Electroencephalography Alpha Traveling Waves as Early Predictors of Treatment Response in Major Depressive Episodes: Insights from Intermittent Photic Stimulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Treatment and Measurement
2.3. EEG Experimental Design
2.4. EEG Recording and Pre-Processing
2.5. Traveling Wave Quantification
2.6. Statistical Analysis
3. Results
3.1. Sociodemographic
3.2. Alpha Traveling Wave Analysis
3.3. Relationship Between Alpha Traveling Waves and Treatment Response
3.3.1. Left Hemisphere Channel
3.3.2. Right Hemisphere Channel
3.3.3. Predictive Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EEG | Electroencephalography |
MDE | Major depressive episode |
IPS | Intermittent photic stimulation |
BD | Bipolar disorder |
MDD | Major depressive disorder |
HAMD-17 | The 17-item Hamilton Depression Rating Scale |
α-FW | Alpha forward waves |
α-BW | Alpha backward waves |
References
- Nesvåg, R.; Bramness, J.G.; Handal, M.; Hartz, I.; Hjellvik, V.; Skurtveit, S. The Incidence, Psychiatric Co-Morbidity and Pharmacological Treatment of Severe Mental Disorders in Children and Adolescents. Eur. Psychiatr. 2018, 49, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.M.Y.; Chen, E.Y.H.; Suen, Y.N.; Wong, C.S.M.; Chang, W.C.; Chan, S.K.W.; McGorry, P.D.; Morgan, C.; van Os, J.; McDaid, D.; et al. Prevalence, Time Trends, and Correlates of Major Depressive Episode and Other Psychiatric Conditions among Young People amid Major Social Unrest and COVID-19 in Hong Kong: A Representative Epidemiological Study from 2019 to 2022. Lancet Reg. Health—West. Pac. 2023, 40, 100881. [Google Scholar] [CrossRef] [PubMed]
- KSABTG. APA Official Actions Position Statement on Transitional Aged Youth. American Psychiatric Association, 2024. Available online: www.psychiatry.org/getattachment/6e0f309e-76b6-43f1-8c87-e1d1c986d2b6/Position-Transitional-Aged-Youth.pd (accessed on 8 April 2025).
- Dwyer, J.B.; Stringaris, A.; Brent, D.A.; Bloch, M.H. Annual Research Review: Defining and Treating Pediatric Treatment-resistant Depression. Child. Psychol. Psychiatry 2020, 61, 312–332. [Google Scholar] [CrossRef]
- Iznak, A.F.; Iznak, E.V. EEG Predictors of Therapeutic Responses in Psychiatry. Neurosci. Behav. Physi 2022, 52, 207–212. [Google Scholar] [CrossRef]
- Simmatis, L.; Russo, E.E.; Geraci, J.; Harmsen, I.E.; Samuel, N. Technical and Clinical Considerations for Electroencephalography-Based Biomarkers for Major Depressive Disorder. Npj Ment. Health Res. 2023, 2, 18. [Google Scholar] [CrossRef] [PubMed]
- Simon, L.; Blay, M.; Galvao, F.; Brunelin, J. Using EEG to Predict Clinical Response to Electroconvulsive Therapy in Patients With Major Depression: A Comprehensive Review. Front. Psychiatry 2021, 12, 643710. [Google Scholar] [CrossRef]
- Zhang, H.; Watrous, A.J.; Patel, A.; Jacobs, J. Theta and Alpha Oscillations Are Traveling Waves in the Human Neocortex. Neuron 2018, 98, 1269–1281.e4. [Google Scholar] [CrossRef]
- Alamia, A.; VanRullen, R. Alpha Oscillations and Traveling Waves: Signatures of Predictive Coding? PLoS Biol. 2019, 17, e3000487. [Google Scholar] [CrossRef]
