mechanisms, Clinical Applications, and Future Prospects. Natl. Board Exam. J. Med Sci. 2024, 2, 256–263. [Google Scholar]
- Spurgeon, S.E.; Sharma, K.; Claxton, D.F.; Ehmann, C.; Pu, J.; Shimko, S.; Stewart, A.; Subbiah, N.; Palmbach, G.; LeBlanc, F.; et al. Phase 1-2 study of vorinostat (SAHA), cladribine and rituximab (SCR) in relapsed B-cell non-Hodgkin lymphoma and previously untreated mantle cell lymphoma. Br. J. Haematol. 2019, 186, 845–854. [Google Scholar] [CrossRef]
- Younes, A.; Burke, J.M.; Diefenbach, C.; Ferrari, S.; Khan, C.; Sharman, J.P.; Tani, M.; Ujjani, C.; Vitolo, U.; Yuen, S.; et al. Safety and efficacy of atezolizumab with obinutuzumab and bendamustine in previously untreated follicular lymphoma. Blood Adv. 2022, 6, 5659–5667. [Google Scholar] [CrossRef] [PubMed]
- Persky, D.O.; Li, H.; Rimsza, L.M.; Barr, P.M.; Popplewell, L.L.; Bane, C.L.; Von Gehr, A.; LeBlanc, M.; Fisher, R.I.; Smith, S.M.; et al. A phase I/II trial of vorinostat (SAHA) in combination with rituximab-CHOP in patients with newly diagnosed advanced stage diffuse large B-cell lymphoma (DLBCL): SWOG S0806. Am. J. Hematol. 2018, 93, 486–493. [Google Scholar] [CrossRef] [PubMed]
- Jaeger, U.; Worel, N.; McGuirk, J.P.; Riedell, P.A.; Fleury, I.; Du, Y.; Han, X.; Pearson, D.; Redondo, S.; Waller, E.K. Safety and efficacy of tisagenlecleucel plus pembrolizumab in patients with r/r DLBCL: Phase 1b PORTIA study results. Blood Adv. 2023, 7, 2283–2286. [Google Scholar] [CrossRef] [PubMed]
Epigenetic Regulators | Incidence in DLBCL | Affected Genes | TME Modifications |
---|---|---|---|
cytidine deaminase CDA | 40% | BCL6 | Growth inhibition and apoptosis in DLBCL cells [28,29] |
CREBBP | 15% | CD40, CD74, CIITA, IFN, MHC II, PD-L1 | Decrease in CD4 cells [62,83] |
EP300 | 5% | CDC25B, CDKN1A, E2F1, PDNA | Increase in M2 Macrophages [84] |
EZH2 | 25% | CIITA, NLRC5, Th1-type chemokines | Decrease in TFH cells [85] |
KMT2C | 5% | AP-1, ETS/PU.1, GPX8, GSTT1, GSTA4, IL1, IRF, RUNX | Increase in CD8 T-cells and effector of immune cells [48,86] |
KMT2D | 30% | CD40, IL10, IL6 | Increase in exhausted CD8+ T-cells and increase in effector immune cells [87] |
TET2 | 10% | CD40, IL10-IL6, MHC II | Increase in CD8 T-cells and NK cells [88,89] |
Clinical Trial | Mechanism | Phase | Disease | Results |
---|---|---|---|---|
NCT01120834 Azacitidine or Decitabine + Vorinostat [151] | DNMTi in combination with HDACi | I/II | R/R DLBCL | ORR 6.7% 3 month OS 77% |
NCT02846935 Decitabine + tetrahydrouridine (THU) [154] | DNMTi in combination with CDA inhibitors | Pilot clinical trial | Aggressive B-cell and T-cell lymphomas | ORR > 30% |
NCT02343536 Azacitidine + R-CHOP [155] | DNMTi in combination with R-CHOP | I | Newly diagnosed DLBCL, Grade 3B FL, transformed lymphoma | CRR 88.1% |
NCT04799275 Azacitidine + R-miniCHOP [156] | DNMTi in combination with R-CHOP | II/III | Newly diagnosed DLBCL and associated aggressive lymphoma | 1-year PFS 69% a projected 2-year OS of 71% |