- Sponheim, S.R.; Stim, J.J.; Engel, S.A.; Pokorny, V.J. Slowed Alpha Oscillations and Percept Formation in Psychotic Psychopathology. Front. Psychol. 2023, 14, 1144107. [Google Scholar] [CrossRef]
- Ippolito, G.; Bertaccini, R.; Tarasi, L.; Di Gregorio, F.; Trajkovic, J.; Battaglia, S.; Romei, V. The Role of Alpha Oscillations among the Main Neuropsychiatric Disorders in the Adult and Developing Human Brain: Evidence from the Last 10 Years of Research. Biomedicines 2022, 10, 3189. [Google Scholar] [CrossRef]
- Miljevic, A.; Bailey, N.W.; Murphy, O.W.; Perera, M.P.N.; Fitzgerald, P.B. Alterations in EEG Functional Connectivity in Individuals with Depression: A Systematic Review. J. Affect. Disord. 2023, 328, 287–302. [Google Scholar] [CrossRef] [PubMed]
- Vranic-Peters, M.; O’Brien, P.; Seneviratne, U.; Reynolds, A.; Lai, A.; Grayden, D.B.; Cook, M.J.; Peterson, A.D.H. Response to Photic Stimulation as a Measure of Cortical Excitability in Epilepsy Patients. Front. Neurosci. 2024, 17, 1308013. [Google Scholar] [CrossRef] [PubMed]
- Oppermann, H.; Haueisen, J. Transient Events during Photic Driving in Single-Trial EEG within the Second Harmonics. In Proceedings of the 2024 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 15–19 July 2024; IEEE: New York, NY, USA; pp. 1–4. [Google Scholar]
- Oppermann, H.; Thelen, A.; Haueisen, J. Single-Trial EEG Analysis Reveals Burst Structure during Photic Driving. Clin. Neurophysiol. 2024, 59, 66–74. [Google Scholar] [CrossRef]
- Tsoneva, T.; Garcia-Molina, G.; Desain, P. Neural Dynamics during Repetitive Visual Stimulation. J. Neural Eng. 2015, 12, 066017. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, P.J. Frontal Alpha Asymmetry and Its Modulation by Monoaminergic Neurotransmitters in Depression. Clin. Psychopharmacol. Neurosci. 2024, 22, 405–415. [Google Scholar] [CrossRef]
- Jaworska, N.; Blier, P.; Fusee, W.; Knott, V. Alpha power, alpha asymmetry and anterior cingulate cortex activity in depressed males and females. J. Psychiatr. Res. 2012, 46, 1483–1491. [Google Scholar] [CrossRef]
- Baskaran, A.; Farzan, F.; Milev, R.; Brenner, C.A.; Alturi, S.; Pat McAndrews, M.; Blier, P.; Evans, K.; Foster, J.A.; Frey, B.N.; et al. The Comparative Effectiveness of Electroencephalographic Indices in Predicting Response to Escitalopram Therapy in Depression: A Pilot Study. J. Affect. Disord. 2017, 227, 542–549. [Google Scholar] [CrossRef]
- Bruder, G.E.; Sedoruk, J.P.; Stewart, J.W.; McGrath, P.J.; Quitkin, F.M.; Tenke, C.E. Electroencephalographic Alpha Measures Predict Therapeutic Response to a Selective Serotonin Reuptake Inhibitor Antidepressant: Pre- and Post-Treatment Findings. Biol. Psychiatry 2007, 63, 1171–1177. [Google Scholar] [CrossRef]
- Hamilton, M. A Rating Scale For Depression. J. Neurol. Neurosurg. Psychiatry 1960, 23, 56–62. [Google Scholar] [CrossRef]
- Rost, N.; Binder, E.B.; Brückl, T.M. Predicting Treatment Outcome in Depression: An Introduction into Current Concepts and Challenges. Eur. Arch. Psychiatry Clin. Neurosci. 2022, 273, 113–127. [Google Scholar] [CrossRef]
- Zimmerman, M.; Martinez, J.H.; Young, D.; Chelminski, I.; Dalrymple, K. Severity Classification on the Hamilton Depression Rating Scale. J. Affect. Disord. 2013, 150, 384–388. [Google Scholar] [CrossRef] [PubMed]
- Tournier, M.; Neumann, A.; Pambrun, E.; Weill, A.; Chaffiol, J.-P.; Alla, F.; Bégaud, B.; Maura, G.; Verdoux, H. Conventional Mood Stabilizers and/or Second-Generation Antipsychotic Drugs in Bipolar Disorders: A Population-Based Comparison of Risk of Treatment Failure. J. Affect. Disord. 2019, 257, 412–420. [Google Scholar] [CrossRef]
- Dwyer, J.B.; Landeros-Weisenberger, A.; Johnson, J.A.; Londono Tobon, A.; Flores, J.M.; Nasir, M.; Couloures, K.; Sanacora, G.; Bloch, M.H. Efficacy of Intravenous Ketamine in Adolescent Treatment-Resistant Depression: A Randomized Midazolam-Controlled Trial. Am. J. Psychiatry 2021, 178, 352–362. [Google Scholar] [CrossRef]
- Delorme, A.; Makeig, S. EEGLAB: An Open Source Toolbox for Analysis of Single-Trial EEG Dynamics Including Independent Component Analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Alamia, A.; Terral, L.; D’ambra, M.R.; VanRullen, R. Distinct. Roles of Forward and Backward Alpha-Band. Waves in Spatial Visual Attention. Elife 2023, 12, e85035. [Google Scholar] [CrossRef]
- Baayen, R.H.; Davidson, D.J.; Bates, D.M. Mixed-Effects Modeling with Crossed Random Effects for Subjects and Items. J. Mem. Lang. 2008, 59, 390–412. [Google Scholar] [CrossRef]
- Frömer, R.; Maier, M.; Abdel Rahman, R. Group-Level EEG-Processing Pipeline for Flexible Single Trial-Based Analyses Including Linear Mixed Models. Front. Neurosci. 2018, 12, 48. [Google Scholar] [CrossRef]
- Huang, Y.; Erdogmus, D.; Pavel, M.; Mathan, S. Mixed Effects Models for EEG Evoked Response Detection. In Proceedings of the 2008 IEEE Workshop on Machine Learning for Signal Processing, Cancún, Mexico, 16–19 October 2008; IEEE: New York, NY, USA, 2008; pp. 91–96. [Google Scholar]
- Riha, C.; Güntensperger, D.; Kleinjung, T.; Meyer, M. Accounting for Heterogeneity: Mixed-Effects Models in Resting-State EEG Data in a Sample of Tinnitus Sufferers. Brain Topogr. 2020, 33, 413–424. [Google Scholar] [CrossRef]
- Regan, D. Some Characteristics of Average Steady-State and Transient Responses Evoked by Modulated Light. Electroencephalogr. Clin. Neurophysiol. 1966, 20, 238–248. [Google Scholar] [CrossRef]
- Gu, M.; Pei, W.; Gao, X.; Wang, Y. An Open Dataset for Human SSVEPs in the Frequency Range of 1-60 Hz. Sci. Data 2024, 11, 196. [Google Scholar] [CrossRef]
- Srinivasan, R.; Bibi, F.A.; Nunez, P.L. Steady-State Visual Evoked Potentials: Distributed Local Sources and Wave-Like Dynamics Are Sensitive to Flicker Frequency. Brain Topogr. 2006, 18, 167–187. [Google Scholar] [CrossRef] [PubMed]
- Van der Vinne, N.; Vollebregt, M.A.; van Putten, M.J.A.M.; Arns, M. Frontal alpha asymmetry as a diagnostic marker in depression: Fact or fiction? A meta-analysis. NeuroImage Clin. 2017, 16, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.F.; Kan, D.P.X.; Croarkin, P.; Phang, C.K.; Doruk, D. Neurophysiological Correlates of Depressive Symptoms in Young Adults: A Quantitative EEG Study. J. Clin. Neurosci. 2018, 47, 315–322. [Google Scholar] [CrossRef]