NCT03579082 Decitabine + R-DHAP [157] | DNMTi in combination with R-DHAP | IV | R/R DLBCL | ORR 40% vs. 33% PFS 7m vs. 5m OS 17m vs. 9m |
NCT03494296 Low-dose Decitabine + Cyclophosphamide/Vindesine/Bonisone (COP) | DNMTi in combination with COP | Observational | R/R DLBCL | |
NCT05816746 Decitabine + anti-PD-1 | DNMTi in combination ICI | II | R/R DLBCL | |
NCT06683885 Obutinib or Decitabine with Rituximab, Cyclophosphamide, and Prednisone | DNMTi in combination with chemotherapy | I/II | Newly diagnosed DLBCL | |
NCT01622439 Valproate + R-CHOP [170] | HDACi Joint R-CHOP | I | DLBCL | 2-year PFS: 84.7% 2-year OS: 96.8% |
NCT00764517 Vorinostat + Cladribine + Rituximab [210] | HDACi in combination with CD20 monoclonal antibody-targeted drug | I/II | Relapsed NHL | PFS: 5.95 months OS: 0.95 months |
NCT00667615 Vorinostat + Cyclophosphamide, Etoposide, Prednisone and Rituximab [171] | HDACi in combination with CD20 monoclonal antibody and chemotherapy | I/II | Relapsed DLBCL | ORR 55% mPFS 10mo |
NCT03150329 Vorinostat + Pembrolizumab | HDACi + ICI | I | R/R DLBCL, FL, HL | |
NCT00972478 Vorinostat + Rituximab + chemotherapy [209] | HDACi + chemotherapy | II | Newly diagnosed DLBCL | PFS 73% OS 86% High Toxicity |
NCT02753647 Tucidinostat + R-CHOP [173] | HDACi Joint R-CHO | II | Newly diagnosed DLBCL | ORR: 94% CRR: 86% 2-year PFS: 68%, OS: 83% |
NCT06779435 Tucidinostat in a real-world setting | HDACi | Observational | Newly diagnosed DLBCL | |
NCT02282358 Mocetinostat | HDACi | II | R/RDLBCL or FL patients carrying CREBBP or EP300 mutations | 1-year ORR: 14% PFS: 4.6 months, EFS: 4.6 months |
NCT01897571 Tazemetostat + Prednisolon [164] | EZH2 inhibitor | I | R/R B-NHLs and advanced solid tumors | ORR, including CRR) observed in 8 of 21 patients (38%) with B-NHLs |
NCT03009344 Tazemetostat [162] | EZH2 inhibitor | I | R/R B-NHLs | |
NCT02220842 Tazemetostat + Atezolizumab [166] | EZH2 inhibitor combined with monoclonal anti-PD-L1 antibody | Ib | R/R DLBCL | Median PFS: 2 months, median OS: 13 months |
NCT02889523 Tazemetostat | EZH2 inhibitor in treated patients with R-CHOP | Ib | Newly diagnosed DLBCL | |
NCT05934838 Tazemetostat + CAR-T | EZH2 inhibitor + CAR-T | I | Previously DLBCL, FL, and MCL. | |
NCT0484287 Valemetostat | EZH2 inhibitor | II | R/R aggressive B-cell lymphomas, transformed indolent lymphomas, FL, MCL, MZL, HL | |
NCT04104776 CPI-0209 | EZH2 inhibitor | I/II | Advanced solid tumors R/R DLBCL | |
NCT04390737 HH2853 | EZH2 inhibitor | I | Advanced solid tumors R/R DLBCL, FL | |
NCT03460977 PF-06821497 | EZH2 inhibitor | I | DLBCL (single agent) | |
NCT05272384 Nivolumab + ASTX727 (Decitabine and Cedazuridine) | ICI + DNMTi | I | RR B-cell lymphoma | |
NCT05385263 Nivolumab + CAR-T | ICI + CAR-T | II | DLBCL treated with CAR-T targeting CD19 | |
NCT03305445 Nivolumab + Ipilimumab | ICI combination | I | R/R DLBCL ineligible for ASCT | |