- Hosseinifard, B.; Moradi, M.H.; Rostami, R. Classifying Depression Patients and Normal Subjects Using Machine Learning Techniques and Nonlinear Features from EEG Signal. Comput. Methods Programs Biomed. 2013, 109, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Sha, X.; Han, X.; Wei, S.; Hu, B. Pervasive EEG Diagnosis of Depression Using Deep Belief Network with Three-Electrodes EEG Collector. In Proceedings of the 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Shenzhen, China, 15–18 December 2016; pp. 1239–1246. [Google Scholar]
- Shen, J.; Zhao, S.; Yao, Y.; Wang, Y.; Feng, L. A Novel Depression Detection Method Based on Pervasive EEG and EEG Splitting Criterion. In Proceedings of the 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Kansas, MO, USA, 13–16 November 2017; pp. 1879–1886. [Google Scholar]
- Li, Y.; Kang, C.; Qu, X.; Zhou, Y.; Wang, W.; Hu, Y. Depression-Related Brain Connectivity Analyzed by EEG Event-Related Phase Synchrony Measure. Front. Hum. Neurosci. 2016, 10, 477. [Google Scholar] [CrossRef]
- Castelnovo, A.; Casetta, C.; Cavallotti, S.; Marcatili, M.; Del Fabro, L.; Canevini, M.P.; Sarasso, S.; D’Agostino, A. Proof–of–concept evidence for high–density EEG investigation of sleep slow wave traveling in First–Episode Psychosis. Sci. Rep. 2024, 14, 6826. [Google Scholar] [CrossRef]
- Hindriks, R.; van Putten, M.J.A.M.; Deco, G. Intra-Cortical Propagation of EEG Alpha Oscillations. Neuroimage 2014, 103, 444–453. [Google Scholar] [CrossRef]
- Muller, L.; Chavane, F.; Reynolds, J.; Sejnowski, T.J. Cortical Travelling Waves: Mechanisms and Computational Principles. Nat. Rev. Neurosci. 2018, 19, 255–268. [Google Scholar] [CrossRef]
- Sinha, S.R.; Sullivan, L.R.; Sabau, D.; Orta, D.S.J.; Dombrowski, K.E.; Halford, J.J.; Hani, A.J.; Drislane, F.W.; Stecker, M.M. American Clinical Neurophysiology Society Guideline 1: Minimum Technical Requirements for Performing Clinical Electroencephalography. Neurodiagn. J. 2016, 56, 235–244. [Google Scholar] [CrossRef]
- Muller, L.; Reynaud, A.; Chavane, F.; Destexhe, A. The Stimulus-Evoked Population Response in Visual Cortex of Awake Monkey Is a Propagating Wave. Nat. Commun. 2014, 5, 3675. [Google Scholar] [CrossRef]
- Burkitt, G.R.; Silberstein, R.B.; Cadusch, P.J.; Wood, A.W. Steady-State Visual Evoked Potentials and Travelling Waves. Clin. Neurophysiol. 2000, 111, 246–258. [Google Scholar] [CrossRef] [PubMed]
- Hallatschek, O.; Geyrhofer, L. Collective Fluctuations in the Dynamics of Adaptation and Other Traveling Waves. Genetics 2016, 202, 1201–1227. [Google Scholar] [CrossRef] [PubMed]
- Sato, N. Cortical Traveling Waves Reflect State-Dependent Hierarchical Sequencing of Local Regions in the Human Connectome Network. Sci. Rep. 2022, 12, 334. [Google Scholar] [CrossRef]
- Gilbert, J.R.; Wusinich, C.; Zarate, C.A. A Predictive Coding Framework for Understanding Major Depression. Front. Hum. Neurosci. 2022, 16, 787495. [Google Scholar] [CrossRef]
- Haarsma, J.; Kok, P.; Browning, M. The Promise of Layer-Specific Neuroimaging for Testing Predictive Coding Theories of Psychosis. Schizophr. Res. 2020, 245, 68–76. [Google Scholar] [CrossRef]
- Friston, K.J. Waves of Prediction. PLoS Biol. 2019, 17, e3000426. [Google Scholar] [CrossRef]
- Adams, R.A.; Stephan, K.E.; Brown, H.R.; Frith, C.D.; Friston, K.J. The Computational Anatomy of Psychosis. Front. Psychiatry 2013, 4, 47. [Google Scholar] [CrossRef]