NCT05507541 TTI-662 + Pembrolizumab | ICI | II | R/R DLBCL | |
NCT03995147 Pembrolizumab + R-CHOP | ICI + chemotherapy | II | Newly diagnosed B-cell lymphomas | |
NCT03259529 Bendamustine + Gemcitabine + Rituximab + Nivolumab (BerGeN) | ICI + chemotherapy | I/II | R/R DLBCL | |
NCT03244176 Maintenance Avelumab Plus R-CHOP | ICI + chemotherapy | Early I | DLBCL | |
NCT02596971 Atezolizumab + R-CHOP [211] | ICI + chemotherapy | I/II | FL DLBCL | |
NCT03610061 Durvalumab + Radiotherapy | ICI + radiotherapy | I | R/R DLBCL and FL | |
NCT04978584 Tafasitamab, rituximab, lenalidomide, acalabrutinib | Sigle arm or combinations | II | Newly diagnosed DLBCL | |
NCT05626322 Tafasitamab Maplirpacept (PF-07901801), and Lenalidomide | CD19 combination | I/II | R/R DLBCL | |
NCT06299553 Tafasitamab + Lenalidomide, followed by Tafasitamab | CD19 + immunomodulatory | Observational | R/R DLBCL | |
NCT02763319 Tafasitamab + BEN vs. R-BEN | II/III | R/R DLBCL | ||
NCT05883709 Tafasitamab+ Lenalidomide | CD19 + immunomodulatory | Observational | R/R DLBCL | |
NCT06521255 Tafasitamab and Lenalidomide + GEMOX | CD19 + immunomodulatory + Chemotherapy | III | R/R DLBCL | |
NCT04974216 Tafasitamab and Lenalidomide + Rituximab | CD19 + immunomodulatory + Chemotherapy | II | Newly diagnosed DLBCL in elderly | |
NCT04981795 Tafasitamab and Lenalidomide | CD19 + immunomodulatory | Observational | R/R DLBCL | |
NCT05552937 Tafasitamab and Lenalidomide | CD19 + immunomodulatory | II | R/R DLBCL | |
NCT04889716 CAR-T Followed by Bispecific Antibodies | II | R/R DLBCL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caloian, A.-D.; Cristian, M.; Calin, E.; Pricop, A.-R.; Mociu, S.-I.; Seicaru, L.; Deacu, S.; Ciufu, N.; Suceveanu, A.-I.; Suceveanu, A.-P.; et al. Epigenetic Symphony in Diffuse Large B-Cell Lymphoma: Orchestrating the Tumor Microenvironment. Biomedicines 2025, 13, 853. https://doi.org/10.3390/biomedicines13040853
Caloian A-D, Cristian M, Calin E, Pricop A-R, Mociu S-I, Seicaru L, Deacu S, Ciufu N, Suceveanu A-I, Suceveanu A-P, et al. Epigenetic Symphony in Diffuse Large B-Cell Lymphoma: Orchestrating the Tumor Microenvironment. Biomedicines. 2025; 13(4):853. https://doi.org/10.3390/biomedicines13040853
Chicago/Turabian StyleCaloian, Andreea-Daniela, Miruna Cristian, Elena Calin, Andreea-Raluca Pricop, Stelian-Ilie Mociu, Liliana Seicaru, Sorin Deacu, Nicolae Ciufu, Andra-Iulia Suceveanu, Adrian-Paul Suceveanu, and et al. 2025. "Epigenetic Symphony in Diffuse Large B-Cell Lymphoma: Orchestrating the Tumor Microenvironment" Biomedicines 13, no. 4: 853. https://doi.org/10.3390/biomedicines13040853
APA StyleCaloian, A.-D., Cristian, M., Calin, E., Pricop, A.-R., Mociu, S.-I., Seicaru, L., Deacu, S., Ciufu, N., Suceveanu, A.-I., Suceveanu, A.-P., & Mazilu, L. (2025). Epigenetic Symphony in Diffuse Large B-Cell Lymphoma: Orchestrating the Tumor Microenvironment. Biomedicines, 13(4), 853. https://doi.org/10.3390/biomedicines13040853