- Smith, R.; Badcock, P.; Friston, K.J. Recent Advances in the Application of Predictive Coding and Active Inference Models within Clinical Neuroscience. Psychiatry Clin. Neurosci. 2020, 75, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Massimini, M.; Huber, R.; Ferrarelli, F.; Hill, S.L.; Tononi, G. The Sleep Slow Oscillation as a Traveling Wave. J. Neurosci. 2004, 24, 6862–6870. [Google Scholar] [CrossRef]
- Lozano-Soldevilla, D.; VanRullen, R. The Hidden Spatial Dimension of Alpha: 10-Hz Perceptual Echoes Propagate as Periodic Traveling Waves in the Human Brain. Cell Rep. 2019, 26, 374–380.e4. [Google Scholar] [CrossRef]
- Bahramisharif, A.; van Gerven, M.A.J.; Aarnoutse, E.J.; Mercier, M.R.; Schwartz, T.H.; Foxe, J.J.; Ramsey, N.F.; Jensen, O. Propagating Neocortical Gamma Bursts Are Coordinated by Traveling Alpha Waves. J. Neurosci. 2013, 33, 18849–18854. [Google Scholar] [CrossRef] [PubMed]
- VanRullen, R.; Macdonald, J.S.P. Perceptual Echoes at 10 Hz in the Human Brain. Curr. Biol. 2012, 22, 995–999. [Google Scholar] [CrossRef] [PubMed]
- Volk, D.; Dubinin, I.; Myasnikova, A.; Gutkin, B.; Nikulin, V.V. Generalized Cross-Frequency Decomposition: A Method for the Extraction of Neuronal Components Coupled at Different Frequencies. Front. Neuroinform. 2018, 12, 72. [Google Scholar] [CrossRef] [PubMed]
- De Rosa, M.; Ktori, M.; Vidal, Y.; Bottini, R.; Crepaldi, D. Frequency-Based Neural Discrimination in Fast Periodic Visual Stimulation. Cortex 2022, 148, 193–203. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author (s) and contributor (s) and not of MDPI and/or the editor (s). MDPI and/or the editor (s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
Characteristics | All (n = 119) |
---|---|
Age at EEG (year) | 17.27 ± 1.65 |
Gender | |
Male (%) | 34 (28.57%) |
Female (%) | 85 (71.43%) |
Years of education | 10.86 ± 2.01 |
Pre-treatment HAMD | 24.18 ± 5.62 |
2-week-treatment HAMD | 11.70 ± 5.22 |
Medication | |
Mood stabilizer (%) | 95 (79.83%) |
Antipsychotics (%) | 112 (94.12%) |
Sedative–hypnotic (%) | 62 (52.10%) |
Variables | Coefficient | Standard Error | z-Statistic | p-Value | 95% CI |
---|---|---|---|---|---|
Alpha Forward Waves (α-FW) | |||||
Intercept | 31.965 | 0.468 | 68.350 | <0.001 | 31.048~32.881 |
LF IPS | −10.497 | 0.509 | −20.636 | <0.001 | −11.494~−9.500 |
MF IPS | −21.342 | 0.509 | −41.956 | <0.001 | −22.339~−20.345 |
Right vs. Left Channel | 0.534 | 0.509 | 1.050 | 0.294 | −0.463~1.531 |
LF IPS ×Channel Interaction | −0.985 | 0.719 | −1.370 | 0.171 | −2.395~0.425 |
MF IPS × Channel Interaction | −0.258 | 0.719 | −0.358 | 0.720 | −1.668~1.152 |
Group Variance | 10.630 | 0.480 | |||
Alpha Backward Waves (α-BW) | |||||
Intercept | 33.520 | 0.402 | 83.304 | <0.001 | 32.731~34.309 |
LF IPS | −10.753 | 0.445 | −24.145 | <0.001 | −11.626~−9.881 |
MF IPS | −22.144 | 0.445 | −49.721 | <0.001 | −23.017~−21.271 |
Right vs. Left Channel | 0.919 | 0.445 | 2.065 | 0.039 | 0.047~1.792 |
LF IPS × Channel Interaction | −0.264 | 0.630 | −0.420 | 0.675 | −1.499~0.970 |
MF IPS × Channel Interaction | −0.851 | 0.630 | −1.352 | 0.176 | −2.086~0.383 |
Group Variance | 7.466 | 0.392 |
Variables | Univariate | Multivariate | ||||
---|---|---|---|---|---|---|
Standardized β (95% CI for β) | t-Value | p-Value | Standardized β (95% CI for β) | t-Value | p-Value | |
Age | −0.179 (−0.360, 0.001) | −1.968 | 0.051 | −0.167 (−0.341, 0.007) | −1.899 | 0.060 |
Gender | −0.034 (−0.217, 0.149) | −0.368 | 0.714 | −0.040 (−0.214, 0.135) | −0.449 | 0.654 |
α-BW at LF IPS | 0.204 (0.025, 0.383) | 2.253 | 0.026 | −0.016 (−0.254, 0.222) | −0.131 | 0.896 |
α-BW at MF IPS | 0.327 (0.154, 0.500) | 3.743 | <0.001 | 0.274 (0.048, 0.500) | 2.405 | 0.018 |
α-BW at HF IPS | 0.227 (0.049, 0.406) | 2.525 | 0.013 | 0.090 (−0.146, 0.327) | 0.757 | 0.451 |
α-FW at LF IPS | 0.108 (−0.074, −0.290) | 1.178 | 0.241 | - | - | - |
α-FW at MF IPS | 0.072 (−0.111, 0.254) | 0.778 | 0.438 | - | - | - |
α-FW at HF IPS | 0.066 (−0.117, 0.248,) | 0.711 | 0.479 | - | - | - |
Variables | Univariate | Multivariate | ||||
---|---|---|---|---|---|---|
Standardized β (95% CI for β) | t-Value | p-Value | Standardized β (95% CI for β) | t-Value | p-Value | |
Age | −0.179 (−0.360, 0.001) | −1.968 | 0.051 | −0.188 (−0.367, −0.009) | −2.082 | 0.040 |
Gender | −0.034 (−0.217, 0.149) | −0.368 | 0.714 | −0.047 (−0.224, 0.130) | −0.524 | 0.601 |
α-BW at LF IPS | 0.209 (0.030, 0.388) | 2.311 | 0.023 | 0.074 (−0.155, 0.304) | 0.642 | 0.522 |
α-BW at MF IPS | 0.130 (−0.051, 0.312) | 1.419 | 0.159 | - | - | - |
α-BW at HF IPS | 0.225 (0.047, 0.404) | 2.499 | 0.014 | 0.193 (−0.037, 0.423) | 1.664 | 0.099 |
α-FW at LF IPS | 0.067 (−0.116, 0.250) | 0.727 | 0.469 | - | - | - |
α-FW at MF IPS | 0.158 (−0.023, 0.339) | 1.733 | 0.086 | - | - | - |
α-FW at HF IPS | 0.127 (−0.055, 0.308) | 1.380 | 0.170 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, X.; Zhang, H.; Zeng, B.; Cai, A.; Zheng, J.; Zhou, J.; Gu, Y.; Wu, M.; Wu, G.; Zhang, L.; et al. Electroencephalography Alpha Traveling Waves as Early Predictors of Treatment Response in Major Depressive Episodes: Insights from Intermittent Photic Stimulation. Biomedicines 2025, 13, 1001. https://doi.org/10.3390/biomedicines13041001
Guo X, Zhang H, Zeng B, Cai A, Zheng J, Zhou J, Gu Y, Wu M, Wu G, Zhang L, et al. Electroencephalography Alpha Traveling Waves as Early Predictors of Treatment Response in Major Depressive Episodes: Insights from Intermittent Photic Stimulation. Biomedicines. 2025; 13(4):1001. https://doi.org/10.3390/biomedicines13041001
Chicago/Turabian StyleGuo, Xiaojing, Haifeng Zhang, Biyu Zeng, Aoling Cai, Junjie Zheng, Jingshuai Zhou, Yongquan Gu, Minya Wu, Guanhui Wu, Li Zhang, and et al. 2025. "Electroencephalography Alpha Traveling Waves as Early Predictors of Treatment Response in Major Depressive Episodes: Insights from Intermittent Photic Stimulation" Biomedicines 13, no. 4: 1001. https://doi.org/10.3390/biomedicines13041001
APA StyleGuo, X., Zhang, H., Zeng, B., Cai, A., Zheng, J., Zhou, J., Gu, Y., Wu, M., Wu, G., Zhang, L., & Wang, F. (2025). Electroencephalography Alpha Traveling Waves as Early Predictors of Treatment Response in Major Depressive Episodes: Insights from Intermittent Photic Stimulation. Biomedicines, 13(4), 1001. https://doi.org/10.3390/biomedicines13041001